
How to Compute the Liquidity Cost in a Market
Governed by Orders?

1 Introduction
Our particular focus in this paper is on following question. How to compute the
liquidity cost in a market governed by orders under asymmetrical information?
The answer of this question is related to another questions. First, how do in-
formed and liquidity traders differ in their provision and use of market liquidity?
Second, how do characteristics of the market, such as depth in the book or time
left to trade, affect these strategies? And, third, how do characteristics of the
underlying asset such as asset value volatility affect the provision of market liq-
uidity? Numerous authors in finance have examined aspects of these questions
both theoretically and empirically.
The choice between market orders and limit orders has been analyzed in var-

ious contexts, see, e.g., Chakravarty and Holden (1995), Cohen, Maier, Schwartz
and Whitcomb (1981), Handa and Schwartz (1996), Kumar and Seppi (1993).
Dynamic models of order-driven markets include Foucault (1999), Foucault,
Kadan and Kandel (2005), Parlour (1998). The price behavior in limit order
books has been analyzed theoretically by Biais, Martimort and Rochet (2000),
Glosten (1994), OHara and Oldfield (1986), Rock (1990), and Seppi (1997).
Models that analyze liquidity traders, the dynamics of prices and trades and
the convergence of prices to the fundamental value include Glosten and Mil-
grom (1985), Kyle (1985), Admati and Pfleiderer (1988), Easley and O’Hara
(1987).
Empirical studies of specific limit order markets include Biais, Hillion and

Spatt (1995), Hollifield, Miller and Sandas (1999), Ahn, Bae and Chan (2001),
Hasbrouck and Saar (2001) and Hollifield, Miller, Sandas and Slive (2006).
Financial markets microstructure theory can be adapted in order to analyze

the equilibrium using time component. In this paper we used the stochastic
calculus in order to describe the equilibrium on the financial markets taking into
consideration their microstructure. Therefore, we consider that the transaction
price (or observable price), S, is stochastic and follows a geometric Brownian
motion defined by

dSt = μStdt+ σStdWt (1)

where μ, σ, t and Wt represent the instantaneous return of the financial asset,
its volatility, time and a standard Brownian motion. Moreover, we consider
that on the market two kind of agents exist: informed and uninformed agents.
The informed agents know the differences between the equilibrium price and
the transaction price. The differences between these prices (denoted by I) is
defined by a martingale

dIt = σidBt (2)

where σi represents the volatility of the differences between the equilibrium
price and the transaction price. The parameters μ, σ and σi are constants
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in time, and the standard Brownian motions, Bt and Wt, are instantaneous
correlated, dWtdBt = ρdt. The parameter ρ is constant in time and represents
the instantaneous correlation coefficient. Also, we follow the hypothesis that on
the market the equilibrium is not perfectly revealing the information, ρ 6= ±1.
Thus, the presence of informed agents on the market is not perfectly revealed
to uninformed agents.
Under these hypotheses, the equilibrium price, denoted by P , is defined by

QpP = QS +QiI (3)

In the equation (3), Qp represents the amount of financial asset traded at equi-
librium, Q represents the amount of financial asset actually traded on the mar-
ket and Qi represents the additional amount of financial asset traded by the
informed agents. Therefore, the market value at equilibrium is equal to the ac-
tually market value plus the market value due to transactions made by informed
agents. In the situation in which informed agents don’t exist on the market and
the information is entirely public then the market value at equilibrium would
be equal to the actually market value. In time, the transactions made by the
informed agents will be discovered by the uniformed agents and consequently
the transaction price tends to the equilibrium price.
The paper is organized as follows: section 2 analyses the equilibrium price of

the financial asset in the stochastic environment, section 3 shows the expected
value of the equilibrium price using the martingale restriction, section 4 presents
the derivation of a liquidity cost formula when the market is governed by orders,
section 5 shows the empirical results and section 6 summarizes and concludes.

2 Equilibrium Price
Equation (3) can be written as follow

P =
Q

Qp
S +

Qi

Qp
I = αS + βI (4)

where α and β are constant parameters defined using the traded amounts. In
dynamic, the equilibrium price will be the solution of the following stochastic
differential equation.

dPt = αdSt + βdIt (5)

Using the definitions of the stochastic processes followed by S and I, the equi-
librium price is defined by the following stochastic differential equation:

dPt = αμStdt+ ασStdWt + βσidBt (6)

Taking into consideration the fact that the equilibrium price is a function of S
and I, its dynamic can be written based on Itô lemma

dPt =

∙
∂P

∂t
+

∂P

∂S
μS +

1

2

∂2P

∂S2
σ2S2 +

1

2

∂2P

∂I2
σ2i +

∂2P

∂S∂I
ρσσiS

¸
dt+

∂P

∂S
σSdWt +

∂P

∂I
σidBt (7)
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Equalizing the drifts and the diffusion coefficients for the stochastic dynamics
(6) and (7), the following relations are obtained:

∂P

∂t
+

∂P

∂S
μS +

1

2

∂2P

∂S2
σ2S2 +

1

2

∂2P

∂I2
σ2i +

∂2P

∂S∂I
ρσσiS = αμS (8)

∂P

∂S
σS = ασS (9)

∂P

∂I
σi = βσi (10)

which means that α = ∂P
∂S and β = ∂P

∂I . Replacing α into equation (8), the
equilibrium price is the solution of a partial derivatives equation

∂P

∂t
+
1

2

∂2P

∂S2
σ2S2 +

1

2

∂2P

∂I2
σ2i +

∂2P

∂S∂I
ρσσiS = 0 (11)

with final conditions PTa = STa and ITa = 0. These conditions show that, at
the optimum date Ta, the equilibrium price is equal to the transaction price.
Taking the logarithm of the transaction price, the partial derivatives equation
can be written

∂P

∂t
− 1
2

∂P

∂ lnS
σ2 +

1

2

∂2P

∂ (lnS)
2σ

2 +
1

2

∂2P

∂I2
σ2i +

∂2P

∂ lnS∂I
ρσσi = 0 (12)

with the final conditions PTa = exp (lnSTa) and ITa = 0.
Taking into the consideration the time period, τa = Ta − t, the partial

derivative of the equilibrium price with respect to t can be written

∂P

∂t
=

∂P

∂τa

∂τa
∂t

= − ∂P

∂τa
(13)

Considering that τa is a stopping time1, the equilibrium price is defined by the
following partial derivatives equation

∂P

∂τa
= −1

2

∂P

∂ lnS
σ2 +

1

2

∂2P

∂ (lnS)
2σ

2 +
1

2

∂2P

∂I2
σ2i +

∂2P

∂ lnS∂I
ρσσi (14)

The solution of this partial derivatives equation is

P = exp (M +NI + lnS) (15)

where I and S are known at the current date. Therefore, replacing this expres-
sion into the partial derivatives equation (14), the obtained results are

P

µ
∂M

∂τa
+ I

∂N

∂τa

¶
= −1

2
σ2P +

1

2
σ2P +

1

2
σ2iN

2P + ρσσiNP (16)

1Let (Bt, t ≥ 0) and a ∈ R. Ta is a stopping time if Ta = inf {t ≥ 0, Bt = a}. For λ > 0,
the Laplace transform of a stopping time is given by the formula: E e−λTa = e−|a|

√
2λ.
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or
∂M

∂τa
− 1
2
σ2iN

2 − ρσσiN = −I ∂N
∂τa

(17)

This relation is verified for all values of I. Thus, the term which is multiplied
by I and the term which is independent of I must be zero. Therefore,

∂M

∂τa
=
1

2
σ2iN

2 + ρσσiN (18)

∂N

∂τa
= 0 (19)

Consequently, N is a constant parameter andM is time dependent,M = f (τa).
In fact, the equation (18) is an ordinary differential equation with the initial
condition M (0) = 0.Z τa

0

dM (s) =

Z τa

0

1

2
σ2iN

2ds+

Z τa

0

ρσσiNds (20)

The solution of this equation is:

M =
1

2
σ2iN

2τa + ρσσiNτa (21)

On the other hand, the above equation allows us to obtain the parameter N as
a solution of a quadratic equation. Thus,

N1,2 = −ρ
σ

σi
± 1

σ2i τa

q
ρ2σ2σ2i τ

2
a + 2σ

2
i τaM (22)

Because N is not time dependent, ρ2σ2σ2i τ
2
a + 2σ

2
i τaM = 0, the expressions of

M and N are defined by

M = −1
2
ρ2σ2τa (23)

N = −ρ σ
σi

(24)

Concluding, the equilibrium price is a random variable defined by certain
parameters and the stopping time τa. The equilibrium price is given by

P = Se
− 1
2ρ

2σ2τa−ρ σ
σi
I (25)

2.1 The Expected Value of the Equilibrium Price

In this paragraph we analyze the expected value of the equilibrium price, E [P ].
In order to express analytically the expected value of the equilibrium price, we
use the Laplace transform and its inverse. The Laplace transform is defined by

F (s) =

Z ∞
0

e−sxf (x) dx (26)
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For the function F (s) = e−k
√
s, k > 0, the inverse of the Laplace transform2 is

f (x) =
k

2
√
πx3

e−
k2

4x (27)

If k = |a|
√
2 and s = λ, the density function of the stopping time, τa, is defined

by

f (τa) =
|a|p
2πτ3a

e−
|a|2
2τa (28)

The value of a can be obtained using the stochastic differential equation (2),
knowing that Bτa = a and Iτa = 0. Because Iτa − I = σi (Bτa −B0), the
following result is true: a = − I

σi
and |a| = |I|

σi
. Consequently, the density

function of the stopping time becomes

f (τa) =
|I|

σi
p
2πτ3a

e
− |I|2

2σ2
i
τa (29)

The expected value of the equilibrium price is defined by

E [P ] = Se
−ρ σ

σi
I
Z ∞
0

e−
1
2ρ

2σ2τa
|I|

σi
p
2πτ3a

e
− |I|2

2σ2i τa dτa (30)

This expression can be written in an easier way, such as

E [P ] = S
|I|
σi

Z ∞
0

1p
2πτ3a

e
− 1
2 m

√
τa+

n√
τa

2

dτa (31)

where m = ρσ and n = I
σi
. Into the above integral we change the variable

τa = y2. Hence,

E [P ] = 2S
|I|
σi

Z ∞
0

1

y2
√
2π

e−
1
2(my+n

y )
2

dy (32)

Resolving the integral, we obtain the following resultZ ∞
0

1

y2
√
2π

e−
1
2 (my+n

y )
2

dy =
1

2 |n|e
−2mn =

1

2

σi
|I|e

−2ρ σ
σi
I , if

½
I > 0; ρ > 0
I < 0; ρ < 0

(33)Z ∞
0

1

y2
√
2π

e−
1
2(my+n

y )
2

dy =
1

2 |n| =
1

2

σi
|I| , if

½
I > 0; ρ < 0
I < 0; ρ > 0

(34)

Finally, the expected value of the equilibrium price is given by the following
formula

E [P ] =

½
Se
−2ρ σ

σi
I , for I > 0; ρ > 0 or I < 0; ρ < 0

S, for I > 0; ρ < 0 or I < 0; ρ > 0
(35)

The expected value of the equilibrium price on financial asset market is given
by the transaction price multiplied by a correction factor.

2See Abramowitz M. and Stegun I.A., (1970), “Handbook of Mathematical Functions”,
Dover, New York.
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3 Martingale Restriction
Knowing the expression of the equilibrium price, defined by a nonlinear function
of the stopping time, we can obtain the partial derivatives of the equilibrium
price with respect to the transaction price and the differences between the equi-
librium price and the transaction price. Therefore the parameters α and β are
given by

∂P

∂S
= e
− 1
2ρ

2σ2τa−ρ σ
σi
I
=

P

S
(36)

∂P

∂I
= −ρ σ

σi
Se
− 1
2ρ

2σ2τa−ρ σ
σi
I
= −ρ σ

σi
P (37)

Consequently, the dynamic equation (6) of the equilibrium price becomes

dPt = μSt
∂P

∂S
dt+ σSt

∂P

∂S
dWt + σi

∂P

∂I
dBt (38)

or
dPt = μPtdt+ σPtdWt − ρσPtdBt (39)

From now on, we transform the Brownian motion W into a Brownian motion
Z independent from the Brownian motion B

Z =
1p
1− ρ2

(W − ρB) (40)

or
dWt − ρdBt =

p
1− ρ2dZt (41)

Thus, the dynamics of P and S can be written using the Brownian motion
Z as follows

dPt = μPtdt+ σ
p
1− ρ2PtdZt (42)

dSt = μStdt+ ρσStdBt + σ
p
1− ρ2StdZt (43)

Using Itô lemma, we obtain the following dynamic equations of the logarithms
of P and S:

d (lnPt) =

∙
μ− 1

2
σ2
¡
1− ρ2

¢¸
dt+ σ

p
1− ρ2dZt (44)

d (lnSt) =

µ
μ− 1

2
σ2
¶
dt+ ρσdBt + σ

p
1− ρ2dZt (45)

By summation, we obtain:

d

µ
ln

St
Pt

¶
= −1

2
ρ2σ2dt+ ρσdBt (46)

Using once again Itô lemma, the dynamic of the ratio between the two prices is
given by

d

µ
St
Pt

¶
=

St
Pt

ρσdBt (47)
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By integration, on the time period t→ Ta:

STa
PTa
− S

P
=

Z Ta

t

Su
Pu

ρσdBu (48)

Because the expected value of the stochastic integral is zero and at Ta the
equilibrium price is equal to the transaction price, the expected value of the
equilibrium price is given by the transaction price:

E [P ] = S (49)

This result is intuitively correct because it proves a fundamental reason
of market mechanism: all the agents expect that the equilibrium price is the
actually price.

4 Liquidity Cost
Taking into consideration the market microstructure, the liquidity has two al-
ternative sources: prices negotiated by the market makers, if the market is
governed by prices, or prices negotiated by the final investors, if the market is
governed by orders. On the continuous market, a limit order is risky because its
execution depends on the market conditions changes. Let’s consider a situation
where an agent gives a selling limit order at 100 €. If a new information arrives
on market justifying a new price at 101 € and the agent is not willing to quickly
change the order, then other agents would have the opportunity to gain 1 €.
This phenomenon can be described using the option theory: the agent who gives
a limit order offers an option to the rest of the market which can be exercised
against him if the market goes contrary.
On the one hand, in the auction theory, the winner of an auction overesti-

mates the value of the object to sell. Hence, the winner is "cursed" to pay a
higher price. The agent who gives a limit order is faced with a similar problem.
Due to its optional character, a buying limit order risks to be executed only if
the real value of the asset becomes lower than the offered price (which means
that the price overestimates the real value of the asset). Similarly, a selling limit
order risks to be executed only if the price underestimates the real value of the
asset.
On the other hand, the risk of a limit order can be explained by information

asymmetry. Thus, an agent who gives a limit order is faced with the adverse
selection risk. For example, a buying limit order allows an informed agent who
knows that the real value of the asset is lower than the offered price to take
advantage from his information against the buyer who gives the limit order.
Therefore, the agent will be less incited to give the limit orders and the

market liquidity will decreases. This risk appears especially on markets with
the automated execution of orders. Hereby, the market can quickly profit from
the selling or buying limit orders which overestimate or underestimate the value
of the financial assets before the agents have time to cancel or modify the limit
orders.
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From now on, we use the option theory in order to obtain a formula of
the liquidity cost. Therefore, we consider a continuous market governed by
orders with unlimited time execution of orders, such as French or Japanese
stock exchange. A buying limit order gives to other agents the right but not
the obligation to sell the financial asset at limit price offered for unlimited time.
Therefore, the liquidity cost payable by the agent who gives the limit order is
the price of a perpetual American put. The liquidity cost is defined by

L = max
τ l

EQ

£
e−rτ l (K − Sτ l)

¤
(50)

whereK is the limit price offered by the buying limit order. EQ [e
−rτ l (K − Sτ l)]

is the expected value under a risk neutral probability, Q, of the option payoff
discounted at the risk free interest rate, r. τ l is a stopping time. In a risk neutral
world, the stochastic dynamics of the transaction price and the equilibrium price
are given by

dSt = rStdt+ σStdW
∗
t (51)

dPt = rPtdt+ σ
p
1− ρ2PtdZ

∗
t (52)

where W ∗t and Z∗t are the standard Brownian motions defined under a risk
neutral probability, Q.
Let X a known positive level of the equilibrium price, P , so that X < K.

If the current transaction price, S, is equal or lower than X, the buying limit
order is executed instantly (or the put option is executed instantly). The value
of the perpetual American put option will be K − S, because τ l = 0. If the
current transaction price, S, is higher than X, the option will be executed at
the stopping time τ l defined by

τ l = min {t ≥ 0;S (t) = P (t) = X} (53)

where τ l is ∞ if the price of the financial asset never reaches the value X. At
exercise time, the value of the put option will be K − Sτ l = K −X. Hereby,
the liquidity cost is

L = (K −X)EQ

£
e−rτ l

¤
for all S > X (54)

Using Itô lemma, the solution of the stochastic differential equation (51) is
given by

S (t) = S exp

∙
σW ∗t +

µ
r − σ2

2

¶
t

¸
(55)

The stopping time τ l is the moment when the price reaches the level X. But
S (t) = X, if and only if

−W ∗t −
1

σ

µ
r − σ2

2

¶
t =

1

σ
ln

S

X
(56)

In order to get EQ [e
−rτ l ] we use the following theorem.
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Theorem 1 Let W ∗t a standard Brownian motion under the probability Q, let
γ a real number and h a positive number. Let the stochastic process

Y (t) = γt+W ∗t

and the stopping time

τh = min {t ≥ 0;Y (t) = h}

Then3

EQ

£
e−λτh

¤
= e
−h −γ+

√
γ2+2λ for all λ > 0

Replacing λ with r, γ with − 1
σ

³
r − σ2

2

´
and h with 1

σ ln
S
X , we obtain

−γ +
p
γ2 + 2λ =

1

σ

µ
r − σ2

2

¶
+

s
1

σ2

µ
r − σ2

2

¶2
+ 2r

=
1

σ

µ
r − σ2

2

¶
+
1

σ

sµ
r +

σ2

2

¶2
=

1

σ

µ
r − σ2

2

¶
+
1

σ

µ
r +

σ2

2

¶
=
2r

σ

The enunciated theorem implies the following result

EQ

£
e−rτ l

¤
= exp

∙
− 1
σ
ln

S

X

2r

σ

¸
=

µ
S

X

¶− 2r
σ2

(57)

Therefore, the liquidity cost payable by an agent who gives a buying limit
order at the limit price K is:

L =

(
K − S, if 0 ≤ S ≤ X

(K −X)
¡
S
X

¢− 2r
σ2 , if S > X

(58)

Until now, we treated the problem of the liquidity cost for an arbitrary
value of the equilibrium price X. From now on, we analyze the liquidity cost
for an optimum value of X. For S fixed, let X∗ the optimum value of X which
maximizes the amount:

g (X) = (K −X)X
2r
σ2 S−

2r
σ2 (59)

Because 2r
σ2 is strictly positive, we get g (0) = 0 and limX→∞ g (X) = −∞.

More,

g0 (X) = S−
2r
σ2

∙
K
2r

σ2
X

2r
σ2
−1 −

µ
2r

σ2
+ 1

¶
X

2r
σ2

¸
(60)

3See the proof of the theorem in Shreve S., (2004), "Stochastic Calculus for Finance",
Springer, New York, volume II, pages 346-347.
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Using the first order condition, g0 (X∗) = 0, we obtain

K
2r

σ2
(X∗)

2r
σ2
−1 =

µ
2r

σ2
+ 1

¶
X

2r
σ2 (61)

which implies

X∗ =
2r

2r + σ2
K (62)

The obtained result is a number between 0 and K, that is X∗ < K. Conse-
quently, the function g (X∗) can be written

g (X∗) =
σ2

2r + σ2

µ
2r

2r + σ2

¶ 2r
σ2

K
2r+σ2

σ2 S−
2r
σ2 (63)

Consequently, in the presence of the informed agents on the market, the final
formula of the liquidity cost on a market governed by orders for a limit price K
is given by

L =

⎧⎨⎩ K − S, if 0 ≤ S ≤ 2r
2r+σ2K

σ2

2r+σ2

³
2r

2r+σ2

´ 2r
σ2

K
2r+σ2

σ2 S−
2r
σ2 , if S > 2r

2r+σ2K
(64)

5 Empirical Results
In the literature, the empirical papers include Biais, Hillion, and Spatt (1995),
who document the diagonal effect (positive autocorrelation of order flow) and the
comovement effect (e.g., a downward move in the bid due to a large sell market
order is followed by a smaller downward move in the ask — which increases the
bid-ask spread); Sandas (2001), who uses data from the Stockholm exchange
to reject the static conditions implied by the information model of Glosten
(1994), and also finds that liquidity providers earn superior returns; Harris
and Hasbrouck (1996) who obtain a similar result for the NYSE SuperDOT
system; Hollifield, Miller and Sandas (2004) who test monotonicity conditions
resulting from a dynamic model of the limit order book and provides some
support for it; Hollifield, Miller, Sandas and Slive (2006) who use data from the
Vancouver exchange to find that agents supply liquidity (by limit orders) when
it is expensive and demand liquidity (by market orders) when it is cheap.
In this section we analyze empirically the liquidity cost formula. We used a

database which includes the intraday transaction prices of the Carrefour Com-
pany negotiated on the French stock exchange, Bourse de Paris. The database
contains the transaction prices from May 10, 2007 to July 31, 2007. The sample
comprises 7076 records. The transaction prices evolution is shown in Figure 1.
Also, the database contains the daily French Treasury-bill rates. This serves as
a proxy for the current interest rate and is obtained from DatastreamTM . The
average of the daily interest rates of the study period was 0.0187%.
For every trading day the volatility was computed as standard deviation of

the intraday transaction prices. The average of the daily volatility over the

11



period May 10, 2007 - July 31, 2007 was 0.4792%. The Figure 2 shows the
evolution of the daily volatilities on the study period.

Using the formula (64) of the liquidity cost, we suppose that the market depth
is 0.5%, 1%, 3% or 5%. The market depth is computed as a percentage variation
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of the limit price with respect to the transaction price:

Market Depth =
K − S

S
× 100 (65)

The Figures from 3 to 6 present the evolution of the mean daily liquidity
cost for four arbitrary values of the financial asset market depth.
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The Figures 7 and 8 compare the liquidity costs for different values of the
asset market depth. The conclusion is that an increase of the market depth
implies an increase of the liquidity cost of the financial asset market. The
differences between the liquidity costs for 1% market depth and for 0.5% market
depth are always positives and they vary to 70% maximum.

14



The Figure 9 shows the evolution of the intraday liquidity cost for the study
period, from May 10, 2007 to July 31, 2007. The liquidity cost is computed for
0.5% market depth. The Table I shows the descriptive statistics of the liquidity
costs with 0.5%, 1%, 3% and 5% market depth. We notice that the mean value
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of the liquidity cost varies from 0.0256 euro for 0.5% market depth to 0.0500
euro for 5% market depth.

Table I: Descriptive Statistics for Liquidity Cost

 
Mean  Standard 

Deviation 
Skewness  Kurtosis  Min 

Value 
Max 
Value 

Range  Median 

Market 
Depth = 0.5% 

0.0256  0.0254  2.2421  7.8139  0.0043 0.1263  0.1219  0.0160 

Market
Depth = 1% 

0.0274  0.0254  2.2572  7.8653  0.0073 0.1284  0.1210  0.0177 

Market
Depth = 3% 

0.0374  0.0243  2.4434  8.6138  0.0215 0.1371  0.1156  0.0282 

Market 
Depth = 5% 

0.0500  0.0225  2.6398  9.5571  0.0357 0.1462  0.1104  0.0403 

 

Also, the extreme values increase with the rising market depth. On the other
hand, the standard deviation of the liquidity cost decreases with the rising
market depth. Concluding, the mean liquidity cost of the financial asset market
governed by orders represents about 3% of the transaction prices of the study
period.

6 Conclusions
Based on classical hypotheses used in stochastic calculus applied in finance,
the paper demonstrates the intuitive fact that under a market governed by
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information asymmetry the expected value of the equilibrium price is the current
transaction price. Using these hypotheses, the paper proposes a measurement
of the liquidity cost on a market governed by orders when the equilibrium is
not perfectly revealed for all agents on the market. The proposed analytical
formula of the liquidity cost of the financial asset market governed by orders
depends on four parameters: the risk free interest rate, the transaction price of
the financial asset, the volatility of the financial asset return and the limit price
offered by the buying limit order.
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