
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

WORKING PAPER SERIES 
 
 
 

 
 
 
 

Center for Entrepreneurial and 
Financial Studies 

 
 
 

 
 

 

 
 

Working Paper 2008 No. 10 
 
 

Why and How to Integrate Liquidity Risk  
into a VaR-Framework 

 
 
 
 

SEBASTIAN STANGE 
CHRISTOPH KASERER 



Why and How to Integrate

Liquidity Risk into a

VaR-Framework

Sebastian Stange∗, Christoph Kaserer†

January 13, 2009

We integrate liquidity risk measured by the weighted spread into a Value-at-Risk

(VaR) framework. The weighted spread measure extracts liquidity costs by order

size from the limit order book. We show that it is precise from a risk perspective in

a wide range of clearly de�ned situations.

Using a unique, representative data set provided by Deutsche Börse AG, we �nd

liquidity risk to increase traditionally-measured price risk by over 25%, even at stan-

dard 10-day horizons and for liquid DAX stocks. We also show that the common

approach of simply adding liquidity risk to price risk substantially overestimates to-

tal risk because correlation between liquidity and price is neglected. Our results are

robust with respect to changes in risk measure, to sample periods and to e�ects of

portfolio diversi�cation.

Keywords: Asset liquidity, liquidity cost, price impact, Xetra Liquidity Measure (XLM), risk
measurement, Value-at-Risk, market liquidity risk
JEL classi�cation: G11, G12, G18, G32
Acknowledgments: We would like to thank Deutsche Börse AG for providing the 'Xetra Liquidity
Measure (XLM)', weighted spread for the major German stock indices. Comments or questions
are highly welcome. First version published on October 30, 2008.

∗Corresponding author: Sebastian Stange, Department of Financial Management and Capital
Markets, Technische Universität München, Arcisstr. 2, D-80290 Munich, Germany, Tel. +49
(89) 66 08 66 47, Sebastian.Stange@wi.tum.de.

†Prof. Christoph Kaserer, Head of the Department of Financial Management and Capital Mar-
kets, Technische Universität München, Arcisstr. 2, D-80290 Munich, Germany, Tel. +49 (89)
289-25489, Christoph.Kaserer@wi.tum.de.



1 Introduction

Liquidity as the ease of trading an asset has lately received much attention in the

academic world and in practice. Still, many risk management systems assume, that

a position can be bought or sold without cost if the liquidation horizon is long

enough. While this is a traditional assumption in theoretical, perfect markets, in

real �nancial markets liquidity costs can get quite substantial. Even for liquid stocks

like those in the DAX index, consisting of the 30 largest German companies, liquidity

costs rise to over 100 basis points when trading larger positions.1

From a risk management perspective, liquidity risk is the potential loss due to the

time-varying cost of trading. Despite high current interest, liquidity risk measure-

ment is still under development.2 A range of approaches has been suggested in the

academic literature.

Bangia, Diebold, Schuermann and Stroughair (1999) use the quoted bid-ask-

spread as liquidity measure. In a parametric Value-at-Risk (VaR) approach, they

add the mean-variance-estimated worst spread to the price risk of an asset.3 Their

approach is quickly implementable with easily available data but neglects, that only

small positions can be traded at the quoted spread.4 Liquidity cost for larger po-

sitions can thus be underestimated. Their add-on approach also implicitly assumes

perfect correlation between prices and liquidity cost, i.e. that worst price loss and

highest costs will occur simultaneously in crises. While this greatly simpli�es calcu-

lations, it will overestimate risk if correlations are less than perfect.

In a VaR-approach Berkowitz (2000) has included the fact, that liquidity costs

increase with the size of the position beyond the quoted spread. This so-called

price impact is estimated as a linear function from transaction prices. However,

price impact functions are generally not linear5 and precise estimation of individual-

stock liquidity from transaction data is di�cult at best6. In addition, Berkowitz

assumes that liquidity costs and returns are independent, i.e. zero return-liquidity

correlation, which can also be doubted.

Other empirical frameworks have been suggested by Francois-Heude and

Van Wynendaele (2001) and Angelidis and Benos (2006), but also su�er from im-

1Liquidity cost for positions above ¿ 1 million, cp. Stange and Kaserer (2008).
2Cp. Basel committee (2005), p.10.
3This is similar to some practical risk management systems who value positions at bid prices, but
also accounts for the time-variation of liquidity cost.

4Market makers are only required to trade positions up to a certain size, the 'spread depth' or
'normal market size', at the quoted spread.

5Cp. non-linearity of price impact function found by Hasbrouck (1991); Hausman et al. (1992);
Stange and Kaserer (2008).

6Cp. discussions and approaches in Amihud (2002); Pastor and Stambaugh (2003).
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precise liquidity approximations and speci�c but untested assumptions concerning

liquidity-price correlations. In a di�erent stream of literature on optimal trading

strategies, empirical estimation procedures have yet to be developed before they

can be useful in practical risk management.7

Giot and Grammig (2005) is closest to our approach, using weighted spread in an

intraday VaR-framework. Weighted spread measures the liquidity cost of a speci�c

order size as the average spread in the limit order book weighted by individual

limit-order sizes.8 It generalizes the approach of Bangia et al. beyond the quoted

spread and is a precise price-impact measure when immediately transacting against

the limit order book. Giot and Grammig circumvent the problem of liquidity-price

correlation by modeling t-distributed net-returns, i.e. returns net of liquidity costs.

The speci�c distributional assumption is, however, not empirically tested. While

providing insight on the intraday structure of liquidity risk, results for daily and

longer horizons are naturally outside their scope.

In this paper, we also use the weighted-spread liquidity measure and address three

open issues. First, we clearly identify the situations, in which weighted spread can be

validly employed in the risk management context. Second, we analyze the magnitude

of liquidity impact at standard, larger-than-intraday horizons in a representative

sample of stocks. While it is plausible and empirically proven that liquidity risk is

economically signi�cant at intraday horizons,9 it is unclear if rendered negligible at

standard daily or even 10-day horizons. General price risk increases the longer the

forecasting horizon, liquidity is a one-time cost much less dependent on the horizon.

Thus, the liquidity risk component in total risk will be smaller for longer horizons. As

a consequence, liquidity risk might be negligible in liquid stock markets at standard

horizons and neglect by risk frameworks could be justi�ed. Existing estimates of

the liquidity component are based on very small samples and on imprecise liquidity

risk measures.10 Third, we empirically clarify, whether tail correlation between price

7Cp. Almgren and Chriss (2000); Hisata and Yamai (2000); Almgren (2003); Dubil (2003); Jarrow
and Protter (2005); Engle and Ferstenberg (2007), who devise optimal trading strategies to
minimize liquidity risk, but are yet empirically untraceable.

8This measure corresponds to the cost of a round-trip (CRT) by Irvine et al. (2000). Similar
measures are used in other contexts by Coppejans et al. (2001); Gomber and Schweickert
(2002); Gomber et al. (2004); Domowitz et al. (2005).

9Francois-Heude and Van Wynendaele (2001) �nd a 2-21% contribution of intraday price impact
in one stock over four months. Giot and Grammig (2005) show that 30-minute, intraday
liquidity-adjusted VaR is 11-30% for three large stocks over three months. In a seven month
sample of 60 stocks, Angelidis and Benos (2006) estimate that liquidity risk constitutes 11% of
total intraday VaR in low capitalization stocks. Lei and Lai (2007) reveal a 30% total intraday
risk contribution by liquidity in 41 small price stocks over 12 months.

10At daily horizon, Bangia et al. (1999) �nd underestimation of total VaR by 25-30% in emerging
market currencies when looking at bid-ask-spread liquidity. Le Saout (2002) estimates for 41
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and liquidity costs is perfect or not. This assumption simpli�es risk calculation in

parametric frameworks and was criticized, but so far untested.11

For our empirical analysis, we use - as far as we know - the most representative

sample of daily weighted spread available to academia.12 It contains a data set of

the Xetra Liquidity Measure (XLM) for 160 stocks over 5.5 years, which is readily

available from Deutsche Börse.

The remainder of the paper is organized as follows. Section 2 de�nes liquidity, the

liquidity measure and liquidity risk and discusses the situations, when our approach

is valid. In section 3 we describe our empirical data set and the empirical results.

Section 4 summarizes and concludes.

2 Theoretical framework and assumptions

In section 2.1 we �rst de�ne liquidity from a cost perspective, characterize the situa-

tional assumptions in which our framework can be applied and describe our empirical

liquidity measure. In 2.2 we introduce our risk estimation approach

We will �rst de�ne liquidity from a cost perspective, describe our empirical liq-

uidity cost measure and characterize the situations, in which the measure can be

applied in section . In 2.2 we introduce the risk estimation approach and de�nitions

as well as a risk decomposition to uncover structural insights.

2.1 Liquidity cost framework

2.1.1 De�nition of liquidity

We de�ne illiquidity as the cost of trading an asset relative to fair value.13 Fair

value is assumed to be the mid-point of the bid-ask-spread. We distinguish three

components of the relative liquidity cost Lt(q) in percent of the mid-price14 for an

order quantity q at time t

Lt(q) := T (q) + PIt(q) +Dt(q) (1)

stocks over 28 months, that the bid-ask-spread liquidity component can represent 50% of the
total daily risk for illiquid stocks.

11Critique brought forward by Francois-Heude and Van Wynendaele (2001), Angelidis and Benos
(2006), Loebnitz (2006), Lei and Lai (2007) and Jorion (2007).

12Usual samples are restricted to few stocks over few months, because weighted spread has to
be manually calculated from the whole intraday order book, which is highly computational
extensive.

13Cp. Dowd (2001), p. 187 �. and Buhl (2004); Amihud and Mendelson (2006).
14Mid-price is the mid-point of the bid-ask-spread.
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where T (q) are direct trading costs, PIt(q) is the price impact vs. mid-price due

to the size of the position, Dt(q) are delay costs if a position cannot be traded

immediately.15

Direct trading costs, also called explicit transaction costs, include exchange fees,

brokerage commissions and transaction taxes. Their main characteristic is that they

are deterministic.16 The price impact is the di�erence between the transaction price

and the mid-price. They result from imperfectly elastic demand and supply curve for

stocks at a speci�c point in time. For small volumes this is the bid-ask-spread, but

for larger volumes price impact is larger. Delay costs comprise costs for searching

a counter-party and the cost imposed on the investor due to bearing price risk and

price impact risk during the execution delay.17 For many assets like most stocks

and bonds on an exchange search costs are negligibly small, but costs of additional

risk during delay can remain large. This cost de�nition takes a practical, concrete

investor's perspective and can integrate other de�nitions in the literature.

2.1.2 Situational assumptions

To simplify the concrete approach, we will look at well-de�ned situations with spe-

ci�c types of assets. This section develops the four characterizing assumptions,

under which our framework can be validly applied.

First, we assume that direct trading costs are zero, T (q) = 0. For very large or

institutional traders in developed markets, T(q) can generally be considered negligi-

ble. On the Xetra system of the Deutsche Börse, for example, institutional traders

pay only around 0.5 bp as transaction fee.18 Transaction cost T(q) can also be

neglected if time variation of liquidity is of major interest.

The second characteristic concerns data availability. Because we focus on the price

impact of a speci�c position size, this type of price impact data needs to be available.

This is most probably true in markets with an electronic limit order book, where

limit order book data is made available, such as the London Stock Exchange, the

NASDAQ, the Frankfurt Xetra or the Euronext. We provide an exact description

of our liquidity measure and its calculation from the limit order book in the next

subsection 2.1.3.

Third, we look at assets positions, which are continuously tradable during crises.

This means, that no (or very few) zero trading days occur and the position size is not

15This closely follows Amihud and Mendelson (2006), but additionally di�erentiates by the size of
the position.

16Cp. Loebnitz (2006), p.18 f.
17Almgren (2003) calls price impact risk �trading enhanced risk�.
18Cp. Deutsche Boerse (2008), p.6 �.
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larger than market depth. This is a close approximation for most stocks, which have

no or very few zero trading days. Therefore, investors are not forced to delay the

execution of a transaction and costs from forced delay are zero. Scanning our data

of 160 German stocks over 5.5 years shows that this assumption is less restrictive

than it �rst seems. Even for less continuously traded stocks in our sample, trading

gets continuous during market turmoils. Zero trading days seem to occur mainly

in calmer market periods. We hypothesize that tumbling market prices attract

traders, who want to liquidate positions or to stop loss via limit orders, which

ensures continuous trading. However, we leave a rigorous analysis of this aspect to

future research.

Fourth, we assume that deliberate, strategic delay has no signi�cant bene�t, i.e.

we assume that positions can be equally good instantly liquidated against the limit

order book.19 So, we neglect any (potential) e�ect of optimal trading strategies,

which balance the increased price risk of delay against reduced liquidity cost by

trading smaller quantities.20 In our view, this is a reasonable assumption in four

cases. When we take the worst case perspective of impatient traders, a common

risk assumption, potential bene�ts are consciously neglected. Bene�ts are also non-

existent, if informational content of our trade is too high. The trader wants to trade

immediately on an informational advantage, which would be revealed by trading

more slowly or dissolve over time. Adverse informational e�ects are also possible,

i.e. trading more slowly could have price e�ects because the market assumes infor-

mational advantage, which is not present in reality.21 Immediate liquidation is fair,

too, if liquidity prices are e�cient and a traders risk aversion is greater or equal

to that of the market.22 In this case, marginal gain from lower liquidity costs by

delaying a transaction balances the marginal loss due to higher price risk. Finally,

optimal trading strategies might not be feasible in times of market stress,23 be-

cause the optimization parameters are not stable or strategic trading is not always

possible.

19This also neglects liquidation via limit instead of market orders as well as up-�oor or over-the-
counter trading.

20Cp. for example Almgren and Chriss (1999, 2000); Almgren (2003); Bertsimas and Lo (1998)
and others.

21Technically expressed as high permanent price impact rendering optimal trading strategies use-
less.

22If liquidity costs are too high, liquidity providers will enter with limit orders, because liquidity
costs, i.e. their pro�ts, will compensate for the additional risk during the delay until the limit
order is executed. If liquidity costs are too low, market orders and withdrawn limit orders will
deplete the order book, because nobody is willing to take price risk during delay.

23A point raised in Jarrow and Protter (2005), p.9.
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If there is no forced or deliberate delay, delay cost are zero (D(q) = 0) and as a

consequence, our total liquidity cost can be fairly measured with the price impact

from immediate execution.

L(q) = PI(q)

The �rst two assumptions are generally less critical. Although the latter two

assumptions place restrictions on the range of applications, the discussion shows,

that our approach is still valid in a large variety of situations, especially if markets

are fairly liquid, positions are not too large and we take a worst case perspective.

2.1.3 The weighted spread liquidity measure

We have obtained our liquidity data from the Xetra system of the Frankfurt Stock

Exchange covering the bulk of stock transactions in Germany.24 Xetra is an elec-

tronic trading platform by Deutsche Börse, which is among the top 10 largest stock

exchanges in the world. Trading starts with an opening auction at 9 a.m., is in-

terrupted by an intraday auction around 1 p.m. and ends with a closing auction

�nished at 5.30 p.m.. In between, trading is continuous. An electronic order book

collects all limit and market orders from market participants and matches them on

price, followed by time priority. The order book is anonymous, but visible to all

market participants. However, traders can also submit invisible, �iceberg� orders to

trade large volumina, where traded volume is only revealed up to a certain size and

a similar order of equal size will be initiated once the �rst limit order is transacted.

For illiquid stocks, market makers post bid- and ask quotes up to a prespeci�ed

minimum quotation volume.25

We measure price impact with the Xetra Liquidity Measure (XLM). XLM is a

weighted spread measure, which provides the liquidity cost of a round trip of size

q compared to its fair value.26 The Xetra system automatically calculates XLM

from the visible and invisible part of the limit order book. Mathematically, XLM

is de�ned as follows. The weighted bid-price bt(v) for selling v number of shares is

calculated as

bt(v) =

∑
i bi,tvi,t
v

(2)

where bi,t and vi,t are the bid-prices in ¿ and bid-volumes of individual limit orders

at time t sorted by price priority. Individual limit order volume add up to v shares,

24Cp. Deutsche Boerse (2005).
25Cp. Deutsche Boerse (2004).
26Fair value is set at the mid-price of the bid-ask-spread Pmid.
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∑
i vi = v. The weighted ask-price is calculated analogously. XLM is then calculated

as the weighted spread in basis points (bp) for prede�ned order sizes q

XLM(q) =
at(v)− bt(v)

Pmid
× 100 (3)

where Pmid is the mid-price of the quoted (minimum) spread and q = v × Pmid is
the size of the position measured in Euro-mid-price value.

Graphically, XLM is the area between the bid- and the ask-curve in the limit order

book up to the order size q divided by the mid-price value (see �gure 1 on page 30).

XLM calculates the price impact of an order of size q in basis points. It can also be

seen as the relative liquidity discount for a round-trip of an order of size q.27 XLM

is an ex-ante measure, because it calculates the cost from committed liquidity in the

order book - including hidden 'iceberg orders' - and neglects any hidden liquidity.28

Liquidity cost L(q) is then estimated from a transaction perspective. As a per-

transaction �gure has much more practical meaning than a per-round-trip �gure,

we assume that the order book is symmetrical on average.29 Therefore, we can

calculate the price impact per transaction under the situational assumptions outlined

in section 2.1.2 as

L(q) = PI(q) =
XLM(q)

2
(4)

In contrast to other price impact proxies, measure (4) is a precise measure of

the ex-ante, order-size di�erentiated liquidity cost at and beyond the bid-ask-spread

depth.30 However, it is important to notice, that this liquidity cost measure increases

computational complexity, because the price impact curve must be estimated, at

least with a liquidity cost vector. In addition, concrete position sizes must be inter-

polated between vector entries. Nevertheless, additional computations are limited

as long as weighted spread is provided by the exchange, like in the case of XLM,

and not manually calculated from the intraday order book.

There are important similarities and di�erences between XLM and the quoted

bid-ask-spread. The quoted spread is the simplest version of an ex-ante liquidity

measure, but is valid only up to quoted depth. XLM is its natural generalization,

because it extends beyond best bid-ask-prices to the rest of the order book. The

bid-ask-spread is the minimum weighted spread (for small order sizes). However,

27Gomber and Schweickert (2002) provide further theoretical background.
28Cp. Irvine et al. (2000), p.4.
29Liquidity cost estimation could gain further precision, if exchanges would provide buy-side and

sell-side weighted half-spread data.
30Up to now, it been empirically impossible to distill precise price impact measures for single assets

from ex-post transaction data (cp. Amihud (2002); Pastor and Stambaugh (2003)).
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spread is usually not measured for constant order sizes q, because quoted depth

di�ers between stocks. Spread also has upper bounds regulated by the exchange

protocol, if there is market maker coverage.31 This is a �rst indicator that liquidity-

cost dynamics will be di�erent when moving beyond the minimum bid-ask-spread.

2.2 Liquidity risk framework

2.2.1 Measurement approach

We want to calculate liquidity risk estimates as precise as possible. Therefore, we use

the historical, empirical distribution instead of a parametric approach to estimate

percentiles. This approach is possible due to our large sample and has the advantage

that we do not have to make any assumption regarding the distribution of liquidity.

This is important, because liquidity distributions are often far from normal.32 The

development of a correct parametrization is left to future research.

To use percentiles of the historical distribution, we have to rely on the full sam-

ple period, because short samples have not enough observations to �nely estimate

percentiles. We also deliberately accept that risk might be di�erent at di�erent esti-

mation periods. As robustness test, we later look into time variation in a parametric

framework to test if those drawbacks have any signi�cant impact (see section 3.4.2).

Similarly, we measure risk ex-post and not ex-ante. This avoids any distortion

through a speci�c forecasting method, which is similarly a point left for future

development.

2.2.2 De�nition of risk measures

Before we turn to de�ning liquidity risk, we start with the de�nition of price risk.

We use standard risk statistics, against which we will measure the impact of liquidity

risk.

Price and return are described in the usual framework of

Pmid,t = Pmid,t−∆t × exp(rt,∆t)

where Pmid is de�ned as the mid-price Pmid,t = at+bt
2

with at and bt being the (best)

ask- and bid-price at time t respectively. rt,∆t is the ∆t-period continuous mid-price

return at time t, i.e., rt,∆t = ln(Pmid,t/Pmid,t−∆t). We take a traditional approach

31On Xetra illiquid stocks, de�ned by XLM and past volume, are covered by market makers. If
the stock is not covered, the bid-ask-spread corresponds to the minimum spread in the order
book.

32Cp. Stange and Kaserer (2008) for a detailed discussion of the properties of XLM.
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from a value-at-risk (VaR) perspective and de�ne price risk as the relative VaR at

the (1− α)-percent con�dence level over the horizon ∆t

V aRα,∆t
price = 1− exp(rαt,∆t) (5)

where rαt,∆t is the α-percentile of ∆t-period return distribution. Consequently,

V aRprice measures the maximum percentage loss over the period ∆t with a con-

�dence of (1− α)-percent.

Analogously, we measure total risk including liquidity risk. To calculate the im-

pact of liquidity, we de�ne the ∆t-period net return in t as the sum of the contin-

uous mid-price return and the liquidity discount converted to a continuous value,

lt(q) = ln (1− Lt(q)).
rnett,∆t(q) = rt,∆t + lt(q) (6)

Please note the di�erence of (6) to net-price returns.33 Using net returns instead of

net-price returns, we implicitly assume that the liquidity cost of entering a position

has already been properly accounted for. If we used net-price returns, the implicit

assumption would be that not only the liquidity cost of entering a position, but also

the expected liquidity cost of the liquidation is properly accounted for already when

entering it. We believe that our assumption is more realistic in practice.

Price is then calculated as

Pnet,t(q) = Pmid,t−∆t × exp(rt,∆t + lt(q)) (7)

where Pnet,t(q) is the achievable transaction price.

The ∆t-period liquidity-adjusted total risk is then de�ned in a VaR-framework as

the empirical α-percentile of the net-return distribution.

V aRα,∆t
total(q) = 1− exp(rnetαt,∆t(q)) (8)

V aRtotal is the maximum percentage loss due to mid-price risk and liquidation cost

over the period ∆t with a con�dence of (1 − α)-percent. This speci�cation covers

the real dynamics of the net return on a certain stock position. It is practical but

also more general than existing approaches in the following ways:

1. We use a more precise liquidity measure than most papers by covering more

aspects of liquidity. Speci�cally, we account for the impact of order-size on

liquidity. This extends the approach of Bangia et al. (1998, 1999), where

33I.e. ln ([Pmid,t × (1− Lt(q))] / [Pmid,t−1 × (1− Lt−1(q))]).
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liquidity costs of any order size is proxied for with the bid-ask-spread. The

XLM measure is also more precise than the one used in Berkowitz (2000),

Francois-Heude and Van Wynendaele (2001) or Angelidis and Benos (2006).

2. As we take empirical percentiles instead of a parametric method, we avoid any

distributional assumption, especially on liquidity cost, such as in Giot and

Grammig (2005). Our approach will capture non-normality of the distribution

as well, which is made possible by our large sample size.

3. Our approach takes percentiles of the net return distribution and does not

treat price risk and liquidity separately. We look at the dynamics of net

returns which combines the mid-price-return dynamics and liquidity cost dy-

namics. Instead of adding distribution percentiles of liquidity and price risk

separately, we acknowledge that liquidity cost and mid-price might not be per-

fectly correlated. While it is possible that large liquidity discounts and low

prices coincide, this must not be the case.

2.2.3 Risk decomposition

To uncover the structure of the liquidity impact, we decompose total risk into its

components. We de�ne relative liquidity impact λ(q) as

λ(q) =
V aRtotal(q)− V aRprice

V aRprice

(9)

λ(q) is the maximum percentage loss due to the liquidity in relation to price risk.

It can be interpreted as the error made when ignoring liquidity. It is therefore a

measure of the relative signi�cance of liquidity in the risk management context. In

addition, it can be used as a scaling factor with which price risk would need to be

adjusted in order to correctly account for liquidity. We measure it relative to price

risk, because absolute liquidity impact has little meaning by itself for our type of

analysis.

In order to uncover the e�ect of tail correlation between liquidity and price, we

de�ne liquidity cost risk as the relative worst liquidity cost

V aRα
liquidity(q) = 1− exp(lαt,∆t(q)) (10)

with lαt,∆t being the empirical percentile of the continuous liquidity discount. This is

the maximum percentage loss due to liquidity cost at an (1−α)-percent con�dence

level.

10



We can now apply a further decomposition of total risk and de�ne the correlation

factor κ(q) as residual of

V aRtotal(q) = V aRprice + V aRliquidity(q) + κ(q)× V aRliquidity(q) (11)

Naturally, this is just a further decomposition of the liquidity impact

λ(q) =
V aRliquidity

V aRprice

(1 + κ(q)) (12)

κ(q) measures the tail correlation factor between mid-price return and liquidity cost,

the proportion of liquidity risk, that is diversi�ed away due to tail correlation. If

tail correlation is perfect, κ(q) is zero and worst mid-prices and worst liquidity costs

can be added to get total risk.34 If there is some diversi�cation between cost and

price, κ(q) will become negative.

The liquidity impact λ(q) contains the following conceptual components. First, it

contains the mean liquidity discount for the position of size q - in contrast to other

approaches. This is suitable as positions are usually valued at mid-prices already ne-

glecting mean liquidity costs. Second, it includes negative deviations from the mean

cost as measured by volatility and higher moments. Third, possible diversi�cation

e�ects between price and liquidity are included and reduce liquidity risk. If liquidity

cost and mid-prices have a less than perfect, negative tail correlation (κ(q) < 0), a

liquidity risk estimate based on the α-percentile of the liquidity cost distribution as

in (10) will be incorrectly higher than based on the net-return distribution as in (9).

2.2.4 Interpretation of time horizon

The time horizon in the VaR framework is usually the time required to orderly

liquidate an asset. It is di�erentiated between asset classes but usually assumed

constant within one asset class such as stocks.35

We would like to stress that in the framework presented above, the time horizon

∆t gets a more speci�c interpretation than usual. If we assume, for example, a

standard 10-day period (∆t = 10), total risk measure (8) calculates a 10-day risk

forecast, which is the time for management to decide and react. At day 10 the stock

position will be instantly liquidated.

This interpretation is consistent with a general view on �orderly liquidation�, where

the time required comprises management reaction time as well as the liquidation

time. It stands, however, in slight contrast to a more narrow view of �orderly

34This corresponds, for example, to the assumption and approach of Bangia et al. (1999).
35Cp. for example Jorion (2001), p. 24.
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liquidation� that the time horizon of 10 days represents the period, during which a

position is continuously liquidated.

Both interpretations are, however, valid in certain situations. In a situation, where

very large positions can be liquidated without much time pressure, a continuous

liquidation over a certain time period is valid. This is also the situation, where

optimal trading strategies can be applied to maximize the net sales proceeds. In

our framework, we are looking at a situation characterized in 2.1.2, which justi�es

instant liquidation. If we look at impatient traders or equivalently at the worst case,

we do not allow for mitigation of some of the liquidity cost by allowing continuous

liquidation. In such a case, �orderly liquidation� needs to be more generally de�ned

and our approach is suitable.

3 Empirical results

In the empirical part, section 3.1 describes our data set, 3.2 provides some mar-

ket background to our analysis. Section 3.3 presents our empirical results and 3.4

contains our robustness tests.

3.1 Description of data

Our sample consists of 5.5 years of daily XLM data (July 2002 to January 2008)

for all 160 stocks in the four major German stock indices (DAX, MDAX, SDAX,

TecDAX).36 In total, we therefore cover a market capitalization of approximately ¿

1.2 trillion, which represents the largest part of the market capitalization in Ger-

many.37 As far as we know, this is the most representative sample on weighted

spread available to academia.

We received XLM data for all days, where a stock was included in one of the

four indices.38 Daily values are calculated by Xetra as the equal-weighted average of

all available by-minute data points.39 XLM(q) comprises for each day the weighted

spread for 10 standardized order sizes q. Standardized order size reach from ¿ 25.000

to ¿ 5 million in the DAX and from ¿ 10.000 to ¿ 1 million in all other indices. In

36The DAX contains the 30 largest publicly listed companies in Germany (by free-�oat market
volume), the MDAX the subsequent 70 largest before 24.03.2003 and 50 largest thereafter and
the SDAX the following 50 largest. The TecDAX, introduced during the sample period on
24.03.2003, comprises the 30 largest technology stocks.

37As of 1/2008.
38Therefore, our sample is non-constant containing 275 di�erent stocks, but only 160 stocks at one

point in time.
39This comprises a maximum of 1,060 measurements during continuous trading.
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addition to XLM data, we obtained the day-closing bid-ask-spread s at the Xetra

trading system from Datastream.

Three stocks were excluded from the analysis due to missing XLM or Datastream

data.40 We also had to eliminate 408 XLM observations, where liquidity data were

available outside the standardized volume class structure described above, to ensure

that our estimates remain representative in each volume class.41 These exclusions

left 99.9% of the stock-days in the sample.42

In total, our remaining sample contains 1.8 million observations for the 1424

trading days. We break our total sample into four sub-samples, each containing the

stocks of one index.

3.2 Market background

As background to our analysis, table 6 on page 31 summarizes market conditions

during the sample period. Markets were bullish in the largest part of the sample

period. We also captured the downturns in the second half of 2002 and the �rst

month of 2008. Due to beginning and end-of-period declines, overall return was

rather average at 8% p.a.. Naturally, market capitalization increased similar to

returns. Market capitalization is several times larger in the DAX than in all other

indices. MDAX contained the second largest average market capitalization stocks,

followed by TecDAX and SDAX. Volatility exhibited a similar, but reversed pattern

than returns. Due to the bullish period, our sample is probably rather positively

biased.

Daily transaction volume strongly increased during the sample period, which is

already a plausible indicator for improving liquidity. Transaction volume was largest

in the DAX, in the other indices it was several magnitudes smaller. Contrary to the

general positive trend, transaction volume in the TecDAX remained steady after

its initiation in 2003 and exhibits a level slightly lower than the MDAX. SDAX

transaction volume was again several times smaller than in MDAX or TecDAX.

The high diversity in transaction volumes underlines the representativeness of our

sample.

40Procon Multimedia (in SDAX between 10/2002 and 03/2003) and Medisana (in SDAX between
12/2002 and 03/2003). Data could not be obtained for Sparks Networks (in SDAX between
06/2004 and 12/2005), because it was not available in Datastream anymore.

41Less than 0.01% of all observations were available for connected periods of less than seven days.
We assume that the automatic calculation routine of the Xetra computer was extended to
non-standard order sizes during trial periods.

42323.670 of the total of 323.953 stock-days.
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3.3 Liquidity impact and its components

In this section, we analyze the signi�cance of liquidity in standard risk measures

and its components. We will not discuss absolute risk levels in detail. The inter-

ested reader will �nd estimates of absolute price risk and absolute total risk in the

appendix.

3.3.1 Magnitude of liquidity impact

As a starting point, we look at the total impact of liquidity λ(q) on risk in a standard

10-day, 99% con�dence-level VaR-setting according to equation (9). These param-

eters are typically used in a Basel II framework.43 Table 7 on page 32 presents

statistics on the overall liquidity impact λ(q) by order size and index at a horizon

often used in risk management systems.

On average over all stocks and across all order sizes, total risk - including liquidity

risk - is 10% higher than price risk alone. DAX is generally the index with the lowest

liquidity risk, while MDAX and TecDAX are second. SDAX consistently shows the

highest liquidity impact levels across all order sizes. This �nding is consistent with

trading volumes and market values discussed in section 3.2.

There is strong variation in liquidity impact between indices and within indices as

indicated by standard deviations. Variation is of the same order of magnitude than

the level. Impact is practically zero (≤1%) in small order sizes of the DAX (<¿ 250

thsd.). Liquidity impact can easily rise above 20% in large stock positions of the

DAX or medium stock positions in small stocks. In an average ¿ 1 million SDAX-

positions, liquidity impact on risk rises to 30% of price risk at a 10-day horizon.

Especially interesting is the liquidity impact calculated with spread as revealed in

the min-column.44 Impact remains rather small across all stocks and comparable to

the liquidity impact measured with XLM(10) and XLM(25) respectively. In SDAX

and TecDAX it is slightly higher than in the smallest XLM bracket. Since median

risk levels are comparable, this e�ect is probably due to few outliers as XLM and

spread data come from two di�erent databases.

Liquidity impact generally increases with order size.45 To more systematically

analyze this size e�ect, we separately estimated the impact of doubling order size

43Cp. Dowd (2001), p.51.
44This corresponds to the risk measurement approach suggested by Bangia et al. (1999) applied

to stocks.
45The decrease in the average SDAX position between ¿ 250 thsd. and ¿ 500 thsd. results from

a non-constant sample e�ect. Large SDAX positions were continuously tradable only in later
years. Therefore, risk estimates for large SDAX positions are calculated on a more liquid period
depressing liquidity impacts compared to more continuously traded small positions.
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on λ(q) in percent in the last column. To do so, we regress the log row statistics

on log order size including a constant intercept.46 Size impact is the coe�cient on

log-size and indicates the curvature of the price impact function. It speci�cally in-

vestigates into the importance of price impact data in contrast to spread data only

and abstracts from the di�erent levels in liquidity risk between indices. Generally,

the estimated price impact statistic is positive but smaller than one, which shows,

that the liquidity impact (risk) function is concave.47 The price impact is larger

in the DAX, than in the other indices. Here, the di�erence between small, liquid

and larger, less-liquid positions is especially pronounced. With size impact of 0.78,

liquidity impact almost doubles in the DAX when doubling order size. In the other

indices, liquidity impact is already large at small positions - hence the lower curva-

ture. All size impacts are statistically signi�cant at the 1%-level. The economically

large size-impact statistic underlines the importance of using order book information

beyond the spread for risk estimation - even in the DAX.

These results have important consequences for risk estimation techniques. First,

we �nd that liquidity is an important component in total risk, especially in larger

order sizes, where the price impact estimation error relative to price risk rises up

to 30% at 10-day horizons. Second, estimating liquidity risk with spread data is no

valid alternative, as liquidity risk impact in this size class is very small and strongly

increases with size. Third, large variations indicate that constant scaling of price

risk across all stocks, �hair cuts�, are probably insu�cient and liquidity has to be

accounted for speci�cally for each stock.

3.3.2 Correlation e�ect

Next, we would like to speci�cally look into the tail correlation between mid-price

return and liquidity cost. A correlation factor κ(q) of zero corresponds to perfect tail

correlation between liquidity and mid-price return. It mirrors the case that liquidity

costs are highest when prices are lowest. Table 8 on page 33 shows the results based

on 10-day, 99% VaR according to (11). Mean correlation factors ranges between 40%

and 60% of liquidity risk. On average, 60% of the liquidity risk is diversi�ed away.

The negative correlation factor reveals that large, illiquid positions get more liquid

in crises. Stock market crashes seem to attract liquidity, which allows to liquidate

less-liquid positions more cost-e�ciently, however at lower prices. Since over half of

46Ordinary least-squared regression equation is log(Stat(q)) = c+ log(q) + ε, with stat being the
row statistic and c a constant intercept.

47This is consistent as already the price impact cost function is empirically found to be concave;
cp. Hasbrouck (1991); Hausman et al. (1992).
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the liquidity risk is diversi�ed away, liquidity risk would be overestimated by about

100% at larger sizes when neglecting correlation (cp. equation (12)).

Correlation factors are quite uniform across order sizes and indices at around 55-

65%. Only in the DAX it is slightly lower at about 40%. Correlation plays an even

larger role at the spread level, where it is consistently higher than in larger order

sizes. This underlines the di�erent dynamics between the spread, quoted by market

makers, and weighted spread, which emerges from free market competition. Cross-

sectional standard deviation is also quite constant. The size-independent nature is

underlined by the statistically and economically insigni�cant price impact statistic.48

The κ(q)-statistic should be treated with care. The e�ect of correlation on total

risk is substantial only if the liquidity risk is also substantial (cp. equation (12)).

As liquidity risk is quite low at small positions the overall error remains small and

the violation is less critical.

Overall, these empirical results refute the common assumption of perfect tail

correlation, i.e. that it is reasonable to simple add up price and liquidity risk.

Doing so would overestimate total risk, especially in large, more illiquid order sizes.

These results resolve the discussion, whether the perfect tail correlation assumption

is valid or not. Our representative, empirical results are in line with the argument

of Francois-Heude and Van Wynendaele (2001), who criticize the perfect correlation

assumption of Bangia et al. (1999). However, the overall e�ect of this assumption

remains small if the liquidity impact is small in total. It might also be di�erent in

other assets like currencies, which were analyzed by Bangia et al. (1999), but we see

no a priori reason why this should be the case. We also hypothesize that correlation

e�ects should be similar for other liquidity cost measures, because they proxy for the

same phenomenon. Overall, our results indicate, that tail correlation is important

and should be taken into account in illiquid stock positions.

3.3.3 Liquidity impact at shorter horizons

Risk on a 10-day horizon calculated above, provides a comparable reference to the

standard statistics usually requested by �nancial regulators. However, as noted

already in section 2.2.2, when correctly and directly accounting for liquidity risk, the

10-day horizon gets the notion of management reaction time instead of liquidation

time. In order to stick to the original intention behind VaR, what a portfolio is

worth in the worst case, we also calculate VaR at a 1-day horizon. This statistic is

also more comparable to the intraday results available so far.

48Estimated in a linear regression of the distribution statistic on size.
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Table 9 shows the liquidity impact λ(q) for a 1-day, 99% VaR according to (9).

As expected, the relative liquidity impact magni�es when shortening horizons, be-

cause price risk is reduced while absolute liquidity risk remains unchanged. The

structure between indices remains unchanged. While still being negligible in small

DAX positions, total risk including liquidity is almost double the price risk for large

positions. Average ¿ 1 million SDAX positions have a >90% liquidity risk impact.

Even in some small positions, liquidity plays a substantial role with liquidity impact

surpassing 10% in the SDAX for small position sizes.

The size-impact statistic reveals a very similar curvature in magnitude in the daily

compared with the 10-day case. All size impacts are statistically signi�cant at the

1% level. Correlation e�ects are similar in structure but larger in magnitude when

compared to the 10-day horizon.49 Our results are comparable to the 2-30% range

found in other studies.50

3.4 Robustness tests

3.4.1 E�ect of using the expected short-fall measure

Recently, literature has discussed coherent risk measures as alternative to Value-

at-Risk to overcome the shortfalls of VaR like non sub-additivity.51 This raises

the question, if our results would change signi�cantly when switching to a di�erent

risk measure. To test if our results are robust or speci�c to the VaR, we calculate

expected shortfall,52 which is the expected loss in the worst α-percent of the cases.

We continue to use our basic approach detailed in 2.2.2 on page 8, but we replace

VaR with expected shortfall (ES) de�ned as follows.

ESα,∆t = E(r|r < rα) (13)

When we calculate risk based on expected shortfall instead of value-at-risk as

displayed in table 10 e�ects of order size get accentuated. Generally speaking,

results are structurally similar when measuring risk as ES compared to VaR. While

total risk estimates increase, the impact of liquidity is comparable even in the tail

of the distribution. Our methodology and results are therefore quite robust to a

change to the expected shortfall risk measure.

49Results available on request.
50Cp. Francois-Heude and Van Wynendaele (2001); Giot and Grammig (2005); Angelidis and

Benos (2006).
51Cp. Artzner et al. (1997); Acerbi and Scandolo (2007).
52Also called 'conditional value-at-risk' or 'expected tail loss'.
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3.4.2 E�ects of time variation

As further robustness test, we calculate monthly, rolling estimates of lambda to

counter concerns that our results are due to the long estimation period.53 This test

also addresses any concerns for non-constant-sample bias, because we calculate risk

estimates only on stocks included in the index due to data availability. Because

empirical percentiles cannot be calculated on monthly samples of daily data, we

chose a straight-forward mean-variance estimation procedure. For each date, we

calculate the 20-day backward variance σr of continuous price return and assume

that daily expected return is zero. Relative price risk on a 99% con�dence level is

then de�ned as

V aR1%
price = 1− exp (−2.33× σr) (14)

Similarly, we calculated liquidity-adjusted total risk with the mean µrnet and vari-

ance σrnet of 20-day backward net-return distribution

V aR1%
total(q) = 1− exp (µrnet(q)− 2.33× σrnet(q)) (15)

with net returns calculated according to equation (6). We then calculate the liquid-

ity impact λ(q) according to equation (9). Neglect of negative skewness and high

kurtosis (fat tails) makes this procedure simple, but might underestimate risk. Due

to the underestimation, absolute values need to be treated with care, but are still -

as lower bound - a suitable indicator for the time variation of the liquidity impact

on risk, especially if higher moments are fairly constant.

Results for λ(q) on the basis of a 10-day, 99% VaR according to (9) and (15) are

displayed in table 11. The impact of liquidity on risk has generally declined over

time across all indices. In all years, the liquidity impact strongly increased with

order size as the size-impact statistic reveals. Our prior �nding of the index rank

(DAX, MDAX / TecDAX, SDAX) is con�rmed and stable over time. TecDAX,

however, was shortly more liquid after its initiation in 2003 until 2004. Although

to be interpreted with care, the liquidity impact probably remained non-negligible

during the low-risk period from 2006-2007. The impact of liquidity on total risk was

certainly economically signi�cant in the crises periods of 2002-2003 and in 2008.

Results for the whole panel ('all') have to be treated with care, because they are

distorted by the non-constant sample e�ect. Over the years, the liquidity of less-

liquid stocks strongly improved, which made their liquidity cost data increasingly

available. As consequence, less-liquid, high-cost stocks are increasingly included in

the sample, which increases the average risk estimate. However, individual year

53Rolling total risk estimates are shown in the appendix.
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estimates have almost no sample bias and underline, that liquidity impact is eco-

nomically signi�cant.

If skewness and kurtosis would be included, these �ndings are also likely to get

con�rmed, as the one-time liquidity cost deduction will probably introduce addi-

tional skewness, which keeps the relation between price and liquidity risk valid.

Overall, this con�rms that liquidity price impact is economically signi�cant enough

to encourage integration into risk measurement systems.

3.4.3 E�ects of portfolio diversi�cation

We showed, that liquidity risk is economically signi�cant when looking at individual

stocks in the di�erent indices. But does this result persist when looking at portfolios

of stocks? If diversi�cation between mid-prices of di�erent stocks is larger than

between liquidity of di�erent stocks, liquidity impact might be substantially reduced.

To test the robustness of our results against e�ects of portfolio diversi�cation,

we calculated daily value-weighted index returns and determined liquidity impact

λ(q) based on a 10-day, 99% VaR according to (9). While our methodology does

not use optimized position weights, a value weighted portfolio should show e�ects

of diversi�cation if there are any. Results are displayed in table (12). Estimates

demonstrate, that liquidity impact on the portfolio level is of similar magnitude

than on the average individual stock level (cp. table 7 on page 32). Especially in

larger sizes, liquidity impact is increased at the portfolio level, e.g. it rises to 54%

for the ¿ 1 million position in the SDAX portfolio compared to 30% for the average

individual stock position. This must be driven by larger liquidity commonality in

larger sizes, i.e. diversi�cation in liquidity between stocks decreases with larger sizes.

Even for the all-stock portfolio liquidity impact levels are higher than for the average

stock. Overall, our results are robust to diversi�cation e�ects in stock portfolios.

4 Conclusion and outlook

In this paper, we modeled liquidity risk based on the weighted spread liquidity mea-

sure in a Value-at-Risk framework. The main advantage over existing approaches is

the higher precision of the weighted spread, which calculates liquidity cost di�eren-

tiated by order size, i.e. the price impact, from the limit order book.

We argued that weighted spread is a valid liquidity measure from a risk perspec-

tive in a wide range of situations, which we de�ned clearly. If we look at limit order

book markets, where this type of data is available and from the perspective of insti-
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tutional investors, for whom other direct trading costs are negligible, two situational

assumptions are critical.

First, our approach works most precise for continuously tradable asset positions,

for example for small to medium sized positions in developed stock markets. Posi-

tions cannot be too large, like block holdings, and markets have to be fairly liquid

with few zero trading days. If this is not the case, forced execution delay can incur

costs which we have neglected.54

Second, we assume that deliberate, strategic delay has no signi�cant bene�t, which

renders optimal trading strategies useless.55 This is a fair assumption in four possible

cases. We can take a worst case perspective, e.g. because external restrictions

require to close whole positions immediately. Any possible bene�t from delay is

then consciously ignored. From a risk perspective, strategic delay also remains with

unrealizable bene�t, if the optimal trading strategy is non-stable in crises situations

and can therefore not provide any bene�t on an expected basis. Further, if liquidity

prices are e�cient in fairly liquid markets, strategic delay has per de�nition no

marginal bene�t. Finally, optimal trading strategies are also useless, if the real or

perceived (i.e. adverse) informational content of the trade is high and delay only

increases the probability of adverse price movements.

This discussion shows that these cases cover a variety of situations. Overall, our

approach is most valid for up to medium sized positions in generally continuously

trading markets.

We then de�ned liquidity-adjusted Value-at-Risk of a speci�c position in a

straight-forward manner based on net return, i.e. mid-price return less the weighted

spread of the position. This de�nition avoids any distortion through correlation

assumptions between liquidity and price return, which we analyzed separately.

Empirically, we �nd that impact of liquidity relative to price risk is small at small

order sizes, especially at the spread level (<10% for 10-day, 99% VaR). However, it

increases to 20-30% of price risk in larger sizes in illiquid indices as well as in the

DAX. Results aggravate if we switch to daily VaR-horizons.

We also took a detailed look at tail correlation between liquidity and mid-price

returns and showed that it is non-negligible. Liquidity risk would be overestimated

by 100% if correlations are ignored. In the cases we identi�ed above, where liq-

uidity risk is an economically signi�cant component of total risk, total risk will be

54We argue that this covers quite a range of assets, because even assets with low trading seem to
get more continuously traded in crises situations, which makes our approach applicable.

55Optimal trading strategies try to minimize total liquidation costs by delaying parts of a transac-
tion. The gain from lower liquidity cost of smaller order sizes is balanced against the additional
price risk for the delayed part of the position in an optimal way.
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severely overestimated if liquidity cost risk is simply added to existing risk measures.

Therefore, several common approaches should be adapted to avoid this distortion.

We �nd that results are structurally similar when using expected shortfall instead

of VaR risk measures. Our results are therefore transferable. To check the time

robustness of these �ndings, we employ a monthly, rolling mean-variance estimation

method. Results are con�rmed. Results are also similar for portfolios of stocks,

when portfolio diversi�cation is accounted for.

Overall, we strongly advocate the use of weighted spread data like XLM to improve

risk estimates. Liquidity constitutes a large part of total risk, especially in larger

positions and at short horizons - even in more liquid market segments.

Several venues are still open for future research. Because we have used empirical

ex-post risk measurement to avoid any distortion by a speci�c choice of parametriza-

tion or forecasting, appropriate techniques will need to be selected. It will also be

helpful to test the prceision of our estimates against real transaction data. Future

research can also address two assumptions to extend this approach to a larger realm

of situations and assets. The empirical integration of delay risk is still unsolved as

is the empirical questions when liquidity prices are e�cient. Further insights into

when and under which circumstances delay occurs will also help to advance this line

of thinking. Another simplifying advance would be a method which directly inte-

grates liquidity-price-correlation in a parametric approach when adding liquidity to

price risk. Tackling these research areas will help to further advance the integration

of liquidity into risk measurement.
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5 Appendix

Table 1: Price risk (VaR, 10 day, 99%)
This table contains distribution statistics on price risk calculated as 10-day, 99% VaR according

to equation (5).

Table 2: Price risk (VaR, 1 day, 99%)
This table contains distribution statistics on price risk calculated as 1-day, 99% VaR according to

equation (5).

Table 3: Absolute liquidity-adjusted total risk (VaR, 10 day, 99%)
This tables shows cross-sectional statistics on empirical, absolute total risk including a liquidity

adjustment according to equation (8); min-column measures risk at minimum spread level; all-

column is average over all standardized order sizes, i.e. without minimum; size impact is the

increase in risk in percentage points when doubling order size, measured as coe�cient in 10−2 of

log-size in a regression of the distribution statistic on log-size including an intercept; * indicates

10%, ** 5% and *** 1% con�dence level of being di�erent from zero based on a two-tailed test.
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Table 4: Absolute liquidity-adjusted total risk (VaR, 1 day, 99%)
This tables shows cross-sectional statistics on empirical, absolute total risk including a liquidity

adjustment according to equation (8); min-column measures risk at minimum spread level; all-

column is average over all standardized order sizes, i.e. without minimum; size impact is the

increase in risk in percentage points when doubling order size, measured as coe�cient in 10−2 of

log-size in a regression of the distribution statistic on log-size including an intercept; * indicates

10%, ** 5% and *** 1% con�dence level of being di�erent from zero based on a two-tailed test.
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Table 5: Liquidity-adjusted total risk on 10 day horizon (rolling estimate, VaR, 10-
day, 99%)

Table shows liquidity-adjusted total risk by sub-sample according to equation (9) calculated with

a rolling mean-variance estimation; a. statistic shows absolute change between 2003 and 2008

when 2002 number not available; min-column measures risk at minimum spread level; all-column

is average over all standardized order sizes, i.e. without minimum; size impact is the coe�cient

in 10−2 of log-size in a regression of the distribution statistic on log-size including an intercept; *

indicates 10%, ** 5% and *** 1% con�dence level of being di�erent from zero based on a two-tailed

test.

24



References

Acerbi, C. and G. Scandolo (2007): Liquidity Risk Theory and Coherent Mea-

sures of Risk. Working paper

Almgren, R. and N. Chriss (1999): Value under Liquidation. Risk, 12, pp. 61�63

Almgren, R. and N. Chriss (2000): Optimal Execution of Portfolio Transactions.

Journal of Risk, 3(2), pp. 5�39

Almgren, R. F. (2003): Optimal execution with nonlinear impact functions and

trading-enhanced risk. Applied Mathematical Finance, 10(1), pp. 1�18

Amihud, Y. (2002): Illiquidity and Stock Returns: Cross-Section and Time-Series

E�ects. Journal of Financial Markets, 5(1), pp. 31�56

Amihud, Y. and H. Mendelson (2006): Stock and Bond Liquidity and Its E�ect

on Prices and Financial Policies. Financial Markets and Portfolio Management,

20(1), pp. 19�32

Angelidis, T. and A. Benos (2006): Liquidity adjusted value-at-risk based on

the components of the bid-ask spread. Applied Financial Economics, 16(11), pp.

835�851

Artzner, P., F. Delbaen, J.-M. Eber and D. Heath (1997): Thinking coher-

ently. Risk, 10(11), pp. 68�71

Bangia, A., F. X. Diebold, T. Schuermann and J. D. Stroughair (1998):

Modeling Liquidity Risk With Implications for Traditional Market Risk Mea-

surement and Management. Working paper, Financial Institutions Center at The

Wharton School

Bangia, A., F. X. Diebold, T. Schuermann and J. D. Stroughair (1999):

Liquidity on the Ouside. Risk, 12, pp. 68�73

Basel committee (2005): Trading Book Survey: A Summary of Responses.

Techn. Rep., Bank of International Settlement

Berkowitz, J. (2000): Breaking the silence. Risk, 13(10), pp. 105�108

Bertsimas, D. andA. W. Lo (1998): Optimal Control of Execution Costs. Journal

of Financial Markets, 1(1), pp. 1�50

25



Buhl, C. (2004): Liquidität im Risikomanagement. Phd thesis, University of St.

Gallen

Coppejans, M. T., I. H. Domowitz and A. Madhavan (2001): Liquidity in an

Automated Auction. Working paper

Deutsche Boerse (2004): Xetra Release 7.1, Marktmodell Aktien. Techn. Rep.

Deutsche Boerse (2005): Orderbuchstatistik (Order book statistics xetra close-

1.xls). Online publication, www.deutsch-boerse.de

Deutsche Boerse (2008): Preisverzeichnis für die Nutzung der Handels-EDV der

Frankfurter Wertpapierbörse. www.deutsche-boerse.de

Domowitz, I., O. Hansch and X. Wang (2005): Liquidity commonality and

return co-movement. Journal of Financial Markets, 8(4), pp. 351�376

Dowd, K. (2001): Beyond Value at Risk - The New Science of Risk Management.

Wiley & Sons

Dubil, R. (2003): How to Include Liquidity in a Market VaR Statistic. Journal of

Applied Finance, 13(1), pp. 19�28

Engle, R. and R. Ferstenberg (2007): Execution Risk: It's the Same as Invest-

ment Risk. Journal of Portfolio Management, 33(2), pp. 34�44

Francois-Heude, A. and P. Van Wynendaele (2001): Integrating Liquidity

Risk in a Parametric Intraday VaR Framework. Working paper

Giot, P. and J. Grammig (2005): How large is liquidity risk in an automated

auction market? Empirical Economics, 30(4), pp. 867�887

Gomber, P. and U. Schweickert (2002): Der Market Impact: Liquiditätsmaÿ

im elektronischen Wertpapierhandel. Die Bank, 7, pp. 485�489

Gomber, P., U. Schweickert and E. Theissen (2004): Zooming in on Liquidity.

Working paper

Hasbrouck, J. (1991): Measuring the Information Content of Stock Trades. The

Journal of Finance, 46(1), pp. 179�207

Hausman, J. A., A. W. Lo and A. C. MacKinlay (1992): An Ordered Probit

Analysis of Transaction Stock Prices. Journal of Financial Economics, 31, pp.

319�379

26



Hisata, Y. and Y. Yamai (2000): Research toward the Practical Application of

Liquidity Risk Evaluation Methods. Monetary and Economic Studies, 18(2), pp.

83�127

Irvine, P. J., G. J. Benston and E. Kandel (2000): Liquidity Beyond the Inside

Spread: Measuring and Using Information in the Limit Order Book. Working

paper, available at http://ssrn.com/paper=229959

Jarrow, R. and P. Protter (2005): Liquidity Risk and Risk Measure Compu-

tation. Working paper Cornell University

Jorion, P. (2001): Value at risk: the new benchmark for managing �nancial risk.

2. Ed., McGraw-Hill, New York

Jorion, P. (2007): Value at Risk: The Benchmark for Controlling Market Risk. 3.

Ed., McGraw-Hill Publishing Co.

Le Saout, E. (2002): Incorporating Liquidity Risk in VaR Models. Working paper

Lei, C. C. and R. N. Lai (2007): The Role of Liquidity in Value at Risk - The

Case of Hong Kong. Working paper

Loebnitz, K. (2006): Market Liquidity Risk: Elusive no more - De�ning and

quantifying market liquidity risk. Diploma thesis, University of Twente

Pastor, L. and R. F. Stambaugh (2003): Liquidity Risk and Expected Stock

Returns. Journal of Political Economy, 111(3), pp. 642�685

Stange, S. and C. Kaserer (2008): The Impact of Order Size on Stock Liq-

uidity - A Representative Study. CEFS working paper 2008 No. 9, available at

http://ssrn.com/abstract=1292304

27



Zusammenfassung (deutsch)

In diesem Artikel zeigen wir auf, wie Liquiditätsrisiko mit Hilfe der gewichteten Geld-Brief-Spanne

in einem Standardrisikoansatz (Value-at-Risk) gemessen werden kann. Die gewichtete Geld-Brief-

Spanne misst Liquiditätskosten gesta�elt nach Ordergröÿe und wird aus dem Limit-Order-Buch

berechnet. Wir zeigen auf, dass dieses Liquiditätsmaÿ unter Risikoaspekten in einer Vielzahl von

Situationen Kosten korrekt abbildet. Insbesondere wird der Kostenanstieg mit der Gröÿe der

Position, der sogenannte Preisein�uss, präzise einbezogen.

Für unsere empirische Analyse verwenden wir einen bislang einzigartigen, repräsentativen

Datensatz des Xetra Liquiditätsmasses (XLM). Er enthält die tägliche gewichtete Geld-Brief-

Spanne für 160 Aktien über die letzten 5,5 Jahre und wurde uns freundlicherweise von der

Deutschen Börse AG zur Verfügung gestellt.

Wir können zeigen, dass Liquiditätsrisiko traditionelle Preisrisikomaÿe um über 25% erhöht,

gemessen auf einen langen 10-Tages Vorhersagehorizont. Selbst im liquiden DAX kann dieses

Ausmaÿ für groÿe Positionen beobachtet werden. Wechselt man zu täglichen Vorhersagehorizonten,

so verdoppelt sich der Ein�uss von Liquidität noch einmal. Die Resultate verdeutlichen, dass

Liquiditätsrisiko so substantiell ist, dass es nicht vernachlässigt werden kann.

In einer weiteren Analyse legen wir dar, dass Liquiditätsrisiko nicht einfach zu Preisrisiko

hinzuaddiert werden darf, wie dies von einigen Methoden vorgeschlagen wird. Da hohe Liquid-

itätskosten und niedrige Preise in Krisensituationen nicht gleichzeitig auftreten, wird in diesen

Methoden das Risiko substantiell falsch gemessen. Liquiditätsrisiko wird um 100% überschätzt,

wenn man die Korrelation zwischen Liquidität und Preis nicht beachtet. Mit unserer Messmeth-

ode berücksichtigen wir diese Problematik. Unsere Resultate sind robust, auch wenn man andere

Risikomasse verwendet, verschiedene Zeiträume betrachtet oder Diversi�kation in Portfolios ein-

bezieht.

Insgesamt plädieren wir dafür, das Liquiditätsmaÿ 'gewichtete Geld-Brief-Spanne', wie z.B.

XLM, wenn möglich in Risikomessungen zu verwenden. Es lässt sich einfach in bestehende

Risikoansätze einbauen und besitzt zahlreiche Vorteile gegenüber bisherigen Risikomessmethoden.
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Practicioner abstract

In this paper, we analyze a method to measure liquidity risk in a standard Value-at-Risk (VaR)

framework. This method uses the weighted spread liquidity measure, which calculates the liquidity

cost of transacting a position of a speci�c size.

Weighted spread is the average spread weighted by individual limit order sizes in the limit-order-

book. It is superior to many liquidity measures, because it respects that liquidity cost rise sharply

with the size of a position. Although weighted spread is calculated under the assumption, that a

position is immediately executed as market order against the limit order book, it is shown to be

precise in a large range of situations. Valid applications include small- to medium-sized positions

in more liquid limit-order book markets, e.g. many developed stock markets.

Weighted spread can be manually calculated from intraday data or is readily available at daily

frequencies from exchanges like Deutsche Börse AG. For our empirical analysis, we use a unique,

representative data set of the Xetra Liquidity Measure (XLM) by Deutsche Börse, a daily sample

of weighted spread for 160 stocks over the last 5.5 years.

We �nd liquidity risk to increase traditionally-measured price risk by over 25%, even at standard

10-day horizons. Also for liquid DAX stocks, the magnitude is similarly high when trading large

positions. When switching to daily horizons, liquidity impact more than doubles. This economi-

cally highly signi�cant magnitude of liquidity risk cannot be neglected. Therefore, we argue that

liquidity risk needs to be taken into account, even for more liquid stocks and at larger forecast

horizons.

We also show that liquidity risk cannot be simply added to existing price risk measures, a

method proposed in several papers. Because high liquidity cost and low market prices do not

occur simultaneously, adding both worst cases substantially overestimates liquidity risk, in our

estimates by over 100%. Instead, these liquidity - price - correlations need to be integrated into

risk measures, but it remains unclear up to now, how this could be done. Alternatively, risk can

be calculated based on net return, mid-price return less liquidity cost, which is the approach we

chose for this paper.

We also show, that our results are quite robust and do not structurally change when using

the 'expected shortfall' risk measure or when looking at di�erent sample periods. Results remain

similar, too, when taking into account diversi�cation e�ects within portfolios of stocks.

Overall, we strongly advocate the use of weighted spread measures like XLM in risk measurement

- where applicable. Its integration in existing, standard frameworks is easy and provides substantial

improvements over existing mark-to-market and other liquidity-adjusted risk measures.
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Tables and �gures

Figure 1: XLM as the area between the limit order curves
Figure 1 shows a graphical representation of the order book; Pmid is the mid-price of the bid-ask-

spread, a is the ask price, b is the bid price, q is the size of the position in ¿ mid-price value,

XLM(q) is the weighted spread measuring ex-ante liquidity cost for a round-trip of size q.
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Table 6: Market conditions during sample period
Table shows per-stock averages; a. annualized; b. Includes dividend returns, because price series

are adjusted for corporate capital actions; c. volatility has been annualized with
√

250; All values
equal-weighted.
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Table 11: Liquidity impact on risk (rolling VaR, 10-day, 99%)
Table shows mean lambda, which is liquidity impact in percent of price risk by sub-sample cal-

culated with a rolling mean-variance estimation of Value-at-Risk (10-day, 99%) according to (9)

based on (15); a. Statistic shows absolute change between 2003 and 2008 when 2002 number not

available; min-column measures risk at minimum spread level; all-column is average over all stan-

dardized order sizes, i.e. without minimum; size impact is the coe�cient in 10−2 of log-size in a

regression of the log distribution statistic on log-size including an intercept; * indicates 10%, **

5% and *** 1% con�dence level of being di�erent from zero based on a two-tailed test.
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