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Partial Divestment and Firm Sale under Uncertainty

Abstract

This paper studies optimal divestment policy of an investor in a �rm that may partially

and gradually divest its capital or sell the whole �rm at once. Partial divestment o¤ers greater

�exibility while a whole-�rm transaction provides a price premium. We show that, if the price

premium includes both a �xed and a proportional component, a large �rm optimally starts to

divest partial capital before choosing to sell the whole-�rm. Full-�rm divestment is preferable

over partial divestment with higher pro�t volatility, in more declining markets and if capital is

less industry-speci�c.
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I. Introduction

Firms can downgrade their operations and release the capital to investors in response to unfavorable

market conditions or a deterioration of e¢ ciency relative to competitors. In essence, corporate assets

can be either divested and sold gradually over time or the whole �rm can be sold at once. These two

alternative phase-out modes di¤er in two key aspects. On the one hand, gradual divestment allows

�rms to maintain �exibility and to bene�t from possible future positive market developments. In

this respect gradual divestment is advantageous compared to �rm sale. On the other hand, partial

displaced assets are sold with a discount on secondary markets whereas �rms are sold with a

substantial takeover premium. In this paper we study optimal divestment directly addressing the

trade-o¤ between the �exibility of gradual divestment and the premium of whole �rm sale.

The �exibility advantage of gradual divestment is related to the optionality of the irreversible

(dis-)investment decisions. The real options approach to investment stresses the value created by

uncertainty when investment timing is �exible. In the case of gradual divestment, the �rm holds

a bundle of options to sell its partial assets. A marginal sale of assets leaves the options to sell

the remaining assets and allows the �rm to bene�t from their optimal execution in the future. In

the case of �rm sale, the decision is also an option at owners discretion. The available evidence on

takeover transactions supports the stance we adopt in this paper. Andrade, Mitchell and Sta¤ord

(2001) show that 94 percent of takeover transactions are initiated by the selling party.1 While the

timing of �rm sales is �exible, all �exibility is lost after the �rm sale and exit.

If the whole �rm is sold at the same price as the sum of partial asset sales, gradual divestment

is always a preferable choice. This is no longer the case if partial asset sale is associated with a

discount in comparison to whole �rm sale. The literature on asset sale provides strong empirical

evidence for the partial asset sale discount and the �rm sale premium. The discount for partial

displaced capital stems from �rm and sectorial capital speci�city, the thinness of the used capital

market and costs of redeploying the capital. For example, Ramey and Shapiro (2001) cite such

reasons for substantially discounted prices of used capital relative to replacement value found in the

1Using a smaller sample, but with more detailed information, Boone and Mulherin (2007) document that 15

percent of takeover bids are unsolicited. However small is the fraction of unsolicited takeover bids, even these sale

transactions leave some �exibility and discretion in the hands of the selling party. Boone and Mulherin (2007) report

that most of the unsolicited bids are executed by competitive auctions to solicit bids from other potential buyers.

Furthermore, Schwert (2000) shows that the so-called hostile takeover deals are economically equivalent to friendly

takeovers and hostility is mostly related to strategic negotiations.
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aerospace industry. Pulvino (1998) shows that �nancial constraints add to depress selling prices

for used aircraft in transactions between airlines. Firm sales, on the other hand, are attributed

with premiums relative to some benchmark values. The two main sources of the premium are the

following. First, a �rm is sold with a premium over the selling price of partial physical capital

because many types of intangible assets are purchased only with the full corporate entity. These

assets include mainly competitive intangibles such as customer and suppliers relations, know-how

and organization, and may account to a signi�cant portion of �rm value (see, e.g., Hand and Lev

(2003)). Second, persistent empirical evidence documents substantial takeover premiums de�ned

as the di¤erence between the selling price and the value of the target �rm before the transaction. A

recent study of Boone and Mulherin (2007) reports a mean premium of 40 percent in the announced

transaction price relative to the price of the target �rm 4 weeks before the �rst announcement of

the takeover. This means that even after controlling for intangible assets (included in the pre-

announcement �rm value), whole �rms are sold with premiums. These takeover premiums are

typically explained as originating from strategic synergies or higher productivity of the buying �rm

coupled with bargaining power of the selling party. Part of the surplus created by a merger is paid

out to the target �rm owners.

Given the above characteristics of corporate divestments, some interesting questions remain

unanswered. What does the optimal downsizing path look like? How does the structure of the

price discount-premium a¤ect the choice between partial divestment and �rm sale? Should �rms

with more volatile pro�ts divest partially or sell at once? Do �rms in more declining markets prefer

gradual divestment or �rm sale? Do �rms with more industry-speci�c capital opt for gradual exit

or takeover sale?

To answer these questions we construct a stylized real options model in which a �rm faces a

stochastic pro�t �ow and optimally chooses its divestment path. Marginal units of capital may

be released and sold at a discounted unit price. Alternatively, the whole �rm can be sold at a

premium price that depends on the capital level at the transaction time. To focus on the main

trade-o¤ problem between partial divestment and �rm sale we assume that both decisions are

irreversible. From a technical point of view, the problem is not trivial as it involves two di¤erent

stochastic control technics. Partial divestment is modeled as a barrier control, and the �rm adjusts

capital level at each time the underlying pro�tability state variable reaches a new minimum on a
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barrier. On the other hand, whole-�rm sale is a discrete decision, and the �rm�s problem takes the

form of an optimal stopping problem.2

Our analysis indicates that the optimal divestment policy depends critically on the structure of

the discount-premium of the capital price. We �rst study the simplest case, in which the �rm-sale

premium is linear (proportional in the level of capital). In this case, the optimal policy is either

to divest only gradually if the proportional premium is below a certain threshold or to divest the

whole �rm if the proportional premium is su¢ ciently large (it is assumed here that the �rm has

followed the optimal divestment path before and does not start o¤ the optimal policy path).

The optimal divestment policy takes a notably di¤erent form if the �rm-sale premium is a¢ ne,

i.e. if the premium consists of both proportional and �xed components. The �xed part of the

premium arises because of, e.g., non-tangible assets sold only with the whole �rm. In this case, if

the proportional premium is su¢ ciently large, the �rm optimally decides to use only the �rm-sale

option, as the premium o¤sets the gains from the �exibility of gradual divestment. But if the

proportional premium is not too high, the �rm optimally divests marginal units of capital in a

declining market until its size reaches a certain threshold. Subsequently, the remaining capital is

sold with the whole �rm, but this only happens after an anticipation phase in which the market

falls to a su¢ ciently low level. Intuitively, while at high levels of capital the �rm prefers to maintain

the �exibility of partial divestment against a moderate �rm-sale premium, at lower levels of capital

the bene�t of a positive �xed premium will o¤set the �exibility advantage of gradual adjustments.

The model generates some new predictions on the optimal choice of divestment policy and,

speci�cally, on the choice between partial divestment and �rm sale. We �nd that in more uncertain

markets the value-maximizing �rm is more inclined to divest its capital fully at once. This means

that, somewhat surprisingly, the value of �exibility of partial divestment does not become more

valuable in more volatile markets compared to one-time �rm sale. This e¤ect arises because �rm

sale, being less �exible, has a higher value of waiting, which is directly and positively a¤ected

by uncertainty. We also show that �rm sale is more preferable over partial divestment in more

declining markets. This is because in a declining market there is less room to bene�t from the

�exibility of gradual divestment.

2Two other recent papers study corporate investment as mixed stochastic control problems. Guo and Pham (2005)

analyzes optimal entry and subsequent investment, and Décamps and Villeneuve (2007) deals with dividend choice

and optimal exercise of a growth option of a �nancially constrained �rm.
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We extend the model to allow the selling price of capital to be correlated with the market state

variable. The correlation coe¢ cient between the market state and the price level is interpreted

as a measure of industry-speci�city of capital. We model in a reduced form the e¤ect that, in a

declining market, the demand for used capital decreases, and consequently prices also fall. We are

interested how the industry-speci�city of capital a¤ects optimal divestment policies. We obtain

that the more industry-speci�c is capital, the more preferable is partial divestment over �rm sale.

The explanation for this result is again related to the large value of waiting in the option to sell

the �rm at once. Because the speci�city of capital a¤ect the values of alternative strategies mostly

via the values of waiting, and increasing speci�city decreases these values, �rm sale becomes less

desirable.

The distinction between incremental capital adjustment and full-�rm sale has been noted by

several previous authors. In a series of two papers Ghemawat and Nalebu¤ (1985, 1990) study

divestment and exit in declining industries. Ghemawat and Nalebu¤(1985) consider the equilibrium

order of full-�rm exit in an oligopolistic market, while Ghemawat and Nalebu¤ (1990) allows �rms

to adjust their capital incrementally. In contrast, our paper incorporates both modes of capital

adjustment in one model with uncertain demand, but we choose not to focus on the competitive

e¤ects. Lieberman (1990) and Maksimovic and Phillips (2001) empirically study the choice between

partial and whole-�rm divestment. While these studies do not test the whole set of predictions

implied by our model, they nevertheless provide some supporting evidence. In particular, Lieberman

(1990) and Maksimovic and Phillips (2001) show that large �rms adjust capital partially and small

�rms tend to sell their all assets at once.

The remainder of the paper is organized as follows. In Section II. we set up a model of a �rm

with both partial and full-�rm divestments. Section III. derives the optimal divestment policies and

the corresponding �rm values. Section IV. discusses the implications of the model for divestment

policies. Section V. studies the e¤ects of industry-speci�city of capital. Section VI. concludes and

the Appendix provides the proofs omitted in the main text.

II. Model

Consider a �rm that produces a uniform non-storable good and faces stochastic demand. To

produce the good the �rm uses capital and possibly other variable inputs. The �rm�s operating
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pro�t at time t depends on the installed capital stock Kt and the market conditions variable Xt

and is given by

�t = �(Xt;Kt) = XtK


t ; 
 2 (0; 1): (1)

The formulation has been frequently employed in previous studies (Bertola and Caballero (1994),

Abel and Eberly (1996), Abel and Eberly (1999), Guo, Miao and Morellec (2005)) and is consistent

with either a monopolist facing an isoelastic demand function and production technology with non-

increasing returns to scale, or a price taking �rm with decreasing returns to scale technology.3 The

investors are risk neutral and discount cash �ows at a constant rate r.

The market conditions variable Xt captures the exogenous time varying business environment;

more speci�cally Xt re�ects demand shocks, but can also include productivity shocks and the prices

of variable inputs (see footnote 3). We assume that the process (Xt)t�0 evolves according to the

geometric Brownian motion

dXt = �Xtdt+ �XtdZt;

where Zt is the standard Brownian motion, � is the drift parameter and � > 0 is the volatility

parameter. We denote the �ltration (the �-algebra) generated by (Xt)t�0 with (Ft)t�0. To ensure

convergence of the problem, it is assumed that � < r.

Marginal units of capital can be sold at a price normalized to 1. Selling the whole �rm at once

results in a premium with a �xed component A � 0 and a unit price of capital equal to a � 1.4 This

means that the owners of the �rm with a level of capital k divesting at once receive ak + A. The

�xed premium may stem from the non-tangible assets or from a part of the takeover premium. It

must be understood that our formulation incorporates the discount for partial displaced capital in

the di¤erence between a and 1, so the normalization of the selling price of partial capital is without

3Suppose that the production function is Qt = K
�
t , where Qt is output produced at time t and � 2 (0; 1] measures

the degree of returns to scale. The inverse demand function is given by Pt = XtQ
� 1
"

t , so that for a given quantity

the price evolves in time together with the demand shock Xt. " > 1 is the constant price elasticity of demand. Then

instantaneous operating pro�t at time t is

�t = PtQt = XtQ
"�1
"

t = XtK
� "�1

"
t :

De�ning 
 = �� �=" we obtain (1) with 
 2 (0; 1) if either the �rm has a monopoly power (that is if " <1) or the
technology exhibits decreasing returns to scale (� 2 (0; 1)). As shown by Abel and Eberly (2004) the argument can
be extended to the case with variable outputs in the production function (e.g. labor) and time varying productivity.

4The unit prices of capital are time constant in the current setup, but we relax this assumption in Section V.,

where we allow for stochastic capital sale prices that are correlated with the market conditions variable.
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loss of generality. Capital divestment, either marginal or complete exit, is irreversible.

The objective of the �rm is to maximize the value of the original owners. The control policy

comprises the choice of capital and the exit time. The admissible capital contraction is a non-

increasing process K = (Kt)t�0 that is progressively measurable with respect to �ltration (Ft)t�0.

The exit time � is a stopping time with respect to (Ft)t�0. The value of the �rm following the

optimal investment policy is the solution to the following optimization problem:

W (Xt;Kt) = sup
�

sup
fKt+sg

Et
�Z ��t

0
e�rs�(Xt+s;Kt+s)ds

+

Z ��t

0
e�rsdKt+s + e

�r(��t) (aK� +A)

�
: (2)

The �rm�s problem involves two stochastic control problems, i.e. instantaneous control over a

divestment path fKt+sg and optimal stopping at a stopping time � .

III. Optimal Divestment Policy

A. Benchmark Cases and Linear Premium

In this subsection we consider the two limit cases. In the �rst case, the �rm has only gradual

divestment available. In the second case, the �rm can only downsize by �rm sale. Both cases are

straightforward simpli�cations of the more general optimization problem (2). This analysis is then

used to study the case where both divestment modes are available and the �rm-sale premium is

linear in capital, i.e. a � 1 and A = 0.

Denote by V m(x; k) the value of the �rm that follows optimal divestment policy in the case the

�rm can only sell partial capital. The optimal policy is characterized by a barrier function Xm(k)

that, for a given k, triggers in�nitesimal divestment (see Pindyck (1988), Abel and Eberly (1996)).

The standard arguments lead to the following Bellman equation that must be satis�ed by V m:

rV m(x; k) =
1

2
�2x2V mXX(x; k) + �xV

m
X (x; k) + �(x; k): (3)

The equation states that the required rate of return (the left-hand side) must be equal to the

expected gain in �rm value plus pro�t �ow �(x; k) (the right-hand side).
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The divestment trigger Xm(k) and the value V m can be obtained by solving the di¤erential

equation (3) subject to appropriate boundary conditions. At the divestment trigger the �rm sells the

in�nitesimal capital dk for a price of 1 per unit. It must hold that V m(Xm(k); k) = V m(Xm(k); k�

dk) + dk. Writing this in derivative form, we obtain the smooth-pasting condition

V mK (X
m(k); k) = 1: (4)

The condition requires that the marginal value of capital at the optimal divestment barrier Xm(k)

must be equal to its selling price.

The optimality condition for Xm(k) requires that the slopes of the value function are equal at

Xm(k). The requirement in derivative form is known as the high-contact condition (see Dumas

(1991)) and is written as

V mXK (X
m(k); k) = 0: (5)

Finally, we also require that, as the demand shift increases to in�nity, the option value to divest

remains �nite. This means that5

lim
x!1

V m(x; k)� �(x; k)
r � � <1: (6)

In the second extreme case, the �rm has only the option to phase out by �rm sale. Denote

by V e(x; k) the value function of the �rm following an optimal �rm sale policy at trigger Xe(k).

Given that the values in both cases are driven by the same stochastic process and the same payo¤

function, it is clear that before exit, V e must satisfy the same type of Bellman equation as before:

rV e(x; k) =
1

2
�2x2V eXX(x; k) + �xV

e
X(x; k) + �(x; k): (7)

In order to obtain the �rm value and the optimal trigger strategy, we need to solve (7) subject

to the appropriate boundary conditions. When the trigger Xe(k) is reached, the �rm sells k units

of capital for unit price a and obtains a non-negative �xed premium A. The value function must

5The discounted expected pro�t �ow (the second term on the left-hand side) goes to in�nity as x ! 1, but the
remaining value, i.e. the value of the option to divest, should be �nite.
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be equal to the proceeds from sale, which means that the value-matching condition is

V e (Xe(k); k) = ak +A: (8)

The �rm maximizes its value by choosing the optimal Xe(k) and this requires that the slopes of

the value function are equal at the sale trigger. This translates into the smooth-pasting condition

at Xe(k):

V eX (X
e(k); k) = 0: (9)

In addition, the value function should be �nite as X raises to in�nity, so that the �rm-sale option

remains �nite:

lim
x!1

V e(x; k)� �(x; k)
r � � <1: (10)

Using the above analysis, we prove the �rst result of the mixed case where both gradual divest-

ment and �rm sale are available, and the �rm sells at a proportional premium. Before we state the

result, let us de�ne a� by

a� =
1




�
1� � (1� 
)




� 1
��1

:

Proposition 1 Suppose that a � 1, A = 0 and (X0;K0) is at or above the relevant triggers

characterized below.

(a) If a < a�, the �rm divests only via partial divestment at

Xm(k) =
�

� � 1
1



(r � �) k1�
 ;

and the �rm value is

W (x; k) = B1(k)x
� +

1

r � �xk

 ;

where

B1(k) =
1

1� �
k

1� � (1� 
)X
m(k)��

and

� =
1

2
� �

�2
�

s�
�

�2
� 1
2

�2
+
2r

�2
� 0:
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(b) If a � a�; then the �rm sale trigger is given by

Xe(K0) =
�

� � 1a (r � �)K
1�

0

and the �rm value is

W (x; k) = B2(k)x
� +

1

r � �xk

 ;

where

B2(k) =
ak

1� �X
e(k)��:

The proposition characterizes the optimal divestment triggers and the �rm values in two cases.

When the proportional premium is su¢ ciently large, a � a�, the whole �rm is sold at once as soon

as the market shock reaches Xe(K0). If a < a�, the �rm divests only gradually following the barrier

control at Xm(k). Figure 1 presents the optimal divestment policies in the two cases. The reason

for this dichotomous outcome is that the proportionality of payo¤s in the two alternative divestment

modes translates into the proportionality of the value function. If the premium is su¢ ciently small,

then �exibility of partial divestment always o¤sets the premium of �rm sale. If a is su¢ ciently

large, then the premium counterbalances the �exibility advantage of partial divestment at all levels

of capital.6

6The results and the conclusions presented here depend on the assumption that (X0;K0) is at or above the relevant

triggers. The case is economically the most interesting. For the starting value to fall below the triggers, the �rm must

have deviated for some unmodeled reasons from the optimal policy before the initial date. Nevertheless, if a < a�

and X0 � Xm(K0) (in other words, the �rm starts "too large" for a given market), the analysis resembles the model

of Décamps, Mariotti and Villeneuve (2006) that studies an investment decision in one of two alternative projects.

For a given x, there is a level of capital at which the �rm is indi¤erent between partial divestment and whole-�rm

sale. Intuitively, if the �rm has a high level of capital for the current (low) state of the market, it is better o¤ selling

all the capital with a premium than making a large partial adjustment at discounted prices and stay at the low

market. If x falls below this indi¤erence point, �rm sale is preferable, if x rises, the value of partial divestment will

exceed the value of �rm sale. As in Décamps et al. (2006), it is possible to show that at the point of indi¤erence the

�rm optimally does not make an divestment decision, and instead prefers to wait for the development of the market

to decide for either partial adjustment, if x increases su¢ ciently, or �rm sale, if x falls su¢ ciently and the market

becomes unattractive for partial adjustment. The bottom line is that there is an inaction region at low levels of x for

a given k, in which the �rm does not make divestment decisions, but divest the whole �rm if the market deteriorates

and divests partially if the market improves.
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Figure 1: Divestment triggers with linear �rm-sale premium. The left panel presents the case of
a < a� and A = 0. In this case the �rm divests only partially following barrier control at Xm(k).
The right panel presents the case a � a� and A = 0. In this case the �rm divests only by �rm sale
at trigger Xe(K0).

B. Divestment with Non-linear Firm-sale Premium

In this section we consider a more general case of �rm-sale premium and allow it to be a¢ ne in the

level of capital. In other words, we assume that a � 1 and A > 0. The previous section shows that

with A = 0, a � a� implies that V e(x; k) � V m(x; k) and the �rm is better o¤ selling the whole

entity. As we show next, this conveys to the a¢ ne case, but if a < a�, it needs no longer be true

that V e(x; k) < V m(x; k) for all levels of capital.

Lemma 2 Suppose that a � 1 and A > 0. If a � a�, then V e(x; k) � V m(x; k). If a < a�, then

there exists a level of capital ~k that separates two regimes: V e(x; k) � V m(x; k) for k � ~k; and

V e(x; k) > V m(x; k) for k < ~k.

In the a¢ ne case, V e(x; k) exceeds V m(x; k) for su¢ ciently low k. The intuition is that at

small levels of capital the bene�t of achieving a positive �xed premium will o¤set the �exibility

advantage of partial divestment. However, the inequality V e(x; k) > V m(x; k) is only a necessary

condition for whole-�rm sale. Even if V e(x; k) > V m(x; k) holds, the �rm may still be better o¤

selling some capital by partial divestment before selling the remaining capital at once. This will be

the case as long as the marginal value of partial divestment exceeds the marginal value of capital

sold with the whole �rm. These arguments suggest that in the case of a < a�, optimal divestment

will take the form of a two-stage policy. If the capital level is relatively large, such that it exceeds
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a certain threshold on capital K�, the �rm will optimally divest partially. Below K�, investors will

be better o¤ selling the whole �rm. The aim of the remainder of this section is to characterize this

policy and the corresponding �rm value.

As before, it is standard to show that the value function W (x; k) satis�es the following Bellman

equation:

rW (x; k) =
1

2
�2x2WXX(x; k) + �xWX(x; k) + �(x; k): (11)

The optimal solution to the optimization problem (2) can be characterized using the di¤erential

equation (11) and the appropriate boundary conditions. As long as k > K�, the marginal value

of capital at the optimal divestment barrier Xm(k) must be equal to its selling price. This means

that the following holds

WK (X
m(k); k) = 1: (12)

The optimality condition for Xm(k) requires the high-contact condition:

WKX (X
m(k); k) = 0: (13)

When the �rm switches from the marginal divestment mode to the �rm sale mode we require

that the marginal values of capital from the respective policies are equal. Speci�cally, it must hold

that

lim
k#K�

WK (X
m(k); k) = lim

k"K�
WK (X

m(k); k) : (14)

If the equality did not hold at K�, the �rm would increase its value by choosing another point to

switch from partial to whole-�rm divestment. The optimal �rm sale is triggered at Xe(k) and the

value must satisfy the value matching condition:

W (Xe(k); k) = ak +A: (15)

The condition means that the �rm value must be equal to the proceeds from the sale. The optimality

of the endogenous trigger requires that the value function is di¤erentiable at the trigger, which leads

to the smooth pasting condition:

WX (X
e(k); k) = 0: (16)
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Before we characterize the solution of the divestment problem (2), let us de�ne

R(k) �
�



�
a+

A

k

���� �
(1� �) a+ 
�

�
a+

A

k

��
� 1: (17)

Suppose A > 0 and a < a�, and let K� be the unique k � 
A
1�a
 that satis�es R(k) = 0. If a � a

�,

let K� =1.

Proposition 3 Suppose A > 0 and (X0;K0) is at or above the relevant triggers characterized

below. The optimal divestment policy is characterized by the marginal divestment barrier

Xm(k) =
�

� � 1
1



(r � �) k1�
 if k > K�

and the �rm sale trigger is

Xe(k) =
�

� � 1 (r � �) (ak +A) k
�
 if k � K�:

The �rm value is given by

W (x; k) =

8><>: B3(k)x
� + 1

r��xk

 if k � K�and x � Xe(k)

B4(k)x
� + 1

r��xk

 if Ke � k � K� and x � Xe(k);

(18)

where

B3(k) =
1

� � 1
1

� (
 � 1) + 1

�
kXm(k)�� �K�Xm(K�)��

�
+B4(K

�);

B4(k) =

�
ak +A� 1

r � �X
e(k)k


�
Xe(k)�� ;

and � is as characterized in Proposition 1.

IV. Analysis and Implications

Proposition 3 characterizes the optimal divestment path. The optimal policy is illustrated in Figure

2 and can be described as follows. The �rm divests marginally if the capital level is relatively high,

above K�, and whenever x reaches the divestment barrier Xm(k). As soon as capital reaches K�,

13



Figure 2: Divestment triggers with a¢ ne �rm-sale premium (A > 0) and a < a�. The �rm divests
partially following the barrier control at Xm(k) as long as k > K�. If k � K� the �rm divests the
remaining capital at trigger Xe(k).

the �rm stops partial divestment. This is con�rmed by Proposition 3, which states that partial

divestment stops at Xm(K�) and �rm sale is triggered by Xe(K�). As in general Xm(K�) will

exceed Xe(K�), the optimal divestment path is characterized by an anticipation region, in which

the �rm does not divest marginally. Instead it waits until a su¢ ciently negative pro�tability shock

occurs. This triggers �rm sale and exit.

Figure 2 clearly illustrates the prediction of the model on the relationship between �rm size and

divestment policies. Large �rms divest partially and small �rms divest by �rm sale. This prediction

�nds a strong con�rmation in the evidence presented by Maksimovic and Phillips (2001). They

�nd that the average �rm that sells partial capital (partial divisions) has revenues of $1:859 billion

and operates 23:7 plants, and the average �rm that sells in a merger has revenues of $51 million

and operates 1:78 plants.

An interesting special case is a premium with only the �xed component A > 0 and no propor-

tional one, that is a = 1. In this case, K� can be characterized explicitly by

K� =

A

1� 
 :

The �rm size at which the �rm is sold is increasing in the �xed premium A and in the level of returns

to scale 
. The case of a = 1 is also special because the anticipation region Xm(K�) � Xe(K�)

disappears and the �rm continuously moves from partial divestment to full-�rm sale.
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We are interested in the impact of parameters characterizing the �rm and its environment on

the choice between partial divestment and �rm sale. We �rst consider the e¤ects of uncertainty

represented by the volatility parameter � in the Xt process.

Proposition 4 a� decreases in �. K� increases in � if a 2 (1; a�).

The proposition states that the e¤ect of uncertainty on the preference between the �exibility of

partial divestment and the premium of �rm sale is unequivocal. The cuto¤ level of a that makes

the �rm to opt for full-�rm sale decreases in the level of uncertainty. This means that in a more

uncertain environment, the �rm prefers full-�rm sale for a larger set of parameters. This same kind

of prediction is implied by the e¤ect of � on K�: the �rm exits with higher level of capital after

some partial divestment.

These results may seem surprising at �rst. From the standard real options theory we know that

higher uncertainty increases the value of waiting. One might expect that the �exibility advantage

of partial divestment is more valuable in a more uncertain market. We �nd the opposite and the

intuition for our result is the following. Firm sale is one irreversible real option and, as such, has

a substantial value created by the value of waiting. Partial gradual divestment forms a sequence

of real options, and despite the fact that these marginal divestment decisions are irreversible, the

whole policy is, in a sense, less irreversible than �rm sale. Hence the optimal gradual investment

policy takes less into account the value of waiting and the value of the policy will be less responsive

to the parameters a¤ecting the value of �exibility.7 Consequently, the value of �rm sale is more

responsive to the changes in uncertainty than is the value of gradual partial divestment and the

former value increases more in � making �rm sale more attractive.

Proposition 5 a� increases in �. K� decreases in � if a 2 (1; a�).

The result in the proposition implies that in a more declining market, the option to sell the

whole �rm and exit becomes more preferable over gradual divestment. In particular, with lower �,

the cuto¤ premium a� decreases and the size of full-�rm sale K� increases. Intuitively, in a more

declining market, there is less room to bene�t from the �exibility of gradual divestment.

7These observations are similar to Malchow-Moeller and Thorsen (2005) who constrast repeated investment options

and a single investment option.

15



V. Industry-speci�c Capital and Divestment

The price of capital has been �xed in the above formulation. Arguably, in a declining market the

selling prices of capital are linked with the state of the market. One reason for prices changing

together with market/pro�tability shocks is industry-speci�city of capital. If capital is less produc-

tive outside industry, then, after a negative industry-related shock, demand for displaced capital

falls and prices decrease. The argument is in line with the industry-equilibrium model of Shleifer

and Vishny (1992). Their paper explicitly models potential buyers of displaced capital and predicts

that negative industry-speci�c shocks and �nancing constraints will result in depressed prices of

used capital.

We model these e¤ects in a reduced form by linking the capital price Pt with the demand and

productivity process Xt. Speci�cally, we suppose that the evolution of Xt and Pt is given by

dXt = �XXtdt+ �XXt(dZX)t

and

dPt = �PPtdt+ �PPt(dZP )t;

where E[(dZX)t(dZP )t] = �dt. We interpret the correlation coe¢ cient � as the parameter measuring

the industry-speci�city of capital. A high positive � means that capital is industry speci�c and a

decline in Xt results, on average, in a de�ated capital price. To ensure that the problem is well

de�ned and has a �nite solution we assume that �X < r and �2X � 2��X�P + �2P > 0.

The extension with variable capital price adds to the complexity of the model. In order to stay

in a tractable environment we assume in this section that the whole �rm sells only at a proportional

premium, that is A = 0 and a � 1. To summarize, a unit of capital divested partially at time t

sells at price Pt; and the �rm holding Kt units of capital sells at aPtKt.

In this setup we are interested in the impact of industry-speci�city of capital on the optimal

divestment policy. We obtain the following result.

Proposition 6 The more industry-speci�c is capital (the higher is �), the more preferable is gradual

partial divestment over �rm sale.

The intuition for the result is related to the value of waiting created by the divestment options.
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The usual prediction of the real options theory is that in an environment as in this section, the

value of waiting decreases if productivity and capital price are more correlated (see, e.g., Hartman

and Hendrickson (2002)). As discussed in Section IV., the value of waiting is larger for the single

option to sell the whole �rm than for the sequence of marginal options to divest partially. Thus

increasing � decreases the value of �rm sale more than the value of gradual divestment. To put it

di¤erently, when capital is highly industry-speci�c (high �), then, after waiting for the market to

deteriorate su¢ ciently to trigger full-�rm sale, the �rm will, with high probability, sell its capital

at low prices. Consequently, the �rm�s preference moves towards gradual divestment.

VI. Conclusions

The paper has studied divestment decisions and addressed directly the trade-o¤ between the �exi-

bility of gradual divestment and the price premium from full-�rm sale. It provides analytical results

for �rm values and optimal divestment policies under alternative premium-discount structures. In

particular, if the �rm-sale premium is a¢ ne, the �rm optimally divests marginal units of capital in

a declining market until its size reaches a certain threshold. Subsequently, but after an anticipation

phase in which the state of market falls to a su¢ ciently low level, the remaining capital is sold with

the whole �rm.

The model produces a number of novel predictions on the optimal choice of divestment policy

and, speci�cally, on the choice between partial divestment and �rm sale. We analyze the impact

of displaced capital discount, �rm sale premium, �rm size, pro�t volatility, market growth and

industry-speci�city of capital. Future empirical research could directly test these predictions.

Future research should also explore if the same mechanisms that are described in this paper

carry over when competition and potential buyers of capital are modeled explicitly. It may be

particularly interesting to study a dynamic oligopoly model of a shrinking industry in which �rms

play a war of attrition as, for example, in Murto (2004), but then to allow �rms to undertake partial

divestment and takeovers.

The framework presented in the paper can be adapted to study the other side the capacity

adjustment decision, namely investment. It will be interesting to consider a combination of gradual

capital expansion and discrete technological change, analogously to capital downsizing and �rm

sale analyzed in this paper. The problem of capital accumulation and technology investment has
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received considerable attention in deterministic models (see, e.g., Feichtinger, Hartl, Kort and

Veliov (2006)), but has not been addressed in the stochastic framework of real options.

Appendix: Proofs

Proof of Proposition 1. Solving (3) subject to (4)-(6), we obtain that

Xm(k) =
�

� � 1
1



(r � �) k1�
 ;

and, if x � Xm(k),

V m(x; k) =
1

1� �
k

1� � (1� 
)

�
x

Xm(k)

��
+

1

r � �xk

 :

The solution to (7) subject to (8)-(10) is

Xe(k) =
�

� � 1 (r � �)
�
a+

A

k

�
k1�
 ;

and, if x � Xe(k), then

V e(x; k) =

�
a� 
�

� � 1

�
a+

A

k

���
x

Xe(k)

��
+

1

r � �xk

 :

Now suppose that A = 0 and x � max fXe(k); Xm(k)g. Using the value functions characterized

above, we have that

V m(x; k)� V e(x; k) = k

1� �

�
x

Xe(k)

�� � a�
�

1� � (1� 
) � a
�
:

The sign of the expression depends on the sign of the term in the square brackets. This means that

if a � a� then V m(x; k) � V e(x; k) and if a < a� then V m(x; k) > V e(x; k).

In the case of a < a�, the value of gradual divestment always exceeds the value of �rm sale,

so it is never optimal for the �rm to choose the latter strategy. It follows that the optimal trigger

policy of the �rm with both divestment strategies available is given by Xm(k) and its value W is

equal to the value of the �rm with marginal divestment V m(x; k).

In the case of a � a�, the value of strategy comprising of only gradual divestment is always
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below the value of optimal �rm sale. To conclude that the �rm does not divest gradually, we still

need to rule out a strategy consisting of some gradual divestment followed by �rm sale. Suppose

the �rm divests a marginal unit of capital before the whole �rm is sold. The marginal value of

capital that is sold optimally by partial divestment is equal to V mK (x; k) if x > X
m(k) and equal to

1 if x � Xm(k). In the �rst case, if x > Xm(k), comparing this marginal value with the marginal

value of capital from �rm sale, we have that

V mk (x; k)� V ek (x; k) =
1

1� �

�
x

Xe(k)

�� n
a�
� � [1� � (1� 
)] a

o
� 0;

which is non-positive because a � a�. In the second case, if x = Xm(k), the di¤erence in marginal

values is

1� V ek (Xm(k); k) =
1

1� �

n
1� [1� � (1� 
)] a1��
��

o
� 0:

The last inequality holds because a � a�: It can be easily veri�ed that for Xe(k) � x � Xm(k),

V ek (X
m; k) is decreasing in x, so the di¤erence 1 � V ek (x; k) remains non-positive (to see that

V ek (X
m; k) is decreasing in this interval, observe that V exk(X

m(k); k) < 0 and that V exk(x; k) is a

convex function on the relevant interval). It follows that the marginal value of capital sold by the

�rm sale always exceeds the marginal value of capital from partial divestment, so the maximizing

�rm never chooses to divest partially.

Proof of Lemma 2. The same steps that in the proof of Proposition 1 lead to the following

formula for the di¤erence between the values:

V m(x; k)� V e(x; k) = k

1� �

�
x

Xe(k)

�� �
� � A

k

�
;

where � � a�
� [1� � (1� 
)]�1 � a: It was also shown there that � � 0 is equivalent to a � a�.

It follows that a � a� implies that � � A=k for all k � 0. Thus a � a� implies that V e(x; k) �

V m(x; k):

In the case of a < a�, it holds that � > 0. So there exists ~k > 0 such that � = A=~k. Moreover,

V m(x; k) > V e(x; k) if k > ~k, and V m(x; k) < V e(x; k) if k < ~k.

Proof of Proposition 3. It is straightforward to verify that (18) satis�es (11)-(13) and (15)-

(16) for a given K�. Note that limk#K�WK (X
m(k); k) = 1. Now we consider two cases to verify
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(14). First, if K� is such that Xe(K�) > Xm(K�), then the �rm is sold at Xm(K�), and so

limk"K�WK (X
m(k); k) = a. It follows that, as long as a > 1, (14) cannot be satis�ed if Xe(K�) >

Xm(K�). Second, we consider Xe(K�) � Xm(K�), which can be shown to be equivalent to

k � 
A
1�a
 . Applying then (14) to (18) we obtain that K

� must satisfy R(K�) = 0. To verify that

K� is unique in the case of a < a�, we show that there is a unique root to R(k) = 0 if k � 
A
1�a
 .

It can be easily checked that R0(k) < 0 if k > 
A
1�a
 . Moreover, R(


A
1�a
 ) = (1� �)

�1 (a � 1) � 0.

So R(k) is monotonically decreasing starting from a positive value. Whether R(k) has a root for

k > 
A
1�a
 depends on a. Note that lim k!1R(k) = 


��a1�� [1� �(1� 
)]� 1 is negative if a < a�

and positive if a > a�. We conclude that if a < a� there exists a unique �nite K� such that (14)

holds. If a � a�, the marginal value of capital sold with the whole �rm always exceeds the marginal

value of capital sold partially and K� =1.

Proof of Proposition 4. We �rst consider the e¤ect on a�. � in�uences a� via �. Taking the

derivative of a� with respect to � we have that

da�

d�
=

a��1

(1� �)2
;

where

�1 =
(1� 
) (1� �)
1� � (1� 
) � log

�
1� � (1� 
)




�
:

The sign of the derivative depends on the sign of �1; which is a sum of a positive and negative term.

We now show that �1 is always less or equal to zero. Observe that �1 increases in � � 0:

d�1
d�

=
(1� 
)2 (1� �)
[1� � (1� 
)]2

� 0:

Moreover, lim�!0 �1 = 1� 
 + log 
 < 0 for all 
 2 (0; 1). Thus �1 is non-positive for all � � 0 and

consequently da�=d� � 0. Finally, it is straightforward to verify that d�=d� > 0 so da�=d� � 0 as

stated in the proposition.

Now consider the derivative of K� with respect to �. Recall that if a 2 (1; a�), then K� is the

unique k � 
A= (1� a
) such that R(k) = 0. Thus

dK�

d�
= � @R=@�

@R=@K� :
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First, let �2 = [
 (a+A=k)]
�� and consider @R=@�:

dR

d�
= �2

�
� log

�



�
a+

A

k

���
(1� �) a+ 
�

�
a+

A

k

��
� a+ 


�
a+

A

k

��
= � 1

�
(a�2 � 1� log �2) > 0;

where in the second equality we twice use substitutions implied by R(k) = 0, and the inequality

follows from the observation that �2 � 1 � log �2 for all positive �2 with equality holding only at

�2 = 1. Combined with the previous observation that d�=d� > 0; we have that dR=d� > 0. Second,

consider @R=@K�:

@R

@K� = �� (� � 1)

A

k2

�



�
a+

A

k

�����1 �



�
a+

A

k

�
� a

�
< 0:

The inequality follows from the fact that 
a � 
 (a+A=k) � 1 for k � 
A= (1� a
). Combining

the above observations we obtain that dK�=d� > 0.

Proof of Proposition 5. The proof is very similar to the proof of Proposition 4. � a¤ects a� and

K� only via �. The only di¤erence with the e¤ect of � in Proposition 4 is that� as can be readily

veri�ed� d�=d� > 0. Applying this to the derivatives in the proof of Proposition 4 we obtain the

result.

Proof of Proposition 6. The �rm optimization problem is now the following

W (Xt; Pt;Kt) = sup
�

sup
fdKt+sg

Et
�Z ��t

0
e�rs�(Xt+s; Pt+s;Kt+s)ds

+

Z ��t

0
e�rsPt+sdKt+s + e

�r(��t)aP�K�

�
: (19)

We take the same strategy as in Section III..A. and Proposition 1. That is we suppose that

(X0; P0;K0) is at or above the relevant triggers and we consider two limit cases, one in which the

�rm has available only partial divestment and one in which the �rm can only divest all capital at

once. Both cases are straightforward simpli�cations of the more general optimization problem (19).

Denote by V m(x; p; k) the value function of the �rm following optimal partial divestment and by

V e(x; p; k) the value function of the �rm following optimal �rm-sale policy. The value functions

V �(x; p; k), � 2 fm; eg, must satisfy the following partial di¤erential equation (where we omit the

21



function arguments for brevity):

rV � =
1

2
�2Xx

2V �XX +
1

2
�2P p

2V �PP + ��X�PxpV
�
XP + �XxV

�
X + �P pV

�
P + xk


 : (20)

Using that V �(x; p; k) is homogeneous of degree one in x and p, we can simplify the problem

and reduce one state variable. Let y = x=p and v�(y; k) = V �(x=p; 1; k) = V �(x; p; k)=p. This

implies that V �X = v�Y , V �XX = v�Y Y =p, V �P = v
� � yv�Y , V �PP = y2v�Y Y =p and V �XP = �yv�Y Y =p.

Then we can rewrite (20) in terms of v�:

(r � �P ) v� =
�
1

2
�2X � ��X�P +

1

2
�2P

�
y2v�Y Y + (�X � �P ) yv�Y + yk
 .

The two ordinary di¤erential equations for � = m and � = e have known general analytical solu-

tions and are solved for the optimal value and divestment policy by setting appropriate boundary

conditions. In the case of � = m, the optimal policy takes the form of barrier control at lower

boundary Y m(k) in the space (y; k). We set the boundary conditions similar to conditions (4)-(6),

i.e. vmX (Y
m(k); k) = 1; vmXK(Y

m(k); k) = 0 and the �niteness condition as y goes in�nity. In the

case of � = e, the optimal policy takes the form of an exit trigger Y e(k). The boundary conditions

in this case are similar to the conditions (8)-(10), i.e. ve(Y e(k); k) = ak; veX(Y
e(k); k) = 0 and the

�niteness condition as y goes in�nity.

Applying the boundary conditions we obtain in the case of � = m that

Y m(k) =
�1

�1 � 1
1



(r � �X) k1�
 ;

and, if x=p � Y m(k),

V m(x; p; k) = pvm(y; k) =
1

1� �1
pk

1� �1 (1� 
)

�
x=p

Y m(k)

��
+

1

r � �X
xk
 ;

where �1 is the negative root of the quadratic equation:

�
1

2
�2X � ��X�P +

1

2
�2P

�
� (� � 1) + (�X � �P )� + �P � r = 0: (21)
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In the case of � = e, we have

Y e(k) =
�1

�1 � 1
(r � �X) ak1�
 ;

and, if x=p � Y e(k), then

V e(x; p; k) = pve(y; k) = ap
1� �1 (1� 
)

1� �1

�
x=p

Y e(k)

��
+

1

r � �X
xk
 :

As in Proposition 1 we compare the values from the two limit policies, namely V m and V e.

Straightforward calculations following the argument in Proposition 1 lead to the conclusion that

there is a threshold level of a� on a such that partial divestment is preferable over �rm sale if

a < a�, and if a � a� the �rm will optimally sell at once without partial divestment. It can be

veri�ed that

a� =
1




�
1� �1 (1� 
)




� 1
�1�1

.

The derivative of a� with respect to �1 is the same as the one analyzed in the proof of Proposition

4, and it was shown there that da�=d�1 � 0. Di¤erentiating (21) we obtain that d�1=d� < 0.

It follows that da�=d� � 0, or in words, that with higher � the �rm requires more premium to

optimally choose �rm sale over partial divestment.
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