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1 Introduction

An investor making an optimal decision needs to know the true parameters under the

asset returns. But the true parameters are unknown by the decison maker and have to

be estimated. Under the framework of Markowitz (1952)[53], investor cares only about

expected returns and volatility of static portfolio and should hold the tangency portfolio

on the efficient frontier. Following Tobin (1958)[72] and Sharpe (1964)[70], the optimal

portfolio for investor is the mix between the tangency portfolio and the risk-free asset

(see Brandt (2004)[6] for a survey of the academic literature about the mean-variance

framework). To implement this portfolio in practice needs to estimate both expected

returns and covariance matrix from the time series. The standard estimators used by

practitionners and academic research for this purpose are the sample mean for the expected

returns and the sample covariance matrix for the covariance matrix.

However, Mandelbrot (1963)[52] pointed out the insufficiency of the normal distribution

for modeling assets returns. As a result, the sample tangency portfolio obtained from

the Sharpe (1964)[70] model, due to estimation errors in the sample mean and sample

covariance matrix, produces extreme weights that fluctuate substantially over time and

performs poorly out-of-sample (see Michaud (1989)[56], Best and Grauer, (1991)[4] and

Litterman (2003)[49]). But as Meucci (2005)[55] stated, the sample tangency portfolio

remains the most important benchmark model because the sample parameters are as well

nonparametric estimators as maximum likelihood estimators.

Two approaches1 have been developed by literature for dealing with the poor perfor-

mances of the the sample tangency portfolio: the plug-in method and the decision theory.

While the plug-in method consists to specify parameters of the datas generating process

and plug them into the Markowitz framework, the aim of the decision theory is to build a

portfolio allocation process coherent with the subjective view or preferences of investor.

1We may cite alternative approaches as the resampling method of Michaud (1998)[57] and Michaud
and Michaud (2008)[58], but this approach is so computational that makes impossible to explain the
behaviour of investor. Concerning robust portfolio allocation rules, see Goldfarb and Iyengar (2003)[26]
and Garlappi et al. (2007)[24]. For portfolio with moment restrictions, see for instance MacKinlay and
Pástor (2000)[51].
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It is well known that the expected returns is more difficult to estimate than the covari-

ance matrix (see for instance Merton (1980)[54]), and that errors into the sample mean

have a larger impact in the expected out-of-sample performances than errors into the sam-

ple covariance matrix, see Chopra and Ziemba (1993)[9]. Following Brandt (2004)[6], it

seems that the uncertainty about the estimation of the expected returns tends to increase

the posterior variance of the distribution, and the uncertainty about the estimation of the

variance tends to fatten the tails of the posterior distribution. Therefore, a well estimator

of the covariance matrix is helpful for taking into account the deviation of asset returns

from the normal distribution.

From the plug-in view, several approaches have been proposed to deal with the problem

of estimating the elements into the covariance matrix. One approach consists to impose

some good properties in the sample estimator of the covariance matrix by shrinking the

empirical covariance matrix. Ledoit and Wolf (2004-a[47]) propose a weighted average

estimator of the covariance matrix between the sample covariance and the identity matrix

having a better condition number. Fan et al. (2007)[22] use a similar approach for giving

a stationary property to a time-domain estimator of the covariance matrix.

A second approach consists to give some structural properties to the covariance matrix

by imposing a portfolio norm constraint (see Frost and Savarino (1988)[23] and Chopra

(1993)[10]). DeMiguel et al. (2007)[13] suggest to impose a norm constraint on the port-

folio allocation program and show some analytical relations between this constraint and

the shortage threshold which can be supported by investor. Following Jagannathan and

Ma (2003)[35], it seems this approach rewards on shrinking the sample covariance matrix.

Several empirical evidences call into question the one factor model (see Fama and

French (2004)[21]) and show that except the market factor, others risk factors exist and

should be taken into account (see Black et al. (1972)[5]), this is at the origin of the multi-

factor models. Some statistical methods like the principal component analysis have been

used by the literature to extract factors in the historical returns, but this approach does

not allow for distinguishing factors which contain real information from the noise. The

Random matrix theory developed by physicians in order to understand the energy process

for which sources are unknown (see Edelman (1989)[17]), gives a solution for filtering

noise. Laloux et al. (1999)[45] show some empirical evidences justifying the use of the

Random matrix theory in finance. Following the Edelman’s thesis (1989)[17], Plerou et al.

(2002)[63] perform a study of the Random matrix theory to understand cross-correlation

of the high frequency financial returns. A recent work on the Random matrix theory

applied in finance comes from Potters et al. (2005)[64], Conlon et al. (2008)[11] and

Yanou (2008)[74].

An alternative method to understand moments of a distribution is obtained by a linear
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combination of order statistics named L-moments (see Hosking (1990)[33] and Serfling

and Xiao (2007)[68]). Introduced by Sillito (1951)[71] and popularized by Hosking et al.

(1985)[29], L-moments can be interpreted, like classical moments, as simple descriptors of

the shape of a general distribution and they offer a number of advantages over conven-

tional moments (see Hosking (1986,[30], 1989[32] and 1990[33]) and Hosking and Wallis

(1987)[31]). Serfling and Xiao (2007)[68] develop co-Lmoment in a multivariate framework.

Yanou (2008)[74] proposes an estimator of the covariance matrix for the global minimum

variance portfolio, based on the L-moments and shows that the Random matrix theory

can be used to extract information from noise.

Another approach to estimate the covariance matrix consists to use robust statistics as

M-estimators or S-estimators (see for instance DeMiguel and Nogales (2007)[15]), or the

minimum determinant covariance matrix (see Rousseeuw and Van Driessen (1999)[66]).

The estimation methods above, only focus on the estimation of the covariance matrix

without take into account the subjective view or preference of investor. The decision theory

is another literature dealing with the poor properties of the sample tangency portfolio.

Brandt (2004)[6] list three ways for this purpose. We only list two ways because of the

similarity of one among them with the plug-in approach.

The first way consists to eliminate dependence of the optimization process with the true

parameters by replacing them with a subjective view or a prior distribution of investor.

This is a Bayesian approach2 widely used by literature for dealing with the estimation

errors into the sample tangency portfolio. Following Brown (1978)[7], the sample tangency

portfolio, or more specifically the two-fund rule which is the mix between the sample

tangency and the risk-free asset, is generally outperfomed by the Bayesian decision rule

under a diffuse prior. Kan and Zhou (2007)[43] give a theoretical demonstration of this

result and show that a large class of two-fund rules are outperformed by the Bayesian

rule. They propose a three-fund rule, which is a mix between the two-fund rule and the

global minimum variance portfolio. It seems that this approach outperfomed the Bayesian

rule. However the three-fund rule of Kan and Zhou (2007)[43] have some limits. Actually

authors do not deal with the case where there is a shortsale constraint in the optimization

process. Following Frost and Savarino (1988)[23] and Jagannathan and Ma (2003)[35], we

know that the introduction of a shortsale constraint in the portfolio optimization program

improves the performances of the sample covariance matrix, a fortiori the performances of

2For a purely statistical approach, see for instance Barry (1974)[2], Bawa et al. (1979)[3]. For an
approach based on shrinkage estimators, see for instance Jobson et al. (1979)[37], Jobson and Korkie
(1980)[36], and Jorion (1985[38], 1986[39]) for the estimation of expected returns and Ledoit and Wolf
(2003[46], 2004-b[48]) for the estimation of the covariance matrix. For an approach that rely on an
asset-pricing model for establishing a prior, see for instance Pástor (2000)[61] and Pástor and Stambaugh
(2000)[62].

3



the sample tangency portfolio. In addition, Kan and Zhou (2007)[43] remains in an ideal

framework where returns follow an i.i.d. normal distribution.

The second way comes from the behavioral finance literature (see Barberis and Thaler

(2003)[1] for a survey on the behavioral finance) where the aim consists to explain financial

puzzles or inefficiency in the markets by assuming that some agents are not fully ratio-

nal. Following some psychological beliefs3 of investor, the Von-Neumann and Morgenstern

(1944)[73] approach based on the maximization of the expectation of a utility function

has been rejected. Several non-expected utility models have been proposed for explaining

the behavior of investor under uncertainty when the probability relative to the outcomes

of investor choices are known. We may cite among them, the disappointement theory

(see Gul (1991)[27], Chauveau and Nalpas (2009)[8]), the regret theory (see Loomes and

Sugden (1982)[50]) and the prospect theory of Kahneman and Tversky (1979)[41]. The

prospect theory is popular in the financial literature because of its ability for explaining

some financial puzzles, but in the case of decision making, Savage (1964)[67] proposes a

subjective expected utility approach where investor weighted the utility function by his

(her) subjective probability. But the experiment of Ellsberg (1961)[18] calls into question

this model by introducing an ambiguity aversion of people into the gamble. For instance,

an investor hoping for the tangency portfolio and using the sample estimators for this pur-

pose, may take into account the non-gaussian nature of asset returns and the finite sample

size character of the investment universe, and then the nature of information. Following

Kahneman and Tversky (1974)[40], it seems that people often use the representativeness

heuristic well explained in Cont (1998)[12] in the case of estimation of parameters in fi-

nance. One of the biais of the representativeness heuristic is the sample size neglect or the

law of small number (see Rabin (2002)[65], where investor thinks that small sample will

reflect the properties of the parent distribution.

The aim of this article is to propose a model for explaining the impact of the sample size

neglect when investor hopes for the tangency portfolio and uses in this context the sample

covariance matrix. For this purpose we build a set of covariance matrices characterizing

the ambiguity that investor should have. We then derive some specific covariance matrices

and show the existence of an equilibrium among them. This equilibrium is not obtained

by the criterion widely used by literature and based on the maximization of the expected

utility. Our approach seems consistent with the Robust control literature (see Gilboa and

Schmeidler (1989)[25], Hansen and Sargent (2001)[28]).

The remainder of this paper is organized as follows. Section two presents the general

framework. In section three, after explaining the theoretical process, we provide an expres-

sion for the covariance matrix and show some properties of this one. In section four, we

3For details about these beliefs, see Barberis and Thaler (2003)[1].
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provide some specific covariance matrices and highlight the representativeness heuristic.

We provide an equilibrium state in section five and show that the ambiguity comes from

the size of the investment universe. In section six, we show the consistency of the model

with the market structure by using assets from the S&P500 universe and apply the model

to the portfolio optimization. We conclude the paper in section seven.

2 The General Framework

We start by defining some notations and hypothesis. Consider the standard portfolio

choice problem of an investor who cares only about the expected returns and the volatility

of his (her) portfolio from an universe of N risky assets. Let x the vector of portfolio

weights invested in the N risky assets available in the investment universe. We assume

that µ and Ω denote respectively the true N × 1 vector of expected returns and the true

N ×N covariance matrix from the universe R of size T ×N matrix of excess returns4. We

assume that the elements of the vector of expected returns are different of zero5, and the

optimal portfolio weight x∗ invested in the risky assets is obtained by the maximization

of the following utility function:

U(x) = xTµ− γ

2
xTΩx (1)

where γ denotes the risk aversion of investor with γ > 0. The solution of the maximization

of the utility function is given as follows:

x∗ =
1

γ
Ω−1µ (2)

Actually, the covariance matrix is unknown and need to be estimated. We then have

an utility function depending only of an estimator of the covariance matrix:

U(Ω̂) =
1

2γ
µTΩ̂−1µ (3)

Following the ability for an estimator to well estimates the covariance matrix, investor

increases or decreases his (her) utility and expected utility functions. The aim for investor

is to use an estimator of the covariance matrix maximizing his (her) utility function. Let

Ω̂s denotes the sample covariance matrix. We introduce the expected loss function of the

sample covariance matrix Ω̂s, where Ω is the true covariance matrix:

ρ
(
Ω, Ω̂s

)
= U(Ω)− E

[
U(Ω̂s)

]
(4)

4The excess returns are obtained by removing to the asset returns the risk-free rate.
5By this assumption, we avoid a gaussian distribution for returns.
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The true covariance matrix being unknown, we can not compute the expected loss

function of the sample covariance matrix. But, if we assume that the true covariance

matrix is known it then becomes straightforward to compute this value. We propose

an approach to resolve this issue consisting to consider a wrong covariance matrix. By

inverting the dynamic between the sample covariance matrix and this wrong covariance

matrix, we may understand the dynamic between the sample covariance matrix and the

true covariance matrix. In the next section, we provide a solution to this issue.

3 The Set of Covariance Matrices for the Tangency

Portfolio

The true covariance matrix is unknown, that makes impossible to compute the expected

loss function of the sample covariance matrix. Remember, our aim is to explain the

impact of the small sample size neglect of investor. Assume we use the identity matrix

as the true covariance matrix. The structure of the identity matrix is well explained in

Meucci (2005)[55]. While the sample covariance matrix denotes a symmetrical ellipse

centered on the expected returns, the identity matrix may be viewed as a circle centered

on the expected returns. The non-Gaussian nature of the returns in markets may be

characterized as an non-symmetrical ellipse having some outliers. Although the identity

matrix knows some good statical properties as its well conditioning, from a geometrical

point of view, the sample covariance matrix fits better the shape of the returns in the

market. As a result, by assuming the null hypothesis, we consider that the identity matrix

is the true covariance matrix, which is actually wrong regarding the ellipse characterizing

asset returns, however it becomes straightforward to compute the expected loss function

of the sample covariance matrix.

The null hypothesis is the basis of the application of the Random matrix theory in

finance. Yanou (2008)[74] proposes an estimator of the covariance matrix obtained from

the multivariate L-moments (Serfling and Xiao (2007)[68]) and filtered using the Random

matrix theory. Author shows that the resulting portfolio minimizing the volatility6 well

performs the sample global minimum variance portfolio when a shortsale constraint is

imposed7.

However, DeMiguel et al. (2007)[14] show that the sample based mean-variance strat-

egy and its extensions need around 3000 months for a portfolio with 25 assets and 6000

months for a portfolio of 50 assets to outperform the naive strategy. Their results let

6Characterized by the multivariate L-moment of order two.
7The results of Jagannathan and Ma (2003)[35] shows that the sample covariance matrix becomes

robust when a shortsale constraint is imposed.
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think that the use of the identity matrix is simply optimal or at least more optimal than

strategies developed by literature. Actually in their empirical study, authors use simulated

datas from the one factor model, datas corresponding to several sectorial indices and datas

coming from the Fama and French (1993)[20] portfolios.

In the one factor model, noise into the naive allocation is simply the deviation of

the market weights of the underlying assets from the average. The beta of each asset

characterizing their risks and their cross-correlations are not at all taken into account.

The identity matrix does not contains cross-correlation errors, as a result may be a well

estimator of the covariance matrix than several estimators in this case. Furthermore, it

is well known that sectorial indices are less correlated than stocks, and by considering

only sectorial indices, authors design datas for which the identity matrix may be the true

covariance matrix8. We can use the same argument when they consider many portfolios

from Fama and French (1993)[20], which corresponds to different factors which are by

design statistically independents. The following section focus on the theoretical process.

3.1 The Theoretical Process

By assuming the null hypothesis, it becomes straightforward to compute the asymptotical

expected loss function of the sample covariance matrix, but keep in mind that is a wrong

hypothesis. The expected loss function of the sample covariance matrix is then defined as

follows:

ρ
(
I, Ω̂s

)
= U(I)− E

[
U(Ω̂s)

]
(5)

From the expression of the utility function of the investor, we have:

U(I) =
1

2γ
µTµ (6)

and:

E
[
U(Ω̂s)

]
=

1

2γ
µTE(Ω̂−1

s )µ (7)

The following proposition gives the expected behavior of the sample covariance matrix

in this case:

Proposition 1. If the identity matrix is the covariance matrix, the expected loss

function of the sample covariance matrix ρ is defined as follows:

ρ = − (µTµ)(N + 2)

2γ(T −N − 2)
(8)

Proof. See appendix 141.

8The constant-correlation model of Elton and Gruber (1973)[19] may be used for building a well
estimator of the covariance matrix in this case.
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Under the null hypothesis, the identity matrix is the covariance matrix and then, ρ is

the expected loss function of the sample covariance matrix. Remember, the null hypothesis

is actually wrong regarding the market structure. If we assume that the identity matrix

has a higher expected loss function with the covariance matrix than the sample one, we

may understand the behavior between the true covariance matrix and the sample one by

inverting the asymptotical expected loss function obtained with the wrong hypothesis.

Therefore −1/ρ can be viewed as the expected loss function between the true covariance

matrix and the sample one:

ρ
(
Ω, Ω̂s

)
= % (9)

where % is equal to −1/ρ:

% =
2γ(T −N − 2)

(µTµ)(N + 2)
(10)

The parameter % can be viewed as the starting theoretical expected loss function be-

tween the true covariance matrix and the sample covariance matrix. Remember, we try

to understand the dynamic between the true covariance matrix and the sample one. The

parameter % is not actually the true value of the expected loss of the sample covariance

matrix, but the starting point for understanding its dynamic with the true covariance ma-

trix. Since we just trying to understand the dynamic of this parameter we do not need to

have its true value. For instance, at the present time, we assume under the null hypothesis

that the expected loss of the sample covariance matrix is equal to −2. At the next time, it

is equal to −3. Therefore, the sample covariance matrix is closer of the identity matrix at

the next time. As we assume that the null hypothesis is a wrong hypothesis, we consider

that the expectd loss of the sample covariance matrix with the true one is equal to 1/2 at

the initial time and 1/3 at the next time, that is, the sample covariance matrix is closer of

the true one, when it is farther of the identity matrix. We do not focus on the true value

of the expected loss, but on its dynamic.

We then may compute a set of covariance matrices depending on the risk aversion

parameter by setting the equality between the expected loss function ρ
(
Ω, Ω̂s

)
and %. In

the next sub-section, we give an expression of the covariance matrix.

3.2 An Expression of the Covariance Matrix: The General Case

By assuming that % is the starting expected loss function of the sample covariance matrix

it becomes straightforward to compute an expression of the covariance matrix satisfying

the starting value of the expected loss of the sample covariance matrix. The following

proposition gives an expression of the covariance matrix obtained:
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Proposition 2. A candidate Ω̃ for the covariance matrix is defined as follows:

Ω̃ = Ω̂s+
N2(N + 2)(µTµ)

4γ2(T −N − 2)
Λ (11)

where Λ the matrix of size N ×N obtained from the vector of expected returns µ:

Λ = µ⊗ µT

with the sign ⊗ denoting the kronecker product.

Proof. See appendix 242.

It is straightforward to see that the matrix of expected returns Λ is a symmetric matrix.

As a result, Ω̃ is also a symmetric matrix. The following proposition shows that Ω̃ is also

a positive defined matrix:

Proposition 3. The covariance matrix obtained as a sum of the sample covariance

matrix and a weighted matrix of expected returns is a defined positive matrix.

Proof. See appendix 344.

Notice that, the covariance matrix obtained is not a linear combination between the

sample one and a target matrix as for the shrinkage covariance matrices of Ledoit and

Wolf (2003[46], 2004-a[47] and 2004-b[48]). According to the value of the parameter α,

the covariance matrix may increases or reduces its elements toward the sample covariance

matrix. Actually when a linear combination between the sample covariance matrix and

a target is used, this is referent to the Bayesian approach, where investor has a believe

characterized by the target covariance matrix, and makes an arbitrage between the esti-

mation errors into the sample covariance matrix which is asymptoticaly unbiaised and the

biais into the target matrix which contains less estimation errors. Our approach allows of

understanding the dynamic between the sample covariance matrix and the true covariance

matrix for an investor hoping for the the tangency portfolio.

The covariance matrix obtained adds to the sample one, the matrix Λ weighted by a

parameter α defined as follows:

α =
N2(N + 2)(µTµ)

4γ2(T −N − 2)
(12)

The parameter α depends on two parameters; the risk aversion parameter γ and the

size of the investment universe. As a result, according to the risk profile of investor, there

is an unique covariance matrix and there is an infinite number of covariance matrices

corresponding to the infinite number of risk aversion profile of investors.

Since the risk aversion parameter γ is positive, if the number of historical returns T is

smaller than N−2, the parameter α is negative. In this case, the sample covariance matrix

adds up the covariance matrix with the matrix Λ. That is, the elements of the sample
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covariance matrix need to be shrunk. This observation is consistent with the shrinkage

approach of Ledoit and Wolf (2003)[46]. As authors state, when the number of stocks N is

of the same order of magnitude as the number of historical returns T , the total number of

parameters to estimate is of the same order as the total size of the data set, which is clearly

problematic. It implies that the most extreme coefficients in the matrix thus estimated

tend to take on extreme values not because this is the truth, but because they contain an

extreme amount of error, furthermore it is necessary to reduce these coefficients. Michaud

(1989)[56] calls this phenomenon error-maximization, and when N goes to infinite, the

sample covariance matrix tends to have more extreme elements.

When (N +2) < T , the parameter α is positive. In this context, the sample covariance

matrix actually reduces the elements of the covariance matrix. Notice that, higher the

number of historical returns and smaller the magnitude of reduction of the elements and

when T goes to infinite, the sample covariance matrix is the same with the covariance

matrix. This observation is consistent with the asymptotical behaviour of the maximum

likelihood estimators which are unbiaised asymptotically.

Assume now that the number of historical returns T increases of ∆T , therefore α turns

down of dT (α) with:

dT (α) =
N2(N + 2)(µTµ)

4(γ + ∆γ)2(T −N − 2)2
∆T (13)

In this case, the sample covariance matrix tends to move closer from the covariance

matrix. When the risk aversion parameter γ decreases of ∆γ, from time T to time T+∆T ,

the parameter α increases of dγ (α) where:

dγ (α) =
N2(N + 2)(µTµ)

2γ3(T + ∆T −N − 2)
∆γ (14)

In this case, the sample covariance matrix tends to move away from the covariance matrix,

and will be the same according to the gap between dT (α) and dγ (α). If investor decreases

his (her) risk aversion from time T to time T +1, the gain of the sample covariance matrix

due to the increase on the sample size may be canceled by the change in the risk aversion

profile of investor. Therefore, in order to remains the gap between the covariance matrix

and the sample one constant, dT (α) must be at least higher than dγ (α). This observation

may be helpful for understanding the behavior of the sample covariance matrix as T

increases. Following the popular believe, the central limit theorem, as T goes to the

infinite, the sample covariance matrix must be the true one. However, the increase of

the number of historical returns does not necessarily improves the efficiency of the sample

covariance matrix. The following proposition states this observation:

Proposition 4. As the number of historical returns increases from T to k∆T , the

sample covariance matrix goes toward the true covariance matrix from the point T +k∆T

10



if the following condition is true:

〈∆γk〉 ≤
k∆T

h

with:

h =
2(γ + ∆γk)

2(T −N − 2)2

γ3(T + k∆T −N − 2)
(15)

where 〈·〉 denotes the absolute value, ∆γk the variation of the risk aversion between T +

(k − 1) ∆T and T + (k − 1) ∆T ,.and k an integer denoting the number of period.

Proof. See appendix 445.

Following the previous proposition, T + k∆T is the time from which the sample co-

variance matrix begins to go toward the true covariance one as the number of historical

returns increases through k. As long as the variation of the risk aversion of investor ∆γk
in absolute value is higher than k∆T/h, the sample covariance matrix will tend to go away

from the true covariance matrix, in this case the central limit theorem is no more true.

When k goes to the infinite, the parameter h goes toward zero, as a result k∆T/h tends

to go toward infinite and we may expect that the variation of the risk aversion parameter

∆γk is most likely smaller. However, we may have some case where the variation of ∆γk
is higher than k∆T/h.

The parameter h can be viewed as the required holding period or the feasible period

for which the allocation computed today remains relevant. Investor should not buy (sell)

the resulting allocation beyond (before) this time. In the case where investor wants to

keep the feasible period constant (for instance, an investor hoping for a holding period of

one month), he (she) should change his (her) risk profile with respect to the change of ∆T .

On another hand, if investor hopes for a constant risk aversion (∆γ = 0), he (she) should

adjust the size of the feasible period h with respect to ∆T . Finally, if investor hopes for

a constant ∆T , the change on the risk aversion parameter allows for adjusting the change

on the feasible period.

If we assume that from time T to time T + 1, investor becomes more risk averse, then

∆γ increases and as a result, investor tends to reduce the upper bound of the holding

period for the portfolio. On another hand, when investor is less risk averse, ∆γ decreases

and the upper bound of the holding period increases. In this case, higher the parameter

h, and higher the difference between dγ (α) and dT (α). The sample covariance matrix

moves away from the covariance matrix. However the increase of the number of historical

returns T influences more the decrease on α from dT (α) than the increase from dγ (α),

and as a result, tends to cancel the gap between them and when T goes to infinite, the

sample covariance matrix is the same than the covariance matrix.

Kondor et al. (2002)[44] point out this observation by computing the noise into several

measures of volatility. They show that, when the number of historical returns is large
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in comparison to the number of assets in the investment universe, the level of noise into

the standard deviation is the same than the noise into severals robust estimators of the

volatility. Actually Proposition 4 characterizes the behaviour of the investor with respect

to the risk aversion. Higher the risk aversion parameter, lower the holding period of the

optimal portfolio, and lower the risk aversion parameter, higher the holding period of the

optimal portfolio.

Proposition 4 may also be interpreted as follows: when the risk aversion of investor is

constant, its variation is null. Therefore the previous proposition may be interpreted as

the interval of time for which investor do not have any aversion, whatever happens in the

market. This time interval is therefore denoted by ∆T/h.

In the next sub-section, we focus on the bahavior of the utility of investor with respect

to the risk aversion parameter and the size of the investment universe.

3.2.1 The Utility Function of the Covariance Matrix

The utility obtained from the covariance matrix is the sum between the utility obtained

from the sample covariance matrix and a parameter taking into account the size of the

investment universe and the risk aversion profile of investor:

U(Ω̃)=U(Ω̂s)+
2γ(T −N − 2)

(µTµ)(N + 2)
(16)

Since the second component of the expression above is positive, the utility from the

covariance matrix is higher than the utility from the sample covariance matrix for the same

level of risk aversion. This is true when the number of historical returns in the universe is

higher than the number of assets (N + 2 < T ), and when T goes to infinite, the following

proposition gives the bahavior of the utility function:

Proposition 5. When the number of historical returns T goes to infinite, whe have:

U(Ω̃)=U(Ω̂s)→ +∞ (17)

Proof. See appendix 546.

As a result, for the same level of risk aversion, the utility from the covariance matrix

is higher than the utility obtained from the identity matrix. It is straightforward to see

this result by reexpressing U(Ω̃) as:

U(Ω̃)=U(Ω̂s)+
1

U(I)

T −N − 2

N + 2
(18)

Since U(I) is positive9 and (N + 2) < T , we have:

U(Ω̂s) < U(Ω̃)

9Which is true because of the positivity of the risk aversion parameter.
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and the upper bound for U(I) is defined as follows:

U(I) <
T −N − 2

N + 2
< U(Ω̃) (19)

On another hand, when T < (N + 2), the utility from the covariance matrix is lower

than the utility from the sample covariance matrix. The utility from the identity matrix

is always positive. In order to keep positive U(Ω̃) the following condition should be true:

− T −N − 2

N + 2
< U(I)U(Ω̂s) (20)

However, the utility function characterizes the preference of investor which may turn

out wrong in an out-of-sample framework. The expected utility characterizes what investor

should gain in future with respect to his (her) risk profile today. This is the aim of the

next sub-section.

3.2.2 The Expected Utility Function of the Covariance Matrix

The expected utility function from the identity matrix is always the same and is defined

as follows:

E [U(I)] =
µTµ

2γ
(21)

The covariance matrix is obtained by inverting the expected loss function of the sample

covariance matrix when a the null hypothesis is assumed. Since Ω̃ is the covariance marix,

the expected utility of the sample covariance matrix is defined as follows:

E
[
U(Ω̂s)

]
=

T

T −N − 2
U(Ω̃) (22)

and the expected utility from the covariance matrix is defined as follows:

E
[
U(Ω̃)

]
= E

[
U(Ω̂s)

]
+

2γ(T −N − 2)

(µTµ)(N + 2)
(23)

By replacing the expected utility expression for Ω̂s, we then obtain:

E
[
U(Ω̃)

]
=

T

T −N − 2
U(Ω̃) +

2γ(T −N − 2)

(µTµ)(N + 2)
(24)

We have another expression for the expected utility of the covariance matrix by replac-

ing U(Ω̃) by its expression:

E
[
U(Ω̃)

]
=

T

T −N − 2
U(Ω̂s) +

2γ(2T −N − 2)

(µTµ)(N + 2)
(25)
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Since T < (N + 2), from (23) we know that the expected utility from the sample

covariance matrix is higher than the expected utility from the covariance matrix for the

same level of risk aversion. If (20) is false, the utility obtained from the covariance matrix

is negative, and as a result, from (22), the expected utility from the sample covariance

matrix is positive. When the number of assets in the investment universe goes to infinite,

the expected utility from the covariance matrix goes toward −2γ(µTµ)−1. The expected

utility from the sample covariance matrix in this case decreases toward zero. The identity

matrix then, gives to the investor the highest expected utility. Consequently, when the

number of historical returns is not enough in comparison with the number of assets in the

investment universe, the data returns used for estimating the covariance matrix are not

enough relevant. But if (N + 2) < T the data returns become relevant. The following

proposition states this result:

Proposition 6. When T < (N + 2), the data returns are not enough relevant for

the estimation of the covariance matrix, as a result, the naive allocation is the best way

for investor. When (N + 2) < T , the covariance matrix gives to the investor the highest

expected utility than the sample covariance matrix for the same level of risk aversion.

Proof. See appendix 646.

When the number of historical returns goes to infinite, the expected utility from the

covariance matrix goes toward infinite, and the expected utility from the sample covariance

matrix also goes toward U(Ω̃) because of their equality to the infinite. We see above that

when T < (N+2), the naive allocation is better than the one obtained from the covariance

matrix. We give an explanation to this result, in the next sub-section.

3.2.3 The Knock-on Phenomenon of the Covariance Matrix

The elements into the sample covariance matrix Ω̂s are the variances of assets on the

diagonal and the covariances between assets out of the diagonal. Let X1 and X2 two

random variables, the following expressions denote the variance of X1 and the covariance

between X1 and X2: {
var (X1) = E (X2

1 )− E (X1)
2

cov(X1, X2) = E (X1X2)− E (X1)E (X2)
(26)

The variance of X1 and the covariance between X1 and X2 are constituted each one

of two components. The first component is an order two moment which is E (X2
1 ) for

the variance of X1 and E (X1X2) for the covariance between X1 and X2. The second

component is a squared order of the first moment which is E (X1)
2 for the variance of X1

and E (X1)E (X2) for the covariance between X1 and X2. That is, the expressions for

the variance of X1 and the covariance between X1 and X2 also depend on the expected
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returns components respectively through E (X1)
2 and E (X1)E (X2). As a result, there is

some errors into the elements of the sample covariance matrix coming from the errors into

the expected returns. This result is consistent with the observation of Brandt (2004)[6].

Notice that elements into the matrix Λ correspond to the expected returns components

of the elements into the sample covariance matrix. As a result, when the number of

historical returns T is smaller than N − 2, the parameter α is negative and the covariance

matrix for the tangency portfolio tends to increase the expected returns components of

the elements into the sample covariance matrix, because of the extreme coefficients into

the sample covariance matrix10. But in the same time, as Merton (1980)[54] shows, it

is more difficult to estimate expected returns than variance, as a result by trying to

reduce the extreme coefficients into the sample covariance matrix, the covariance matrix

actually improves the impact of errors in the estimation of the expected returns. This

is a knock-on phenomenon; by trying to reduce its extreme coefficients, the covariance

matrix improves the effects of the errors coming from its expected returns components.

This phenomenon explains several limits of the sample covariance matrix advanced by

literature. For instance, Michaud (1989)[56], Pafka and Kondor (2004)[60] state that

the sample covariance matrix is ill-conditioned11, Potters et al. (2005)[64] state that the

eigenvalues of the sample covariance are for a large part random (unstable), Ledoit and

Wolf (2003)[46] speak about the curse of dimensionality of the sample covariance matrix.

These limits comes actually from this knock-on effect.

When N goes to infinite, the variance and the covariance elements of the covariance

matrix are defined as follows:{
varΩ̃ (X1) = varΩ̂s

(X1)− E (X1)
2 = E (X2

1 )− 2E (X1)
2

covΩ̃(X1, X2) = covΩ̂s
(X1, X2)− E (X1)E (X2) = E (X1X2)− 2E (X1)E (X2)

(27)

where varΩ̃(.), covΩ̃(., .), and varΩ̂s
(.), covΩ̂s

(., .) denote respectively the variance and

covariance coefficients into the covariance matrix Ω̃, and the variance and covariance

coefficients into the sample covariance matrix Ω̂s.

We now know that the covariance matrix depend on the risk aversion parameter, and

the size of the investment universe, we propose in the next section to explain how the

representativeness heuristic characterizes by the sample size neglect impact the allocation

of investors.

10As Ledoit and Wolf (2003)[46] state, when the number of assets N is of the same order of magnitude as
the number of historical returns T , the elements into the sample covariance matrix tends to take extreme
values and contain a lot of errors.

11A little change in the elements into the sample covariance matrix lead to a big change in the optimal
portfolio.
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4 Representativeness Heuristic and Ambiguity

The sample size neglect is one of the biais of the representativeness heuristic. Since, the

covariance matrix depends on the risk aversion of investor and the size of the investment

universe, the covariance matrix takes into account these two facts. In this section, we

propose to highlight the relation between the sample size neglect (therefore the size of the

investment universe), the risk aversion of investor and his (her) ambiguity reliance on the

sample tangency portfolio. Following the paper of Kahn and Sarin (1988)[42], we know

some implications about the ambiguity of people under uncertainty. First, decision makers

consider ambiguity when making choice under uncertainty. Secondly, the attitude of people

toward ambiguity varies. Next, people are willing to pay for difference in ambiguity.

Finally the mean and variance alone may not account completely for choices. Concerning

the latter implication, in order to consider the higher moments in their models, authors

take into account the entire distribution of the second order probabilities.

We know that, the covariance matrix obtained from our model is a sum between the

sample covariance matrix and a weighting of the matrix of expected returns Λ. In the last

section, we see that the elements into the matrix Λ are actually the second components

of the elements into the sample covariance matrix. That is, our covariance matrix takes

into account the entire distribution of the second moment through the parameter α. As

a result, our model is consistent with the last implication of Kahn and Sarin (1988)[42]:

the covariance matrix obtained from our model actually takes into account the higher

moments of the distribution. The elements out of the diagonal of Λ, are the products

of the expected retuns of assets. As a result, when the product is negative, there is an

asymmetry between the two assets and the depth of the product characterizes the extreme

values into asset returns.

The first, the second and the third implications of Kahn and Sarin (1988)[42] about

ambiguity, depend on the risk aversion of investor, we propose to point out these impli-

cations from our model by computing some parameters of risk aversion depending on the

bahavior of investor. When facing to the Sharpe(1964)[70] model and using the sample

covariance matrix for this purpose, we have from investors two extreme behaviors (the

disappointment and the elation). The disapointement behavior characterizes an investor

having the maximum of ambiguity for the Sharpe model when using the sample covariance

matrix, and the elation behavior characterizes an investor having the minimum of ambi-

guity in this context. We may also have some investors with a relative ambiguity. In the

next sub-section, we propose to compute the risk aversion characterizing these behaviors.
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4.1 The Covariance Matrix for Investor with the Maximum Am-

biguity

The covariance matrix changes with the level of the risk aversion parameter. Higher is the

risk aversion parameter and more the investor is risk averse. By minimizing the utility

function with respect to the risk aversion parameter, we then obtain the covariance matrix

characterizing an investor hoping for the tangency portfolio and using in this context the

sample covariance matrix. Our aim is then to find the risk aversion parameter for which

the utility function is worst. The following expression denotes the first derivative of U(Ω̃)

with respect to γ:

Dγ

[
U(Ω̃)

]
= −µ

TΩ̂−1
s µ

2γ2
+

2(T −N − 2)

(µTµ)(N + 2)
(28)

The utility function being a decreasing function with respect to the risk aversion pa-

rameter, the first derivative of U(Ω̃) with respect to the risk aversion parameter is then

negative. When (N + 2) < T , the first derivative is negative if the following condition is

true:

− µTΩ̂−1
s µ

2γ2
≤ −2(T −N − 2)

(µTµ)(N + 2)
(29)

which means:
2γ(T −N − 2)

(µTµ)(N + 2)
≤ µTΩ̂−1

s µ

2γ
(30)

and by adding U(Ω̂s)
12 on the both sides, we obtain the following result:

Proposition 7. The utility obtained from the covariance matrix has an upper bound

defined as follows:

U(Ω̃g) ≤ 2U(Ω̂s) (31)

Proof. Comes from (30).

The previous proposition also shows the shape of the efficient frontier obtained from our

model in comparison with the classical efficient frontier of Markowitz (1952)[53]. Therefore,

a means for measuring the distance in the efficient frontier between an investor hoping for

the tangency portfolio with a disappointment profile and the sample efficient frontier is to

consider the upper bound factor Cg of U(Ω̃) with respect to U(Ω̂s) which is:

Cg = 2 (32)

Since the tangency portfolio of an investor with the maximum ambiguity is above

the sample tangency portfolio, this investor will ask a higher risk premium than the one

obtained by the sample tangency portfolio. From Proposition 6, the first derivative of the

12Remember that U(Ω̂s) is equal to
1

2γ
(µTΩ̂−1

s µ).
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utility function from the covariance matrix with respect to the risk aversion parameter

is negative. Therefore, the utility function from our covariance matrix is a decreasing

function of the risk aversion parameter. The following expression denotes the second

derivative of U(Ω̃) with respect to γ:

D2
γ

[
U(Ω̃)

]
=
µTΩ̂−1

s µ

γ3
(33)

which is positive. As a result, the risk aversion γg of an investor with the maximum

ambiguity is obtained by minimizing the utility function:

γg =
1

2

√
(µTµ)(µTΩ̂−1

s µ)(N + 2)

T −N − 2
(34)

and the resulting expression of the covariance matrix is defined as follows:

Ω̃g= Ω̂s+αgΛ (35)

where αg is defined as follows:

αg =
N2(N + 2)(µTµ)

4γ2
g(T −N − 2)

=
N2

µTΩ̂−1
s µ

(36)

Notice this result is true when (N + 2) < T , otherwise γg will not exists. The resulting

utility function is defined as follows:

U(Ω̃g)=U(Ω̂s)+

√
(µTΩ̂−1

s µ)(T −N − 2)

(µTµ)(N + 2)

= 2

√
(µTΩ̂−1

s µ)(T −N − 2)

(µTµ)(N + 2)

(37)

and the expected utility function is then defined as:

E
[
U(Ω̃g)

]
=

T

T −N − 2
U(Ω̂s) +

2T −N − 2√
N + 2

√
(µTΩ̂−1

s µ)

(µTµ)(T −N − 2)

= (3T −N − 2)

√
(µTΩ̂−1

s µ)

(µTµ)(T −N − 2)(N + 2)

(38)

Assume now an investor computing every weeks his (her) optimal portfolio and buy

this allocation one month later. At the end of the week, investor increases the database of

returns of one period (∆T = 1), what corresponds in reality to an increase of (∆T/h) where
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h denotes the number of weeks in a month. Smaller ∆T/h, and smaller the decrease of the

parameter α, and in order to keep constant the investment horizon, higher the parameter

h. Notice that, when the decrease of α because of the increase of the database is smaller

than the increase of α because of the change in the risk aversion parameter, the sample

covariance matrix tends to move away from the covariance matrix. On the contrary, when

the decrease of α because of the increase of the database is higher than the increase of

α because of the change in the risk aversion parameter, the sample covariance matrix

tends to move closer from the covariance matrix. If the risk aversion of investor remains

constant from T to k∆T , thus k denotes the feasible period for the optimal portfolio of

investor. The following corrolary states this observation in the case of an investor having

the maximum ambiguity reliance on the Sharpe model:

Corollary 1. An investor hoping for the tangency portfolio with the maximum ambi-

guity reliance on the sample tangency portfolio, should not hold this portfolio more than

k/h periods, with h defined as follows:

h =
4(T −N − 2)2

T + k −N − 2

√
T −N − 2

(µTµ)(µTΩ̂−1
s µ)(N + 2)

(39)

where k is the number of period from time T , for which the risk aversion of investor

remains constant.

Proof. See appendix 747.

We computed the covariance matrix, for an investor hoping for the tangency portfolio

with the maximum ambiguity reliance on the model he (she) uses. In the next sub-section,

we focus on an investor with a relative ambiguity between disappointment and elation.

4.2 The Covariance Matrix for Investor with a Relative Ambi-

guity

We propose now to build among the set of covariance matrices, the one having the less

uncertainty between the utility and the expected utility. Let Ũ denotes the uncertainty

between the expected utility and the utility of Ω̃:

Ũ = E
[
U(Ω̃)

]
− U(Ω̃)

=
(µTΩ̂−1

s µ)(N + 2)

2γ(T −N − 2)
+

2γT

(µTµ)(N + 2)

(40)

Let Ω̃u denotes the covariance matrix minimizing the uncertainty between the expected

utility and the utility. By minimizing Ũ with respect to the risk aversion parameter γ, it

is straighforward to compute Ω̃u. The first derivative of Ũ with respect to γ is defined as
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follows:

Dγ

(
Ũ
)

= −(µTΩ̂−1
s µ)(N + 2)

2γ2(T −N − 2)
+

2T

(µTµ)(N + 2)
(41)

Since T < (N + 2), the first derivative is negative. When (N + 2) < T , the first

derivative is negative if the following condition is true:(
2T

(µTµ)(N + 2)
≤ (µTΩ̂−1

s µ)(N + 2)

2γ2(T −N − 2)

)
⇐⇒

(
2γ(T −N − 2)

(µTµ)(N + 2)
≤ (µTΩ̂−1

s µ)(N + 2)

2γT

)
(42)

and by adding on the both side of the equality U(Ω̂s) we have the following condition:

U(Ω̂s) ≤ U(Ω̃u) ≤
T +N + 2

T
U(Ω̂s) (43)

which is true following Proposition 7. We then have a distance in the efficient frontier

between an investor having a relative ambiguity and the classical tangency portfolio. Let

Cu denotes this distance, we have:

Cu =
T +N + 2

T
(44)

Since (N + 2) < T , the factor Cu is lower than the factor Cg obtained in the case of an

investor having the maximum ambiguity. As a result, an investor having the maximum

ambiguity will ask a higher risk premium than an investor with a relative ambiguity.

Following this observation, it seems that the third implication of Kahn and Sarin (1988)[42]

for which people are willing to pay for difference in ambiguity is true. Higher the ambiguity

reliance on the sample tangency portfolio and higher the risk premium asked by investor.

The second derivative of Ũ with respect to γ is defined as follows:

D2
γ

(
Ũ
)

=
(µTΩ̂−1

s µ)(N + 2)

γ3(T −N − 2)
(45)

Since (N + 2) < T , the second derivative of Ũ with respect to γ is positive. That is,

there is a minimum for Ũ obtained by setting Dγ

(
Ũ
)

equals zero. We obtain the following

risk aversion parameter:

γu =
1

2

√
N + 2

T

√(
µTµ

)
(µTΩ̂−1

s µ)(N + 2)

(T −N − 2)

=

√
N + 2

T
γg

(46)

By replacing γu in the expression of Ω̃, we obtain the covariance matrix minimizing

the uncertainty between the utility and the expected utility:

Ω̃u= Ω̂s+αuΛ (47)
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where αu is defined as follows:

αu =
N2(N + 2)(µTµ)

4γ2
u(T −N − 2)

=
N2T

(N + 2)(µTΩ̂−1
s µ)

(48)

The utility from Ω̃u is defined as follows:

U(Ω̃u) = U(Ω̂) +

√
(T −N − 2)(µTΩ̂−1

s µ)

T (µTµ)

=
T +N + 2√
T (N + 2)

√
(µTΩ̂−1

s µ)(T −N − 2)

(µTµ)(N + 2)

(49)

The expected utility of Ω̃u is then defined as follows:

E
[
U(Ω̃u)

]
=

T

T −N − 2
U(Ω̂s) +

2T −N − 2√
T

√
µTΩ̂−1

s µ

(T −N − 2)(µTµ)

=
T 2 + (N + 2)(2T −N − 2)√

T (N + 2)

√
µTΩ̂−1

s µ

(µTµ)(N + 2)(T −N − 2)

(50)

and the minimum uncertainty Ũmin of the model is defined as follows:

Ũmin = 2
√
T

√
µTΩ̂−1

s µ

(µTµ)(T −N − 2)
(51)

We can establish a result concerning the feasible period for the tangency portfolio with

the lower uncertainty between the utility and the expected utility:

Corollary 2. An investor hoping for the tangency portfolio with a relative ambiguity

reliance on the sample tangency portfolio, should not hold this portfolio more than k/h

periods, with h defined as follows:

h =
4(T −N − 2)2

(N + 2)(T + k −N − 2)

√
T (T −N − 2)

(µTµ)(µTΩ̂−1
s µ)

(52)

Proof. See appendix 848.

We then have the covariance matrix for an investor hoping for the tangency portfolio

with a relative ambiguity. The next proposition gives the behavior of the expected utility

from this covariance matrix with respect to the expected utility of the covariance matrix

characterizing an investor with the maximum ambiguity:

Proposition 8. The expected utility of an investor with a relative ambiguity is higher

than the expected utility of an investor having the maximum ambiguity reliance on the

sample tangency portfolio.
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Proof. See appendix 948.

In the next sub-section, we focus on the second extreme bahavior of an investor facing

to uncertainty. This is the case of an investor with the minimum of ambiguity reliance on

the sample tangency portfolio.

4.3 The Covariance Matrix for an Investor with the Minimum

Ambiguity

For characterizing an investor having an elation profile reliance on the sample tangency

portfolio, we minimize the gap between the expected utility and the sample utility function.

We then need to compute the risk aversion parameter minimizing the following expression:

Û = E
[
U(Ω̃)

]
− U(Ω̂s)

=
(µTΩ̂−1

s µ)(N + 2)

2γ(T −N − 2)
+

2γ(2T −N − 2)

(µTµ)(N + 2)

(53)

Let Ω̃t denoting the resulting covariance matrix. By minimizing Û with respect to the

risk aversion parameter γ, it is straighforward to compute Ω̃t. The first derivative of Û

with respect to γ is defined as follows:

Dγ

(
Û
)

= −(µTΩ̂−1
s µ)(N + 2)

2γ2(T −N − 2)
+

2(2T −N − 2)

(µTµ)(N + 2)
(54)

Since T < (N + 2), the first derivative is negative. When (N + 2) < T , the first

derivative is negative if the following condition is true:(
2(2T −N − 2)

(µTµ)(N + 2)
≤ (µTΩ̂−1

s µ)(N + 2)

2γ2(T −N − 2)

)
⇐⇒

(
2γ(T −N − 2)

(µTµ)(N + 2)
≤ (µTΩ̂−1

s µ)(N + 2)

2γ(2T −N − 2)

)
(55)

and by adding on the both side of the inequality U(Ω̂s) we have the following condition:

U(Ω̂s) ≤ U(Ω̃t) ≤
2T

2T −N − 2
U(Ω̂s) (56)

which is true following Proposition 7. As above, we have a measure of the distance in the

efficient frontier between the sample tangency portfolio and the tangency portfolio for an

investor with an elation profile. Let Ct this factor of distance, we have:

Ct =
2T

2T −N − 2
(57)

We introduce the following proposition:

Proposition 9. The distance between the tangency portfolio of an investor with the

minimum ambiguity and the sample tangency portfolio, is lower than the distance for an
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investor with a relative ambiguity, which is lower than the distance for an investor with

the maximum ambiguity.

Proof. See appendix 1050.

Following the previous proposition, higher the ambiguity of investor and higher the

risk premium asked, which is consistent with the third implication of Kahn and Sarin

(1988)[42] for which consumers are willing to pay for differences in ambiguity in choices.

Since the risk aversion parameter of the investor with the minimum ambiguity reliance

on the sample tangency portfolio is not equal to zero, the first implication of Kahn and

Sarin (1988)[42] for which decison makers consider ambiguity when making choice under

uncertainty, is true. This observation implies that, in the market, the Sharpe model is

always uses by investors with a minimum ambiguity.

The second derivative of Û with respect to γ is defined as follows:

D2
γ

(
Û
)

=
(µTΩ̂−1

s µ)(N + 2)

γ3(T −N − 2)
(58)

Since (N + 2) < T , the second derivative of Û with respect to γ is positive. That is,

there is a minimum for Û obtained by setting Dγ

(
Û
)

equals zero. We obtain the following

risk aversion parameter:

γt =
1

2

√
N + 2

2T −N − 2

√(
µTµ

)
(µTΩ̂−1

s µ)(N + 2)

(T −N − 2)

=

√
N + 2

2T −N − 2
γg

(59)

Since (N+2) < T , we have γt < γg, as a result γt is a relevant risk aversion parameter.

By replacing γt in the expression of Ω̃, we obtain the covariance matrix for an investor

having the minimum ambiguity:

Ω̃t= Ω̂s+αtΛ (60)

where αt is defined as follows:

αt =
N2(N + 2)(µTµ)

4γ2
t (T −N − 2)

=
N2(2T −N − 2)

(N + 2)(µTΩ̂−1
s µ)

(61)

The utility from Ω̃t is defined as follows:

U(Ω̃t) = U(Ω̂) +

√
(µTΩ̂−1

s µ)(T −N − 2)

(µTµ)(N + 2)

√
N + 2

2T −N − 2

=
2T√

(N + 2)(T −N − 2)

√
(µTΩ̂−1

s µ)(T −N − 2)

(µTµ)(N + 2)

(62)
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The expected utility of Ω̃t is then defined as follows:

E
[
U(Ω̃t)

]
=

T

T −N − 2
U(Ω̂s) +

√
(N + 2)(2T −N − 2)

√
(µTΩ̂−1

s µ)

(µTµ)(N + 2)(T −N − 2)

=
(T +N + 2)

√
2T −N − 2√

N + 2

√
(µTΩ̂−1

s µ)

(µTµ)(N + 2)(T −N − 2)

(63)

and the minimum uncertainty Ûmin between the expected utility and the utility from the

sample covariance matrix is defined as follows:

Ûmin = 2

√
N + 2

2T −N − 2

√
(µTΩ̂−1

s µ)(N + 2)

(µTµ) (T −N − 2)
(64)

That is, Ω̃t is the covariance matrix for which the tangency portfolio is almost equals

to the sample tangency portfolio, but because of the minimum ambiguity of investors, the

two portfolios will never be the same unless the number of historical returns goes to the

infinite. We can establish the result concerning the holding period for the corresponding

tangency portfolio:

Corollary 3. An investor hoping for the tangency portfolio with the minimum ambi-

guity reliance on the sample tangency portfolio, should not hold this portfolio more than

k/h periods, with h defined as follows:

h =
4(T −N − 2)2

(N + 2)(T + k −N − 2)

√
(2T −N − 2)(T −N − 2)

(µTΩ̂−1
s µ)(µTµ)

(65)

where k is the number of period from time T , for which the risk aversion of investor

remains constant.

Proof. See appendix 1151.

Our model is relevant whether investor hoping for the tangency portfolio and having

the minimum ambiguity reliance on the sample mean-variance framework, should have a

better expected utility than other investors. Remember, the expected utility is not an

optimal criterion when investor facing to uncertainty, however this criterion is consistent

with Sharpe (1964)[70]. We state this result in the next proposition:

Proposition 10. The expected utility of an investor having the minimum ambiguity

with the sample mean-variance framework is higher than the expected utility of an investor

having a relative ambiguity.

Proof. See appendix 1252.

Since the covariance matrix depends on the behavior of investor facing to uncertainty,

our model is consistent with the second implication of Khan and Sarin (1988)[42] for
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which the attitude of investors toward ambiguity varies. The covariance matrix changes

with respect to the risk aversion of investor.

Following Proposition 8 and Proposition 10, we know that γt < γu < γg, as a result

αg < αu < αt. However, we know that:

Ω̃− Ω̂s =αΛ (66)

Therefore the parameter α denotes the under estimation of the risk. An investor

having the minimum ambiguity and using the sample covariance matrix, under estimates

the risk more than an investor having the maximum ambiguity reliance on the Sharpe

model and using the sample covariance matrix. The latter investor being aware about the

limit of the sample covariance matrix, will ask a risk premium through Cg higher than

the risk premium Ct asked by the former. As a result, in term of risk management, the

covariance matrix Ω̃t is the most efficient. However in term of decision under uncertainty

(an out-of-sample allocation process), the existence in the market of several investors with

several ambiguity profile have some impact in the out-of-sample framework. Even when

the covariance matrix Ω̃t taking into account the whole risk is used for this purpose, the

existence in the market of investors having a maximum ambiguity has an impact in the

out-of-sample framework. Therefore, in a decision approach, the covariance matrix to

take into account is the one taking into account all the ambiguity in the market. In the

next section, we propose to compute the corresponding covariance matrix and to show the

inception of ambiguity.

5 The Equilibrium State and the Inception of Ambi-

guity

The extreme behaviors of investor are characterized by the covariance matrices Ω̃g for

the investor having the maximum ambiguity and Ω̃t for the investor having the minimum

ambiguity reliance on the Sharpe model. In order to explain the inception of ambiguity,

we need to build an equilibrium state between the two extreme behaviors.

5.1 The Equilibrium State

Kan and Zhou (2007)[43] state that, under uncertainty, the out-of-sample expected loss

function generates a loss in the out-of-sample performance. They propose to use the

global minimum variance portfolio which has some estimation errors not correlated with

the estimation errors into the sample tangency portfolio. Since we are able to find an opti-

mal combination between the sample tangency portfolio and the global minimum variance
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portfolio, we may expect higher out-of-sample performance. They show this strategy dom-

inates several approachs among which, the two-fund portfolio rule, the Bayesian approach

and the shrinkage estimators under an i.i.d. normal multivariate framework.

The covariance matrix Ω̃g is the one for an investor having the maximum ambiguity,

as a result, the weight of the risk-free asset into the resulting tangency portfolio is higher

than the one obtained from the llocation of an investor with a minimum ambiguity reliance

on the Sharpe model. In the case there is an equilibrium in the market, it is between the

two extreme behaviors. Let Ω̃β
gt the covariance matrix obtained from a linear combination

between Ω̃g and Ω̃t:

Ω̃β
gt = βΩ̃g + (1− β)Ω̃t (67)

with 0 < β < 1, we introduce the following proposition:

Proposition 11. The expected utility of the investor having a relative ambiguity is

lower than the expected utility of any investor whose the covariance matrix is denoted by

Ω̃β
gt:

E
[
U(Ω̃u)

]
≤ E

[
U(Ω̃β

gt)
]

(68)

Proof. See appendix 1352.

Therefore, among the infinite ambiguity profile of investors between the extreme be-

haviors, the expected utility of investor having a relative ambiguity is the lowest. We

introduce the following proposition:

Proposition 12. The utility function of the investor having a relative ambiguity is

lower than the utility function of any investor whose the covariance matrix is denoted by

Ω̃β
gt:

U(Ω̃u) ≤ U(Ω̃β
gt) (69)

Proof. See appendix 1453.

Therefore, among the infinite ambiguity profile of investors between the extreme be-

haviors, the utility of investor having a relative ambiguity is the lowest. This observation

means that, between the extreme behaviors, the covariance matrix Ω̃u is the one for which

investor has the maximum level of risk-free asset, we may expect an expected loss lower

than usually because of the weight of the risk-free asset in the corresponding portfolio.

Therefore the covariance matrix Ω̃u characterizes the ambiguity profile for which the ex-

pected utility can not be improved without increase the level of the expected loss in the

out-of-sample performance of the tangency portfolio.

The tangency portfolio obtained from Ω̃u denotes the portfolio from which there is

no more possible trade-off between the expected utility and the loss in the out-of-sample

performances. The optimal parameter β is then defined by the following corollary:
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Corollary 4. The optimal parameter β∗ for the linear combination between investors

having the maximum ambiguity and investors having the minimum ambiguity reliance on

the Sahrpe model is defined as follows:

β∗ =

√
N + 2

T

√
2T −N − 2−

√
T√

2T −N − 2−
√
N + 2

(70)

Proof. See appendix 1554.

Now we provided an equilibrium state in the market, we can derive the inception of

ambiguity. This is the aim of the next sub-section.

5.2 The Inception of Ambiguity

The next picture shows the shape of the optimal parameter depending on the size of the

investment universe:

- Please, insert somewhere here Figure 155 -

From N equals 200, we compute the optimal parameter β∗ from T equals N + 3 to

150,000. We then plot the shape of the optimal parameters obtained with respect to the

number of historical returns T . Next, we increment N of 200, the number of assets is now

equal to 400, and we compute the optimal parameters and plot them with respect to T .

We renew the algorithm fifty times.

Following the picture, it seems that the optimal parameter decreases with respect to

the number of historical returns. As a result, higher the number of historical returns

in the investment universe and lower the weight of the covariance matrix characterizing

the maximum ambiguity reliance on the Sharpe model. Notice that bolder the curve

and higher the number of assets considered. Then, higher the number of assets in the

investment universe, and lower the decrease of the optimal parameter. This observation

means that the weight of the covariance matrix characterizing the maximum ambiguity

decreases slowly with respect to the number of historical returns, when the number of assets

considered increases. Therefore, the inception of ambiguity of investors comes actually

from the size of the investment universe.

It seems than the optimal parameter which characterizes the ambiguity, follows a power

law distribution with a paramter almost equal to 1.72. In order to confirm this observation,

we show in the next picture, the shape of the optimal parameters (in logarithm) with

respect to the ratio N/T (in logarithm).

- Please, insert somewhere here Figure 255 -
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For all the combinations, the shapes of the optimal parameter coincide and correspond

to a mix of several increasing straight lines. As a result there is some scale effects in the

evolution of the optimal parameter with respect to the size of the investment universe

characterized by the ratio N/T . The slope of these lines (almost equal to 0.58) provide

the parameter of the resulting power law distribution about equals to 1.72.

Kahn and Sarin (1988)[42] propose to consider the entire distribution of the moment

of order two in order to take into account the higher moments of the sample returns. We

build from our model some covariance matrices for which the entire distribution is taken

into account through the parameter α. In the next section, we run an empirical study in

the S&P500 universe for showing the consistency of our model.

6 The Empirical Study

We use three databases from the S&P500 universe. Database 1 is constituted of 250 total

asset returns in a daily frequency from 01/01/1980 to 03/11/2009. Database 2 is con-

stituted of 250 total asset returns in a weekly frequency from 01/01/1980 to 03/11/2009.

Database 3 is constituted of 324 total asset returns in a weekly frequency from 12/22/1988

to 12/18/2008. Returns are all expressed in USD. There is no selection of assets, we only

take into account all assets completely available in the financial database between the

first and the last dates considered. As a result, there is no completion of returns in our

databases. The financial database used for extracting returns is Datastream.

Database 1 and Database 2 are used for showing the consitency of the model. We

use Database 3 for the preliminary application of our model to the portfolio optimization

because it contains more assets than the two others.

6.1 The Consistency of the Model

In order to show the consistency of the model, we propose to compute the volatility of the

risk aversion parameter. The first estimation window for the weekly frequency contains

N + 3 (which is equal to 253) historical returns. For the daily frequency, we consider

a number of historical returns corresponding to the same sample dates than the sample

window consider for the weekly frequency. We then compute the risk aversion parameter

and increase the window size of one day for the daily frequency and one week for the

weekly frequency. The next picture shows the dynamic of the risk aversion parameter γu:

- Please, insert somewhere here Figure 356 -

Following the picture, the risk aversion parameter decreases as the number of historical

returns increases. The decrease is more important with the weekly frequency. However,
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even there is a decrease of the risk aversion parameter, we notice some variations of its

values through time. The next picture shows the variation of the risk aversion parameter

and the volatilty of the S&P500 index in a daily frequency:

- Please, insert somewhere here Figure 456 -

We notice the same behavior between the volatility of the risk aversion parameter and

the volatility of the market index. The risk aversion parameter characterizes the behavior

of an investor facing to the uncertainty. As a result, the variation of the risk aversion

parameter should catch all the properties of the volality in the market. When the risk

aversion of investors knows some turbulence, the S&P500 index knows some turbulence.

When the volatility of the risk aversion of investors is low, the S&P500 index knows

a period of low volatility. When considering weekly frequency, we obtain the following

picture:

- Please, insert somewhere here Figure 557 -

Although the fit is not as well obvious as for the daily frequency, we observe the same

behavior for the two series. The next picture shows how the ambiguity of investors may

explained a part of the volatility in the market.

- Please, insert somewhere here Figure 657 -

We have on the same picture the S&P500 index returns and the volatility of the risk

aversion in daily frequency on the top, in weekly frequency bottom. It seems that the

ambiguity of investors explained a part of the volatility in the market. With the same

trend, as the number of historical returns increases, the volatility of the risk aversion

decreases, which means that its the impact of the ambiguity in the market volatility

decreases. An investor having the maximum ambiguity, will therefore ask a higher risk

premium and his (her) will support only the part of the market volatility not explained by

his (her) ambiguity. As a result, the use by this investor of the sample covariance matrix

yield less errors in the estimation of the risk. In the same manner, an investor having the

minimum ambiguity is not aware of this risk. The investor will ask a lower risk premium

and the use of the sample covariance matrix yield much errors in the estimation of the

risk.

As seen above, the approach based on the risk management requires the use of the

covariance matrix characterizing well the risk depending on the ambiguity of investor.

Concerning an allocation process under uncertainty, the existence of several profile of

investors in relation to ambiguity, has for consequence the need to aggregate the ambiguity

in the market. Using Database 3, in the next sub-section we make a preliminary application

to the portfolio optimization.
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6.2 Preliminary Application to the Portfolio Optimization

From Jagannathan and Ma (2003)[35], we know that the imposition of a shortsale con-

straint in the portfolio optimization program improves the performance of the sample

estimator of the covariance matrix, a fortiori the performance of the sample tangency

portfolio. We only take into account in our empirical study the case where there is a

shortsale constraint.

Usually, academic literature uses an out-of-sample approach with a rolling estimation

window in order to remains constant the number of historical returns. We know that the

sample estimators of the expected returns and the covariance matrix perform better with

the increase of the number of historical returns. In order to take into account the effect of

the sample size neglect through time, we consider a more conservative approach by using

an increasing estimation window for the out-of-sample portfolio.

However, as noticed above, our model allows to understand the dynamic between the

sample covariance matrix and the true one. The most important are not the values, but

their variation through time. In order to use our covariance matrices in an allocation

process, we need to apply a scale parameter on parameter α. This is the aim of the next

sub-section.

6.2.1 The Scale Parameter

We need a scale parameter for calibrating our covariance matrices at the same order

than elements of the sample covariance matrix. Notice that, among our three covariance

matrices, there is a common factor having the following expression:

N2

µTΩ̂−1
s µ

Λ

We propose to scale the common factor among the three covariance matrices with the

sample one. Notice that by this approach, we cancel the parameter αg in the expression of

the covariance matrix Ω̃g, and reduce its elements on the same order than the elements of

the sample covariance matrix. By canceling the parameter αg, we assume that the entire

distribution of the order two moment characterizes the most ambiguous profile reliance on

the Sharpe model. For the two other covariance matrices, it remains a weighting parameter

depending only of the size of the investment universe. We then propose the following scale

parameter denoted by ζ:

ζ =
N2

µTΩ̂−1
s µ

∑
i,j

Λij

Ω̂sij

(71)

We divide the weighting parameter α by the scale parameter ζ and obtain covariance

matrices for a practical use.
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6.2.2 The Portfolio Allocation Process

The optimization program when there is a shortsale constraint is given by:
Max
(xp)

x
′
pµ̂s

x′
pΩxp

s.t x
′
p1 =1

xpi
≥ 0, i = 1, ..., N

(72)

where µ̂s denotes the sample expected returns and Ω one the covariance matrices among

Ω̂s, Ω̃g, Ω̃t and Ω̃u. We consider the first estimation window from 12/22/1988 to 03/16/1995,

we have 324 assets with 326 historical returns. We then compute the optimal tangency

portfolio, and buy it. One week later, we increase the number of historical returns of one

period, we thus have a new estimation window from 12/15/1988 to 03/23/1995 that means

324 assets and 327 historical returns. We compute the new optimal tangency portfolio

and rebalance the allocation by selling or buying assets from the last allocation in order to

match with the new allocation. We perform the algorithm until the end date. We finally

obtain an out-of-sample tangency portfolio from 03/23/1995 to 12/18/2008. We obtain

four tangency portfolios from Ω̂s, Ω̃g, Ω̃t and Ω̃u and compute their corresponding Sharpe

ratios. Without loss of generality we do not consider the risk-free asset in our database.

Next, we consider one thousand possible linear combinations between the tangency

portfolios obtained from Ω̃g, Ω̃t and we compute their corresponding Sharpe ratios. The

following picture shows the Sharpe ratio of all the tangency portfolios considered:

- Please, insert somewhere here Figure 758 -

6.2.3 Comments

From Figure 7, it appears that the Sharpe ratio13 of the sample tangency portfolio equals

to 0.94, is higher than the one of the tangency portfolio obtained from Ω̃g (equals to 0.9).

However it remains lower than the Sharpe ratio obtained from the covariance matrix Ω̃t

(equals to 0.98). The covariance matrix Ω̃u is the one characterizing the equilibrium state

between the most and the less ambiguous investors. The empirical result seems testify our

theoretical result; the Sharpe ratio of the tangency portfolio obtained from the covariance

matrix Ω̃u (equals to 1.03) is higher than the Sharpe ratio obtained from the covariance

matrix having the highest expected utility and then, a fortiori than the Sharpe ratio of

the sample tangency portfolio.

We know that the covariance matrix Ω̃u is actually a linear combination between the

Ω̃g and Ω̃t with the optimal parameter β∗. In order to see if there is a naive approach

13There is no cash considered in our expression of the Sharpe ratio. This is an annualized Sharpe ratio.
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allowing to build a tangency portfolio with a most higher Sharpe ratio than the one

obtained from the covariance matrix Ω̃u, we also represent on Figure 6, the Sharpe ratios

of one thousand tangency portfolios obtained from several linear combinations between

Ω̃g and Ω̃t. From Figure 7, it seems that there is some combinations having a lower and

some having a higher Sharpe ratio than the sample tangency portfolio. We also observe

some combinations having a higher Sharpe ratio than the tangency portfolio obtained from

Ω̃t. However, none of these combinations do not have a higher Sharpe ratio than the one

obtained from the covariance matrix Ω̃u characterizing the equilibrium state.

7 Conclusion

In this paper, we develop a model for understanding the impact of the sample size neglect

of investor when he (she) hopes for the tangency portfolio. From the literature dealing with

parameter uncertainty, we compute the expected loss function of the sample covariance

matrix under a wrong hypothesis. By inverting the expected loss function of the sample

covariance matrix and taking its opposite, we track the dynamic between the sample

covariance matrix and the true covariance matrix and highlight the impact of the ambiguity

in the measure of the volatility of the portfolio. We then distinguish a covariance matrix

for the risk management issue and the covariance matrix for an allocation decision under

uncertainty.

The impact of the sample size neglect has been shown. It seems that an investor not

aware on the sample size of the investment universe will ask a lower risk premium than

another. Therefore, by using the sample covariance matrix, this investor under estimates

the risk of his (her) portfolio. The model allows to build a covariance matrix allowing to

well measure the risk.

An equilibrium state has been built in order to deal with the problem of allocation

decision under uncertainty. The equilibrium allows to show that the ambiguity of investors

comes actually from the sample size of the investment universe and follows a power law

distribution with respect to the ratio between the number of assets and the number of

historical returns, with a parameter almost aquals to 1.72. A preliminary result on the

american market seems confirm the relevance of the covariance matrix derived from the

equilibrium state.

The model is consistent with the litarature dealing with the ambiguity, and with the

non-normal character of asset returns in markets. It may be helpful for explaining some

financial puzzles as the risk premium puzzle or the volatility puzzle.
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A Appendix

A.1 Proofs of Proposition and Corollary

A.1.1 Proof of Proposition 1.

Proposition 1. If the identity matrix is the covariance matrix, the expected loss function

of the sample covariance matrix ρ is defined as follows:

ρ = − (µTµ)(N + 2)

2γ(T −N − 2)

Proof.

The expected loss function of the sample covariance matrix is defined as follows:

ρId

(
I, Ω̂

)
= U(I)− E

[
U(Ω̂s)

]
=

1

2γ
µTµ− 1

2γ
µTE(Ω̂−1

s )µ
(A.1.1)

The sample covariance matrix Ω̂s has the following distribution:

Ω̂s v WN (T − 1, I) /T (A.1.2)

whereWN (T − 1, I) denotes a Wishart distribution with T−1 degree of freedom. Following

Muirhead (1982) we know under the null hypothesis that:

E(Ω̂−1
s ) =

T

T −N − 2
I−1 (A.1.3)

We obtain a new expression of ρ
(
I, Ω̂s

)
:

ρ
(
I, Ω̂s

)
=

1

2γ
µTµ− 1

2γ

T

T −N − 2
µTµ

=
µTµ

2γ

(
1− T

T −N − 2

) (A.1.4)

and the development of (A.1.4) gives the following expression in terms of distance:

ρId

(
I, Ω̂s

)
= − (µTµ)(N + 2)

2γ(T −N − 2)
(A.1.5)

we then obtain the result.

�
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A.1.2 Proof of Proposition 2.

Proposition 2. A candidate Ω̃ for the covariance matrix is defined as follows:

Ω̃ = Ω̂s+
N2(N + 2)(µTµ)

4γ2(T −N − 2)
Λ

where Λ the matrix of size N ×N obtained from the vector of expected returns µ:

Λ = µ⊗ µT

with the sign ⊗ denoting the kronecker product.

Proof.

If ρ is the asymptotical expected loss function of the sample covariance matrix when

we assume the null hypothesis which is actually wrong, 1/ρ may be viewed as a measure

of the maximum noise between the sample covariance matrix and the covariance matrix:

U(Ω̃)− U(Ω̂s) ≤ % (A.2.1)

where % is equal to 1/ρ. We assume a conservative point of view:

U(Ω̃)− U(Ω̂s) =
2γ(T −N − 2)

(µTµ)(N + 2)
(A.2.2)

We then obtain:

µTΩ̃−1µ = µTΩ̂−1
s µ+

4γ2

µTµ

T −N − 2

N + 2
(A.2.3)

A candidate for which the condition above is true is defined as follows:

Ω̃ = Ω̂s+
N2(N + 2)(µTµ)

4γ2(T −N − 2)
Λ (A.2.4)

where:

Λ = µ⊗ µT

To show this result, we have to compute the utility function of the candidate for the

covariance matrix:

U(Ω̃) =
1

2γ
µTΩ̃−1µ

=
1

2γ
µT

[
Ω̂s+

N2(N + 2)(µTµ)

4γ2(T −N − 2)
Λ

]−1

µ

= U(Ω̂s) +
1

2γ
µT

[
4γ2(T −N − 2)

N2(N + 2)(µTµ)
Λ−1

]
µ

= U(Ω̂s) +
2γ(T −N − 2)

N2(N + 2)(µTµ)
µTΛ−1µ

(A.2.5)
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We know that the matrix Λ is equal to the kronecker product between µ and µT.

Therefore:
µTΛ−1µ = µT

(
µ⊗ µT

)−1
µ

= µT
(
µ−1 ⊗ µ−1T

)
µ

(A.2.6)

Remember µ is the expected returns vector of size N × 1. Assume we have two assets

in the investment universe (N = 2), we then have:

µTΛ−1µ = (µ1, µ2)




1

µ1
1

µ2

⊗ ( 1

µ1

,
1

µ2

)( µ1

µ2

)

= (µ1, µ2)


1

µ2
1

1

µ1µ2
1

µ1µ2

1

µ2
2

( µ1

µ2

)

=

(
2

µ1

,
2

µ2

)(
µ1

µ2

)
= 2 + 2 = 2× 2 = 22

(A.2.7)

We assume now this result is true when there is N assets in the investment universe.

We then have:

µTΛ−1µ = N +N +N + ...+N︸ ︷︷ ︸
N times

= N ×N = N2 (A.2.8)

By recurrence, we show it remains true when we consider N+1 assets in the investment

universe. We then have µ = (µi)i=1,...,N+1 and Λ = µ−1 ⊗ µ−1T
of size (N + 1)× (N + 1):

µTΛ−1µ = (µi)
T
i=1,...,N+1

[
(µi)

−1
i=1,...,N+1 ⊗ (µi)

−1T

i=1,...,N+1

]
(µi)i=1,...,N+1

=
[
(µi)

T
i=1,...,N

[
(µi)

−1
i=1,...,N ⊗ (µi)

−1T

i=1,...,N

]
(µi)i=1,...,N

]
+

[
(µi)

T
i=1,...,N+1

(
0(i,j)i,j=1,...,N

Λ(i,N+1)i=1,...,N

Λ(N+1,j)j=1,...,N
Λ(N+1,N+1)

)
(µi)i=1,...,N+1

]
(A.2.9)

As a result, we have the following expression:

µTΛ−1µ = N2 +

[(
(µi)

−1T

i=1,...,N ,
N + 1

µN+1

)
(µi)i=1,...,N+1

]
= N2 + 1 + 1 + 1 + ...+ 1︸ ︷︷ ︸

N times

+ (N + 1)

= N +N +N + ...+N︸ ︷︷ ︸
N times

+ 1 + 1 + 1 + ...+ 1︸ ︷︷ ︸
N times

+ (N + 1)

= (N + 1) + (N + 1) + (N + 1) + ...+ (N + 1)︸ ︷︷ ︸
N+1 times

= (N + 1)× (N + 1) = (N + 1)2

(A.2.10)
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Therefore, if we assume N assets in the investment universe, we have:

U(Ω̃) =
1

2γ
µTΩ̃−1µ

= U(Ω̂s) +
2γ(T −N − 2)

N2(N + 2)(µTµ)

(
µTΛ−1µ

)
= U(Ω̂s) +

2γN2(T −N − 2)

N2(N + 2)(µTµ)

= U(Ω̂s) +
2γ(T −N − 2)

(N + 2)(µTµ)

(A.2.11)

Since from the candidate, we obtain the same level of noise between the sample covari-

ance matrix and the true one, the candidate is actually the covariance matrix.

�

A.1.3 Proof of Proposition 3.

Proposition 3. The covariance matrix obtained as a sum of the sample covariance matrix

and a weighted matrix of expected returns is a defined positive matrix.

Proof.

We first consider the case where N = 2. We have the following expression of the

covariance matrix:

Ω̃2=

(
E (X2

1 )− µ2
1 E (X1X2)− µ1µ2

E (X1X2)− µ1µ2 E (X2
2 )− µ2

2

)
+α2

(
µ2

1 µ1µ2

µ1µ2 µ2
2

)
(A.3.1)

where µi, α2 and Ω̃2 denote respectively the expected returns of the random variables Xi

(i = 1, ,2), the parameter α when N = 2 and the covariance matrix of size 2 × 2. We

know that the sample covariance matrix is a defined positive matrix, as a result, we have:∣∣∣Ω̂s

∣∣∣= [E (X2
1

)
E
(
X2

2

)
− E (X1X2)

2]− [µ2
2E
(
X2

1

)
+ µ2

1E
(
X2

2

)
− 2E (X1X2)µ1µ2

]
(A.3.2)

where |·| denotes the determinant. Since the sample covariance matrix is a defined positive

matrix, we have:

E
(
X2

1

)
E
(
X2

2

)
− E (X1X2)

2 > µ2
2E
(
X2

1

)
+ µ2

1E
(
X2

2

)
− 2E (X1X2)µ1µ2 (A.3.3)

The expression of the determinant of the covariance matrix is the following:∣∣∣Ω̃2

∣∣∣= ∣∣∣Ω̂s

∣∣∣+ α2 [µ2
2E (X2

1 ) + µ2
1E (X2

2 )− 2E (X1X2)µ1µ2]

'
∣∣∣Ω̂s

∣∣∣+ α2

(
µ2

√
E (X2

1 ) + µ1

√
E (X2

2 )
) (A.3.4)

Since the parameter α2 is always positive, as a result we have:∣∣∣Ω̃∣∣∣ > 0 (A.3.5)
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Now, we assume that
∣∣∣Ω̃N

∣∣∣ is positive for N assets, and show the result remains true

for N + 1 assets. The size of the covariance matrix in this case N + 1 × N + 1. The

determinant of this matrix may be obtained by the determinant of some sub-matrix of

size N ×N . We have: ∣∣∣Ω̃N+1

∣∣∣=N+1∑
i=1

(−1)i+j
∣∣∣Ω̃j

N

∣∣∣
j=1...N+1

(A.3.6)

We just have to consider for computing (−1)i+j, the diagonal elements of Ω̃N+1, for

which (−1)i+j is always equal to one because the power coefficients are always odd. We

also know that
∣∣∣Ω̃N

∣∣∣ is always positive. Therefore
∣∣∣Ω̃N+1

∣∣∣ is a sum of positive elements,

as a result remains positive.

�

A.1.4 Proof of Proposition 4.

Proposition 4. As the number of historical returns increases from T to k∆T , the sample

covariance matrix goes toward the true covariance matrix from the point T + k∆T if the

following condition is true:

〈∆γk〉 ≤
k∆T

h

with:

h =
2(γ + ∆γk)

2(T −N − 2)2

γ3(T + k∆T −N − 2)

where 〈·〉 denotes the absolute value, ∆γk the variation of the risk aversion between T +

(k − 1) ∆T and T + (k − 1) ∆T ,.and k an integer denoting the number of period.

Proof.

Without loss of generality we assume that k is equal to one. When the number of

historical returns T increases of ∆T , the parameter α turns down of dT (α) where:

(I) dT (α) =
N2(N + 2)(µTµ)

4(γ + ∆γ)2(T −N − 2)2
∆T (A.4.1)

and the sample covariance matrix tends to move closer of the covariance matrix. When the

risk aversion γ decreases between time T to time T + 1 of ∆γ, the parameter α increases

of dγ (α):

(II) dγ (α) =
N2(N + 2)(µTµ)

2γ3(T + ∆T −N − 2)
∆γ (A.4.2)

and the sample covariance matrix tends to move away of the covariance matrix. If we

assume that the increase of α when the risk aversion decreases of ∆γ, is higher than the
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decrease of α when the number of historical returns increases of ∆T , the sample covariance

matrix tends to move away from the covariance matrix, we then have:

(I) < (II) =⇒ N2(N + 2)(µTµ)

4(γ + ∆γ)2(T −N − 2)2
∆T <

N2(N + 2)(µTµ)

2γ3(T + ∆T −N − 2)
∆γ

=⇒ ∆T[
2(γ + ∆γ)2(T −N − 2)2

γ3(T + ∆T −N − 2)

] < ∆γ

=⇒ ∆T

h
< ∆γ

(A.4.3)

where h is defined as follows:

h =
2(γ + ∆γ)2(T −N − 2)2

γ3(T + ∆T −N − 2)
(A.4.4)

we then obtain the result.

�

A.1.5 Proof of Proposition 5.

Proposition 5. When the number of historical returns T goes to infinite, whe have:

U(Ω̃) =U(Ω̂)→ +∞

Proof.

When T goes to infinite, the utility from our covariance matrix goes to infinite. We

also know that the sample covariance matrix is equal to our covariance matrix in this case.

As a result we have:

U(Ω̂s) = U(Ω̃)→ +∞ (A.5.1)

we then obtain the result.

�

A.1.6 Proof of Proposition 6.

Proposition 6. When T < (N + 2), the data returns are not enough relevant for the

estimation of the covariance matrix, as a result, the naive allocation is the best way for

investor. When (N + 2) < T , the covariance matrix gives to the investor the highest

expected utility than the sample covariance matrix for the same level of risk aversion.

Proof.

The expected utility of the covariance matrix is defined as follows:

E
[
U(Ω̃)

]
= E

[
U(Ω̂s)

]
+

2γ(T −N − 2)

(µTµ)(N + 2)
(A.6.1)
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which is a sum between the expected utility from the sample covariance matrix and a

positive term. We then have:

E
[
U(Ω̂)

]
< E

[
U(Ω̃)

]
(A.6.2)

We also know that:

E
[
U(Ω̂)

]
=

T

T −N − 2
U(Ω̃) (A.6.3)

we then obtain a new expression of E
[
U(Ω̃)

]
:

E
[
U(Ω̃)

]
=

T

T −N − 2
U(Ω̃) +

2γ

µTµ

T −N − 2

N + 2
(A.6.4)

Since (N + 2) < T , we have U (I) < U
(
Ω̃
)

. We also know that (T − N − 2) < T ,

therefore:(
1 <

T

T −N − 2

)
=⇒

[
U(I) <

T

T −N − 2
U(Ω̃)

]
=⇒

[
U(I) <

T

T −N − 2
U(Ω̃) +

2γ

µTµ

T −N − 2

N + 2

]
=⇒ E [U(I)] < E

[
U(Ω̃)

] (A.6.5)

because of the following observation: 0 <
2γ

µTµ

T −N − 2

N + 2
E [U(I)] = U(I)

(A.6.6)

�

A.1.7 Proof of Corollary 1.

Corollary 1. An investor hoping for the tangency portfolio with the maximum ambiguity

reliance on the sample tangency portfolio, should not hold this portfolio more than k/h

periods, with h defined as follows:

h =
4(T −N − 2)2

T + k −N − 2

√
T −N − 2

(µTµ)(µTΩ̂−1
s µ)(N + 2)

Proof.

From Proposition 4, by setting ∆γ is equal to zero (what means investor has a constant

risk aversion) and ∆T is equall to one, and the risk aversion parameter equals to γg where:

γg =
1

2

√
(µTµ)(µTΩ̂−1

s µ)(N + 2)

T −N − 2
(A.7.1)

we obtain the result.

�
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A.1.8 Proof of Corollary 2.

Corollary 2. An investor hoping for the tangency portfolio with a relative ambiguity

reliance on the sample tangency portfolio, should not hold this portfolio more than k/h

periods, with h defined as follows:

h =
4(T −N − 2)2

(N + 2)(T + k −N − 2)

√
T (T −N − 2)

(µTµ)(µTΩ̂−1
s µ)

where k is the number of period from time T , for which the risk aversion of investor

remains constant.

Proof.

From Corrolary 1, by setting the risk aversion parameter equals to γu, where:

γu =
1

2

√
N + 2

T

√(
µTµ

)
(µTΩ̂−1

s µ)(N + 2)

(T −N − 2)
(A.8.1)

we obtain the result.

�

A.1.9 Proof of Proposition 8.

Proposition 8. The expected utility of an investor with a relative ambiguity is higher

than the expected utility of an investor having the maximum ambiguity reliance on the

sample tangency portfolio.

Proof.

To show this result, we find the risk aversion parameters for which the expected utility

of Ω̃u is higher than the expected utility of any covariance matrix Ω̃. Let the following

inequality: (
E
[
U(Ω̃u)

]
< E

[
U(Ω̃)

])
=⇒ (III) (A.9.1)

with:

(III) ≡ T 2 + (N + 2)(2T −N − 2)√
T (N + 2)

√
Z <

T (µTΩ̂−1µ)

2γ(T −N − 2)
+

2γ(2T −N − 2)

(µTµ)(N + 2)
(A.9.2)

where Z is defined as follows:

Z =
µTΩ̂−1µ

(µTµ)(T −N − 2)(N + 2)
(A.9.3)

We then obtain:

(III) =⇒ 0 < γ2

[
2(2T −N − 2)

(µTµ)(N + 2)

]
− γ

[
T 2 + (N + 2)(2T −N − 2)√

T (N + 2)

√
Z

]
+

[
T (µTΩ̂−1µ)

2(T −N − 2)

]
=⇒ 0 < P(γ)

(A.9.4)
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where P(γ) denotes an order two polynome defined as follows:

P(γ) = Aγ2 +Bγ + C (A.9.5)

with: 

A =
2(2T −N − 2)

(µTµ)(N + 2)

B =
T 2 + (N + 2)(2T −N − 2)√

T (N + 2)

√
Z

C =
T (µTΩ̂−1µ)

2(T −N − 2)

(A.9.6)

In order to study the sign of P(γ), we must compute the determinant of the polynome:

∆ = B2 − 4AC

=
Z [T 2 + (N + 2)(2T −N − 2)]

2

T (N + 2)
− 4

[
2(2T −N − 2)

(µTµ)(N + 2)

][
T (µTΩ̂−1µ)

2(T −N − 2)

]
=
Z [T 2 + (N + 2)(2T −N − 2)]

2

T (N + 2)
− 4ZT (2T −N − 2)

=
Z

T (N + 2)

[
(T 2 + (N + 2)(2T −N − 2))

2 − 4T 2(N + 2)(2T −N − 2)
]

=
ZD

T (N + 2)

(A.9.7)

where D is defined as follows:

D = (T 2 + (N + 2)(2T −N − 2))
2 − 4T 2(N + 2)(2T −N − 2)

= T 2 + 2T 2(N + 2)(2T −N − 2) + (2T −N − 2)− 4T 2(N + 2)(2T −N − 2)

= T 2 − 2T 2(N + 2)(2T −N − 2) + (2T −N − 2)

= (T 2 − (N + 2)(2T −N − 2))
2

(A.9.8)

We then have:

√
∆ =

(
T 2 − (N + 2)(2T −N − 2)

)√ Z

T (N + 2)
(A.9.9)

and we know that P(γ) has two roots γ1 and γ2 defined as follows:
γ1 =

1

2

√
N + 2

T

√(
µTµ

)
(µTΩ̂−1

s µ)(N + 2)

(T −N − 2)

γ2 =
1

2

T 2

2T −N − 2

√(
µTµ

)
(µTΩ̂−1

s µ)(N + 2)

(T −N − 2)

(A.9.10)
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We observe that γ1 is actually equals to the risk aversion parameter corresponding to

the covariance matrix with the minimum uncertainty:
γ1 =

√
N + 2

T
γg

γ2 =
T 2

2T −N − 2
γg

(A.9.11)

We know that P(γ) has the opposite sign of A inside the roots and the same sign than

A outside the roots.

We show now that γ1 is lower than γ2. Since T > 1, the following inequality is true:

(T 2 − 2T > 0) =⇒ (T 2 − 2T +N + 2 > 0)

=⇒ 2T −N − 2 < T 2

=⇒ 1 <
T 2

2T −N − 2
=⇒ 1 < γ2

=⇒ γg < γ2

(A.9.12)

Since (N + 2) < T , we have γ1 < 1, and as a result γ1 < γ2.

Since γg is the higher risk aversion, because of the decreasing of the first derivative of

the utility function U(Ω̃) with respect to γ, we can not have a risk aversion parameter

higher than γg. Since γg < γ2, the risk aversion parameter γ2 is not relevant. We have

the following behavior: E
[
U(Ω̃)

]
< E

[
U(Ω̃u)

]
for γ1 < γ

E
[
U(Ω̃u)

]
< E

[
U(Ω̃)

]
for γ < γ1

(A.9.13)

Finally, we know that:

γ1 =

√
N + 2

T
γg (A.9.14)

and since (N + 2) < T , we have γ1 < γg. As a result, we have:

E
[
U(Ω̃g)

]
< E

[
U(Ω̃u)

]
(A.9.15)

we then obtain the result.

�

A.1.10 Proof of Proposition 9.

Proposition 9. The distance between the tangency portfolio of an investor with the

minimum ambiguity and the sample tangency portfolio, is lower than the distance for an
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investor with a relative ambiguity, which is lower than the distance for an investor with

the maximum ambiguity.

Proof.

To show that, we must compare Cg, Cu and Ct with:
Cu =

T +N + 2

T
Cg = 2

Ct =
2T

2T −N − 2

(A.10.1)

Since (N + 2) < T , we have Ct < Cg.

We assume now that Cu < Ct, we have the following equation:

Cu < Ct =⇒ T +N + 2

T
<

2T

2T −N − 2

=⇒ T +N + 2

T
<

2T

2T −N − 2
=⇒ (T +N + 2)(2T +N + 2) < 2T 2

=⇒ T < N + 2

(A.10.2)

which is wrong. Therefore we have Ct < Cu.

�

A.1.11 Proof of Corollary 3.

Corollary 3. An investor hoping for the tangency portfolio with the minimum ambiguity

reliance on the sample tangency portfolio, should not hold this portfolio more than k/h

periods, with h defined as follows:

h =
4(T −N − 2)2

(N + 2)(T + k −N − 2)

√
(2T −N − 2)(T −N − 2)

(µTΩ̂−1
s µ)(µTµ)

where k is the number of period from time T , for which the risk aversion of investor

remains constant.

Proof.

From Corrolary 1, by setting the risk aversion parameter equals to γt, where:

γt =
1

2

√
N + 2

2T −N − 2

√(
µTµ

)
(µTΩ̂−1

s µ)(N + 2)

(T −N − 2)
(A.11.1)

we obtain the result.

�
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A.1.12 Proof of Proposition 10.

Proposition 10. The expected utility of an investor having the minimum ambiguity with

the sample mean-variance framework is higher than the expected utility of an investor

having a relative ambiguity.

Proof.

We just have to compare the risk aversion for the covariance matrix Ω̃t with γ1 because

of the following inequality obtained from Proposition 8: E
[
U(Ω̃)

]
< E

[
U(Ω̃u)

]
for γ1 < γ

E
[
U(Ω̃u)

]
< E

[
U(Ω̃)

]
for γ < γ1

(A.12.1)

Remember, the corresponding risk aversion parameters are defined as follows:
γ1 =

√
N + 2

T
γg

γt =

√
N + 2

2T −N − 2
γg

(A.12.2)

Since (N + 2) < T , it is straightforward to see that T < (2T −N − 2). As a result we

have:

(γt < γ1) =⇒
(
E
[
U(Ω̃u)

]
< E

[
U(Ω̃t)

])
(A.12.3)

we then obtain the result.

�

A.1.13 Proof of Proposition 11.

Proposition 11. The expected utility of the investor having a relative ambiguity is lower

than the expected utility of any investor whose the covariance matrix is denoted by Ω̃β
gt:

E
[
U(Ω̃u)

]
≤ E

[
U(Ω̃β

gt)
]

Proof.

If we assume the opposite of the result we are trying to show, we than have:

E
[
U(Ω̃β

gt)
]
< E

[
U(Ω̃u)

]
⇐⇒ γu < γβgt

⇐⇒ γu < βγg + (1− β)γt
⇐⇒ γu − γt ≤ β(γg − γt)
⇐⇒ γu − γt

γg − γt
≤ β

⇐⇒
√
T (N + 2)(2T −N − 2)−

√
N + 2√

2T −N − 2−
√
N + 2

≤ β

(A.13.1)
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Since (N + 2) < T , we know that:
√

2T −N − 2 < T (N + 2)(2T −N − 2), as a result

we have:(
1 <

√
T (N + 2)(2T −N − 2)−

√
N + 2√

2T −N − 2−
√
N + 2

≤ β

)
⇐⇒ (1 < β) (A.13.2)

which can not happened, since 0 < β < 1. We then have the following result:

E
[
U(Ω̃u)

]
< E

[
U(Ω̃β

gt)
]

(A.13.3)

we then obtain the result.

�

A.1.14 Proof of Proposition 12.

Proposition 12. The utility function of the investor having a relative ambiguity is lower

than the utility function of any investor whose the covariance matrix is denoted by Ω̃β
gt:

U(Ω̃u) ≤ U(Ω̃β
gt)

Proof.

From Proposition 11, the expected utility obtained from any combination between Ω̃g

and Ω̃t is higher than the one obtained from the covariance matrix Ω̃u:

(IV ) ≡
(
E
[
U(Ω̃u)

]
< E

[
U(Ω̃β

gt)
])

(A.14.1)

Remember, the expression for the expected utility depends on the expression for the

utility:

E
[
U(Ω̃)

]
=

T

T −N − 2
U(Ω̃) +

2γ(T −N − 2)

(µTµ)(N + 2)
(A.14.2)

We then have from (A.14.1):

(IV ) ⇐⇒

[
T

T −N − 2
U(Ω̃u) +

2γu(T −N − 2)

(µTµ)(N + 2)
<

T

T −N − 2
U(Ω̃β

gt) +
2γβgt(T −N − 2)

(µTµ)(N + 2)

]
⇐⇒ U(Ω̃u)− U(Ω̃β

gt) <
2(T −N − 2)2

T (µTµ)(N + 2)

(
γβgt − γu

)
(A.14.2)

Since (IV ) is true, we also have γβgt < γu, what means γβgt − γu < 0. As a result:[
U(Ω̃u)− U(Ω̃β

gt) <
2(T −N − 2)2

T (µTµ)(N + 2)

(
γβgt − γu

)
< 0

]
⇐⇒ U(Ω̃u) < U(Ω̃β

gt) (A.14.2)

we then obtain the result.

�
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A.1.15 Proof of Corollary 4.

Corollary 4. The optimal parameter β∗ for the linear combination between investors

having the maximum ambiguity and investors having the minimum ambiguity reliance on

the Sahrpe model is defined as follows:

β∗ =

√
N + 2

T

√
2T −N − 2−

√
T√

2T −N − 2−
√
N + 2

Proof.

Since Ω̃u is the optimal combination between Ω̃g and Ω̃t, the following equality allows

for finding the optimal β:[
Ω̃β
gt = Ω̃u

]
⇐⇒

[
β∗Ω̃g + (1− β∗)Ω̃t = Ω̃u

]
⇐⇒ β∗γg + (1− β∗)γt = γu

⇐⇒ β∗γg + (1− β∗)γg

√
N + 2

2T −N − 2
=

√
N + 2

T
γg

⇐⇒ β∗
(

1−
√

N + 2

2T −N − 2

)
=

√
N + 2

T
−
√

N + 2

2T −N − 2

⇐⇒ β∗
(√

2T −N − 2−
√
N + 2√

2T −N − 2

)
=
√
N + 2

(√
2T −N − 2−

√
T√

T (2T −N − 2)

)

⇐⇒ β∗ =

√
N + 2

T

( √
2T −N − 2−

√
T√

2T −N − 2−
√
N + 2

)
(A.15.1)

we then obtain the result.

�
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A.2 List of Figures

Figure 1: The Shape of the Optimal Parameter

Figure 1: Source: Evolution of the optimal parameter with respect to the number of

historical returns, bolder the line and higher the number of assets, the first window size is

obtained by adding three to the number of assets, computation by the authors.

Figure 2: Illustration of the Power Law Character of the Ambiguity

Figure 2: Source: Evolution of the optimal parameter with respect to the size of the

invesment universe in logarithm, the colours denote the shape for a given number of assets,

the first window size is obtained by adding three to the number of assets, the slope of the

straight lines is around equals to 0.58, computation by the authors.
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Figure 3: The Dynamic of the Risk Aversion Parameter

Figure 3: Source: Dynamic of the risk aversion parameter with respect to the size of the

invesment universe, 250 assets from the S&P500 universe, 253 historical returns for the

first estimation window when considering the weekly frequency, the number of historical

returns for the daily frequency is obtained by considering the same window date as for

the weekly frequency, the sample window increases of one frequency until the end date,

computation by the authors.

Figure 4: Comparison Between the Volatility of the Risk Aversion Parameter

and the S&P500 Index in a Daily Frequency

Figure 4: Source: Volatility of the risk aversion parameter and volatility of the S&P500

index from 01/1985 to 03/2009, 250 assets from the S&P500 universe, daily frequency,

computation by the authors.
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Figure 5: Comparison Between the Volatility of the Risk Aversion Parameter

and the S&P500 Index in a Weekly Frequency

Figure 5: Source: Volatility of the risk aversion parameter and volatility of the S&P500

index from 01/1985 to 03/2009, 250 assets from the S&P500 universe, weekly frequency,

computation by the authors.

Figure 6: The Contribution of the Sample Size Neglect to the Market

Volatility

Figure 6: Source: Volatility of the risk aversion parameter and volatility of the S&P500

index from 01/1985 to 03/2009, 250 assets from the S&P500 universe, the daily frequency

on the top, the weekly frequency bottom, computation by the authors.
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Figure 7: Sharpe Ratio of Tangency Portfolios

Figure 7: Source: Datastream, Sharpe ratios of the out-of-sample tangency portfolios,

the sample window increases from 326 to 1004 historical returns, 717 periods of estima-

tion window, 324 assets of the S&P500 universe, no completion need, weekly frequency,

computation by the authors.
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