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Abstract

I propose a new procedure for extracting probabilities of default from structural credit risk
models based on virtual credit spreads (VCS) and implement this approach assuming a
simple Merton (1974) model of capital structure. VCS are derived from the increase in the
payout to debtholders necessary to o�set the impact of an increase in asset variance on the
option value of debt and equity. In contrast to real-world credit spreads, VCS do not contain
risk premia for default timing and recovery uncertainty, thus yielding a purer estimate of
physical default probabilities. Relative to the Merton distance to default (DD) measure, my
measure (i) predicts higher credit risk for safe �rms and lower credit risk for �rms with high
volatility and leverage (ii) requires fewer parameter assumptions (iii) clearly outperforms
the DD measure when used to predict corporate default.
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1 Introduction

Recent research has reported de�ciencies of structural models employed for quanti-
fying credit risk. Eom et al. (2004) use �ve structural models for bond pricing and
conclude that these tend to underestimate spreads of safe bonds while overstating
credit spreads for bond issues of �rms with high asset volatility and leverage. Bharath
and Shumway (2008) construct a naïve bankruptcy predictor as an alternative to the
classical Merton distance to default (DD) model which outperforms the original. They
reason that �if the predictive power of our naïve probability is comparable to that
of [the original model], then presumably a more carefully constructed probability
that captures the same information should have superior power.� Campbell et al.
(forthcoming) construct the current state-of-the-art statistical model for bankruptcy
prediction using simple market and accounting variables. They demonstrate a sub-
stantial underperformance of the Merton DD model relative to theirs in terms of
Pseudo-R2s and conclude that summarizing default estimates in a single predictor,
as done in the DD model, is not feasible.

Addressing these concerns about the ability of structural models � particularly the
DD model � to appropriately capture credit risk, I propose a new risk-neutral default
measure based on virtual credit spreads. Virtual credit spreads are derived from the
increase in the payout to debtholders necessary to o�set the impact of an increase in
asset variance on the option values of debt and equity. The intuition underlying my
approach can be applied to any framework in which debt and equity are regarded as
one or multiple options and valued as a function of asset risk and payout- ratio. This
paper focuses on the application to Merton's DD model, comparing properties and
explanatory power of default probabilities estimated based on virtual credit spreads
and assuming a Merton model of capital structure (πV CS) to default probabilities
estimated using the original Merton DD model itself (πDD).

My approach has several advantages over the DD measure. First, πV CS is higher than
πDD for relatively safe �rms and lower for �rms with high leverage and volatility, as
requested by Eom et al. (2004). Second, the estimation of my measure requires fewer
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parameter assumptions than the DD model. Speci�cally, no assumptions about the
physical growth in asset values or the cash payout to debtholders are needed. Third,
πV CS clearly outperforms πDD when applied to bankruptcy prediction. By improving
the derivation of the asset volatility parameter, I am able to augment the Pseudo-
R2 of a regression of πDD on corporate failure from approximately 15% reported by
Campbell et al. (forthcoming) and con�rmed for my sample to 16.9% in the standard
model and 20.1% in the best model. When running the same regression using the
πV CS measure, Pseudo-R2s increase to 24.9% in the standard model and 27.2% in
the best model. The VCS approach thus seems a promising alternative for estimating
credit risk based on structural default models.

The paper is organized as follows. Section 2 reviews previous literature on corpo-
rate failure. Section 3 comments on common statistical models used for bankruptcy
prediction. Section 4 explains existing approaches to estimating default probabilities
(4.1 and 4.2), and introduces the new risk-neutral default measure πV CS (4.3). Sec-
tion 5 presents results of a numerical sensitivity analysis, comparing properties of
πV CS and πDD. Section 6 compares the measures' ability to predict corporate default
in an empirical setting. Section 7 concludes.

2 Previous Literature

Theoretical bond pricing models can be assigned to two broad categories. Reduced-
form approaches rely on jump processes to model default as an unexpected event.
In contrast, structural models take on an option-based view of capital structure and
model the �rm's inability to serve its obligations explicitly. In doing so, most struc-
tural models compare the values of a �rm's assets and liabilities and assume that
default happens if the former fall below a certain threshold. The following summary
of previous studies focuses on structural models. 1

1 For a brief technical introduction to reduced-form pricing, see Du�e and Singleton (2003),
pp.106-111.
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2.1 Structural Bond Pricing Models

Under the model of capital structure by Black and Scholes (1973) and Merton (1974)
(BSM), a �rm defaults if the value of its assets is below the value of debt at the
expiration date of current debt contracts. In this framework, equity owners are as-
sumed to own a call option on the value of the �rm, while debt holders hold a short
put and a risk-free bond. This intuition is due to the payo� structure of both claims.
While shareholders participate in the �rm's entire upside potential, their liability is
limited. To the contrary, while the payo� to debt holders does not increase in case of
a positive �rm development, they can lose money if the �rm becomes insolvent.

Numerous variations of this classical model exist. Black and Cox (1976) introduce
�rst-passage models, arguing that default can not only occur at debt maturity, but any
time before. In their model, a �rm defaults as soon as the value of the �rm falls below
a prede�ned default boundary. Recent research uses barrier option pricing to account
for this path dependency of equity. 2 Using compound option pricing, Geske (1977)
generalizes the BSM model to cases where the �rm is �nanced with coupon-paying
debt or with debt maturing at di�erent dates. At each payment date, shareholders
decide either to meet their obligation or to discontinue �rm operations and leave �rm
assets to debt holders, thereby creating future options or not. Longsta� and Schwartz
(1995) relax two assumptions underlying the BSM framework. First, they allow for
time-varying interest rates, incorporating default and interest-rate risk. Second, they
depart from the assumption of strict absolute priority rules. 3 Amongst others, they
predict a signi�cant impact of the correlation between asset values and interest rates
over time on credit spreads, as well as a negative relation between interest rates and
credit spreads, and �nd empirical support for their predictions. Assuming debt with
in�nite maturity, Leland (1994) derives a closed form solution for value maximizing

2 Brockman and Turtle (2003) use a barrier option framework to predict bankruptcy, while
Purnanandam (forthcoming) propose a theory for optimal risk management in �nancially
distressed �rms based on barrier options.
3 Under this assumption, the claims of debt holders are served according to their seniority,
with claimants in highest seniority debt being fully paid o� before other claimants. Eber-
hardt et al. (1990) and Weiss (1990), amongst others, show that this assumption contradicts
empirical evidence.
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capital structure under taxes, bankruptcy cost and protective covenants. Leland and
Toft (1996) extend his work by introducing �nite debt maturities. In contrast to other
studies implementing arbitrary debt maturity, 4 they assume bankruptcy to be en-
dogenous in the sense that it is triggered by shareholders' decision to default on debt.
To them, the capital structure decision represents a tradeo� between tax bene�ts,
agency problems and bankruptcy costs. Along these lines, they argue that sharehold-
ers will choose to reduce the default barrier in highly-levered �rms �nanced with junk
bonds to provide an additional cushion to debt and augments its value. Vice versa,
Grass (2008) argues that under exogenous bankruptcy, shareholders of �nancially
distressed �rms subject to strict bankruptcy codes and thus high default barriers can
pro�t from a reduction in �rm risk. Collin-Dufresne and Goldstein (2001) depart from
the assumption of constant debt levels and assume mean reverting leverage ratios. In
line with empirical evidence, they predict an upward-sloping term structure of credit
spreads for low-grade debt and a weaker relation between changes in credit spreads
and �rm value than commonly assumed.

In summary, the restrictive model of BSM has been modi�ed in numerous ways
to allow for more realistic debt-speci�c and general characteristics. However, this
paper limits its view to the simple BSM framework for the following reasons. First,
as both the proposed concept and its benchmark are based on the BSM model, its
restrictive assumptions a�ect the explanatory power of both frameworks. Second, the
paper aims at introducing a new concept for deriving improved estimates of physical
default probabilities. Rather than including recent improvements in model features,
the BSM framework allows to focus on the comparison between conventional and
proposed default measure in a simple setting. Future research may well extend the
conceptual insights of this paper to extended frameworks, some of which are suggested
throughout the paper. 5 Third, as outlined in the following, not all features which
seem appealing in theory prove to add value in an empirical setting.

4 See, for example, Kim et al. (1993) and Nielsen et al. (1993).
5 One of the advantages of the intuition presented in this article is its general applicability
to any framework in which debt and equity are regarded as one or multiple options and
valued as a function of asset risk and payout-ratio. For example, the concept can easily be
applied to the Geske (1977) or Collin-Dufresne and Goldstein (2001) model, as well as Eom
et al. (2004)'s extension of the Merton model.
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2.2 Empirical Studies

Empirical tests of structural models exist for both, the application to the explanation
of variations in credit spreads and to bankruptcy prediction.

Few studies used structural models to predict credit spreads. Early studies assessing
the empirical performance of theoretical bond pricing models include those by Jones
et al. (1984) and Odgen (1987). Using a sample of only 27 observations, Jones et al.
(1984) test the predictive power of contingent claims analysis for bond pricing and
conclude that � while being a signi�cant improvement over their benchmark approach
for high yield bonds � such analysis substantially underpredicts credit spreads. This
�nding is con�rmed by the latter for a larger sample. Lyden and Sariniti (2001)
implement the Merton and the Longsta� and Schwartz (1995) model using data
on 56 noncallable bonds and �nd underestimated yield spreads for both models. In
addition, they report that some key features added in the latter seem not to add
value in an empirical setting. Particularly, they argue that the possibility of default
prior to maturity, as well as the incorporation of stochastic interest rates have little
impact on results. Furthermore, they show that adding industry-speci�c recovery
rates signi�cantly decreases model �t. Overall, the authors demonstrate that � for
their sample � the Merton model dominated the Longsta� and Schwartz (1995) model.

The most comprehensive empirical study to this date has been conducted by Eom
et al. (2004), who provide a thorough empirical comparison of �ve structural mod-
els for bond pricing using data on noncallable and nonputable bonds. More speci�-
cally, they contrast the performance of the models by Merton (1974), Geske (1977),
Longsta� and Schwartz (1995), Leland and Toft (1996), and Collin-Dufresne and
Goldstein (2001). The authors are unable to con�rm the notion of previous research
that structural models tend to underestimate spreads on average. Rather, they report
underestimation of bond spreads only for the Merton and Geske model. Assuming
endogenous default in the latter helps to further increase spreads. Furthermore, they
�nd overestimated spreads for the Longsta� and Schwartz and the Collin-Dufresne
and Goldstein model. Their introduction of stochastic interest rates and correlation
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between �rm values and interest rates turns out to add only limited value in an em-
pirical setting. Speci�cally, stochastic interest rates do raise spreads but also increase
model uncertainty, as results are very sensitive to the assumed interest rate variance.
Correlating �rm values and interest rates only has a marginal impact on predicted
spreads. The added feature of mean reverting leverage ratios in the Collin-Dufresne
and Goldstein is problematic in that model uncertainty increases due to additionally
required assumptions. Overall, Eom et al. (2004) conclude that �the focus of future
research should be on raising spreads on the safer bonds without raising them too
much for the riskiest bonds [...] by overstating the risks associated with leverage,
volatility, or coupon�. The concept presented in this paper addresses this request, as
demonstrated in Section 5.

More recently, a number of researchers have employed structural models for predict-
ing corporate failure. The most common model in this context is the Merton DD
model, which is also assumed by Moody's KMV in a more general form. 6 More
speci�cally, Moody's uses the proprietary Kealhofer-Vasicek model, which allows for
di�erent debt instruments and incorporates maturity structures. 7 As probabilities
of default computed from the model only approximate physical default probabilities,
Moody's uses a comprehensive database to map expected default frequencies from the
model to probabilities of default which have been observed in the past. Furthermore,
Moody's employs proprietary adjustments to the parameters strike price and asset
volatility which cannot be replicated by academics. Bharath and Shumway (2008)
follow Vassalou and Xing (2004) and Du�e et al. (2007) to approximate the KMV
model as good as possible and compare its ability to forecast default to the one of a
predictor derived in a similar manner but using naïve parameter estimates. They �nd
that, despite its simple derivation, their naïve predictor outperforms the KMV-like
model and conclude that, most likely, better ways of constructing a default predic-
tor based on the same set of information they use exist. In line with their research,
Campbell et al. (forthcoming) report that the KMV-like predictor contributes only
marginally to the statistical power of a hazard model estimated using a set of simple

6 One of the few exceptions is the study of Brockman and Turtle (2003), forecasting
bankruptcy assuming equity to be a barrier option on �rm assets.
7 See Crosbie and Bohn (2003) and Bharath and Shumway (2008).
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market and accounting variables.

3 Statistical Models for Default Prediction

The previous section gave an overview of theoretical debt pricing models and their
ability to explain bond yields and to predict default. This section provides a brief
and non-technical review of some statistical methods for assessing the adequacy of
structural models for bankruptcy prediction in an empirical setting. This overview
includes discriminant analysis, probit and logit models, as well as hazard models.

These statistical methods attempt to predict whether a �rm will fail during a spec-
i�ed period in the future (for example the next 12 months) conditioned on current
information about a �rm and its market environment. In this context it is common to
regress on a dichotomous dependent variable, with ones indicating default or failure
and zeros indicating survival (or vice versa).

One of the most prominent statistical measures for bankruptcy prediction, the Alt-
man (1968) Z-score, is based on discriminant analysis. Discriminant analysis aims at
�nding a linear combination of independent variables that best separates all obser-
vations into two speci�ed groups such as future failure or survival. For this purpose,
coe�cients of a discriminant function are estimated by a procedure similar to mul-
tiple regression analysis. The expected values obtained from this function for the
set of independent variables are the Z-score, according to which each observation is
classi�ed.

A problem with such a linear probability model is that its expected values cannot be
restricted to the zero to one interval, while the dependent variable is. For example,
Altman's Z-score can take on values of more than three. Beyond yielding unrealis-
tic predictions (the probability of default can not equal 300%), such a model can
thus produce negative variances for the disturbance term. To overcome this problem,
probit and logit models transform the model's prediction using normal and logis-
tic probability distributions, respectively. Given the similarity of logistic and normal
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cumulative distribution functions, both models yield similar results for most appli-
cations. 8 An important contribution in the context of bankruptcy prediction with
such qualitative-response models is due to Ohlson (1980).

Shumway (2001) criticizes probit and logit models for not taking into account the
duration of survival if applied to single-period data and proposes a hazard model in-
stead. He demonstrates that his model is substantially more accurate in bankruptcy
prediction than the discriminant analysis by Altman (1968), using the same set of
variables as predictors. The superior performance of his model is con�rmed for a
larger data set by Chava and Jarrow (2004). Other studies applying hazard models
for bankruptcy prediction include Bharath and Shumway (2008) and Campbell et al.
(forthcoming). While hazard models appear to be a recent trend in the literature on
corporate default, it is important to note that they can be and have been employed
using simple logit programs and adjusting overall statistics. Shumway (2001) admits
that �estimating hazard models with a logit program is so simple and intuitive that
it has been done by academics and researchers without a hazard model justi�cation.�
The main di�erence between an adjusted logit analysis and a hazard model is the
way how �rm age can be accounted for as a potential factor driving the probability of
bankruptcy. While in a logit model, some function of �rm age can be simply included
as additional explanatory variable, it enters the estimation of the hazard model more
elegantly via the baseline hazard function. However, given the insigni�cance of �rm
age for predicting bankruptcy reported by Shumway (2001), I follow Chava and Jar-
row (2004) and Campbell et al. (forthcoming) and estimate a hazard model using a
logit program excluding �rm age as explanatory variable. The marginal probability
of failure (or bankruptcy) over the next period is

Pt(Yt+1 = 1) =
1

1 + e−α−β×Xt
, (1)

where Yt equals one if failure (or bankruptcy) occurs at time t and zero otherwise,
α and β are model parameters and Xt is a matrix of time-varying covariates. Higher
values of α + β ×Xt imply a higher probability of failure (or bankruptcy).

8 For technical details, see Greene (2008), pp.772-774. For a comparison of the performance
of discriminant, probit and logit analysis in bankruptcy prediction, see Lennox (1999).
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4 Estimating Probabilities of Default

No method for computing physical probabilities of default exists until today. In struc-
tural models, they are approximated as the probability that debt as a put option on
�rm assets will be exercised in a risk-neutral valuation framework. Market partic-
ipants' default estimates implied in credit spreads are polluted by risk premia. On
average, both approaches overstate the physical risk of default given no further ad-
justments. After reviewing the two frameworks, I propose a new risk-neutral default
measure based on virtual credit spreads. My measure does neither require assump-
tions about growth in asset values nor about payouts to debtholders and is not
overstated due to risk premia.

4.1 The Merton Distance to Default Measure

The BSM model assumes that shareholders hold a call option on �rm assets while
debtholders own risk-free debt and are short a put option on the value of the �rm.
This is due to their characteristic payout pro�les. Shareholders pro�t from positive
�rm developments but have a limited downside risk. Once the value of the �rm falls
below the face value of total debt, the equity claim is worthless and bondholders start
losing money. In contrast to owners of equity, however, their upside is limited. Given
a positive development of the �rm, they will simply receive the pre-agreed payo� at
maturity.

In this framework, the value of the �rm follows a geometric Brownian Motion:

dV
V

= (µ− δ) dt + σVdW, (2)

where V is �rm value with a drift rate µ − δ and a volatility σV . µ is the average
rate of return on assets and δ denotes the combined payout ratio to debt and equity
holders. dW is a standard Wiener process.
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The value of equity as a call option equals

E = V e−δT N(d1)−De−rT N(d2), (3)

where D is the face value of debt, r the risk-free rate and T the time to debt maturity.
N (·) denotes the function describing the standard cumulative probability density,

d1 =

(
ln

(
V
D

)
+ (r − δ + .5 σV

2) T
)

σV

√
T

(4)

and
d2 = d1 − σV

√
T . (5)

In this framework, a �rm's probability of default is the probability that �rm value is
below the face value of debt at expiration. It is thus a function of Merton's DD mea-
sure, de�ned as the number of standard deviations by which assets exceed liabilities:

DD =

(
ln

(
V
D

)
+ (µ− δ + .5 σV

2) T
)

σV

√
T

. (6)

The DD measure is, of course, equal to d1, except that the DD measure's drift rate
before payouts equals the expected growth rate in �rm value µ, and not the risk-free
rate. Assuming �rm values to grow faster than risk-free assets on average, probabilities
of default derived using risk-free drift rates thus overstate the true risk of bankruptcy.

The probability of default is then de�ned as

πDD = N (−DD) . 9 (7)

If the true future growth rate in �rm value was known and all other model param-
eters estimated correctly, πDD would re�ect the true physical probability of default.
However, as becomes clear from the discussion in Section 6.2, estimating future asset
growth � at least to some extent � is an arbitrary exercise.

9 For a thorough derivation, see Vassalou and Xing (2004), pp.836f.
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4.2 Real-World Credit Spreads

The level of real-world credit spreads depends � amongst others � on the physical
probability of default and the recovery rate on the one hand, and risk premia on
the other. Thus, even if default risk and recovery rate of a bond stay constant,
credit spreads can vary over time due to changes in investors' risk aversion. While
credit spreads observed at markets do contain information about physical default risk,
it is not possible to extract this information without additional assumptions. Still,
computing risk-neutral probabilities of default from credit spreads is a straightforward
task.

For example, consider a bond valued at par which in one year either pays 110 or
defaults and leaves the investor with 50% of his initial investment. By simply dis-
counting these payo�s using the risk-free rate � say 5% � we can solve
100 = 1/1.05 [πRN × 110 + (1− πRN)× 50] for the risk-neutral probability πRN . Risk-
neutrality in this case refers to the risk preference of investors and implies these are
neither risk-averse nor risk-loving. The above equation can thus as well be read as
105 = [πRN × 110 + (1− πRN)× 50], re�ecting investors' indi�erence between receiv-
ing the risk-free rate of return or investing in the bond with the above properties and
a default probability πRN . 10

In reality, however, investors are risk-averse in most cases. They will thus demand
premia for taking risks, increasing their discount rate and decreasing today's bond
value below par. Vice versa, if the above bond is valued at par using a discount rate
higher than the risk-free rate, its default risk thus has to be below πRN . Given the
risk-premia in real-world credit spreads, risk-neutral probabilities of default derived
from these spreads thus overstate physical default probabilities in most cases. 11

10 A generalized form of this equation is presented in the following section.
11 Compare Du�e and Singleton (2003), pp.104f.

12



4.3 Virtual Credit Spreads

Assume that creditors could adjust the cost of debt instantaneously and at all points
in time knew the exact �rm risk, measured as the standard deviation of asset returns.
They could price any marginal change in asset � and thus default � risk by adjusting
their required rate of return such that the present value of their claim would not
be a�ected. 12 Assuming �rm value to be exogenous, that is, ignoring taxes and the
cost of �nancial distress, the value of the equity claim would be left unchanged as
well. 13 There thus exists a �fair� change in the cost of debt that o�sets the wealth
transfer between claimholders induced by a change in a �rm's asset and default risk.
This adjustment in the cost of debt is at the center of my framework's intuition.

Under this assumption of a �zero sum game�, the value of the �rm in a contingent
claims framework is the sum of the option value of debt, the present value of future
payouts to debtholders, the option value of equity and the present value of future
payouts to shareholders. 14 While it seems intuitively appealing to look at the option
value of debt in the given context, I instead examine option values of equity for
two reasons. First, under exogenous �rm values it leads to exactly the same results.
Second, it is analytically more straightforward, as changes in bondholder value due
to adjustments in the cost of debt and related changes in the present value of future
interest payments do not enter calculations. Adjustments in the cost of debt do not
a�ect the present value of future dividend streams to shareholders, but only the value
of their option. The subsequent line of argumentation is therefore based on the option
value of equity instead of debt.

The rate of return required by bondholders enters the valuation of equity and debt as
contingent claims via the payout ratio δ, corresponding to the dividend yield for the
12 Note that these assumptions are not required for the procedure to be valid but are used
for explanation.
13 Taxes and market frictions can be implemented but are ignored in the following.
14 The Black and Scholes (1973) framework for pricing �nancial options assumes the holder
of the option to be di�erent from the owner of the underlying. Higher dividend yields thus
lead to lower call option and higher put option values, as the value of the underlying after
payouts declines. In contrast, when valuing debt and equity as options, payouts of the
underlying are made to the very holder of these options.
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case of stock options. For pricing equity as a call option, δ is de�ned as the weighted
average of equity and debt payouts:

δ =
(
1− D

V

)
DIV +

D

V
(r + p), (8)

where D denotes total debt, V �rm value, DIV the dividend yield on equity, r the
risk-free rate, and p a premium paid to creditors on top of r. 15

Following the previously described intuition, consider the example presented in Figure
1, displaying isolines of call option values as a function of payout ratios and volatility.
A levered �rm with an initial asset variance of 20% shifts its risk to 40%. The value
of equity as a contingent claim increases from 51.76 to 66.55 (dotted arrow), the
value of debt decreases analogously. In order to o�set this wealth transfer, creditors
would need to raise p up to a level where the value of equity is reduced to the initial
51.76 (solid arrow) and where the value of their claim is thus fully restored. This fair
increase in p would compensate debt holders for the higher risk of default.

[Fig. 1 about here.]

This example can be generalized to any shift in asset risk. One speci�c case is the
(hypothetical) increase in σV from zero to the actual level of �rm risk. In this case,
the increase in p from zero to λ re�ects the entire default risk born by debt holders. 16

However, it does not contain premia for default, liquidity, or other risks. As pointed
out by Du�e and Singleton (2003), default-risk premia in real-world credit spreads
re�ect aversion to default timing risk and recovery uncertainty. 17

To clarify the di�erence between the compensation for default risk on the one hand
and default risk premia on the other, consider the following case. An investor can
buy a corporate bond for $100 that either pays the amount PO after one year with
90% probability or defaults with 10% probability. In case of default, the investor
recovers $50 of his investment. By investing his money in a risk-free asset, the investor

15 Note that in fact, δ is stochastic, as it depends on �rm value V . However, in the empirical
analyses discussed later on, δ is assumed to be stationary for the purpose of simpli�cation.
16 Interpretation and calculation of λ are discussed in an instant.
17 See Du�e and Singleton (2003), p.102.
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can obtain $105 after one year with certainty. In order to o�set the 10% chance of
receiving only $50, the investor would ask for a payo� PO of $111.11 (obtained by
solving 105 = .1 × 50 + .9 × PO). The $6.11 are thus a compensation for default
risk. However, the risk-free investment still o�ers a higher utility to a risk-averse
investor. In order to make the risky investment attractive to such an investor, PO

needs to be further increased to $111.11 + DP , where DP is a default risk premium,
compensating the investor for his utility loss of bearing uncertainty. λ does not contain
such default risk premia.

Therefore, λ can be regarded as a �virtual credit spread� containing pure information
on the annual default probability. Another way to interpret λ is as default intensity. In
a simple framework, default intensities are the constant mean arrival rate of default in
a Poisson process. Extensions to time varying default intensities can be implemented
in a straightforward manner using Bayes' rule. While this is beyond the scope of this
article, such extended models allow accounting for the fact that default intensities
vary as new information arrives. 18

Following the previously illustrated intuition, λ can be obtained numerically by solv-
ing Equation 9 for δV and plugging the results into Equation 8:

c (V, D, σ0, T, δ0, r) = c (V, D, σV, T, δV, r) (9)

where c (·) denotes the value of a European call depending on spot price, strike
price, variance of the underlying, time to maturity, payout ratio and the risk-free
rate, respectively. σV denotes the annualized standard deviation of asset returns,
T the years to debt maturity, and δV the target payout ratio. σ0 equals zero and
δ0 is computed from Equation 8 setting p0=0. The level of tolerance for numerical
convergance used throughout the entire analysis is E-10.

A risk-neutral probability of default can be extracted from a virtual credit spread λ

18 For a summary of properties of default intensities and survival probabilities in a simple
model, and a model allowing for time-varying default intensities, see (Du�e and Singleton,
2003), pp.59-62.
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for a loss given default (LGD) as

πV CS =
1− e−λ

LGD
. 19 (10)

Analogously to Section 4.2, Equation 19 is based on the assumption of risk-neutral
investors, being indi�erent between receiving the risk-free rate with certainty, or
receiving the risk-free rate plus a mark-up: er = (1− πVCS)e

r+λ + πVCS(1− LGD)er+λ.
The mark-up compensates investors for defaults such that the expected rate of return
accounting for defaults equals the risk-free rate. However, as outlined before, the
�virtual credit spread� calculated according to Equation 9 is a pure default spread,
only re�ecting the mark-up required to keep the value of debt constant for increasing
asset (and thus default) risk. It does not include any kind of risk-premia or any
other noise polluting historical credit spreads. Values for πV CS extracted from λ

therefore do not exhibit the upward bias observed for risk-neutral probabilities of
default computed from real- world credit spreads.

5 Sensitivity Analysis

Before applying the presented concepts to bankruptcy prediction in an empirical
setting, a brief numerical analysis of the sensitivity of πV CS and πDD to changes in
input parameters helps to understand di�erences in the two underlying approaches. 20

Figure 2 displays the relationship between leverage and default probabilities πV CS

and πDD for low-risk (σV = .2), average-risk (σV = .4) and high-risk (σV = .8) �rms.
For any level of �rm risk, πV CS is higher than πDD for �rms with low leverage and
lower than πDD for �rms with high leverage. The higher �rm risk, the faster the two
functions cross each other. For the �rms with the highest asset variance displayed,
πV CS is clearly above zero even for low-levered �rms, while πDD is virtually equal to

19 Following Berndt et al. (2005) and Bharath and Shumway (2008), I ignore the correlation
between default and recovery rates documented in Altman et al. (2003) and assume a
constant LGD of .75 throughout the paper.
20 Note that the time to maturity and drift rates assumed in the two models di�er. The
underlying reasoning is discussed in detail in Section 6.2.
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zero. 21

[Fig. 2 about here.]

Figure 3 shows πV CS and πDD as a function of asset volatility σV for di�erent leverage
ratios. A similar e�ect as outlined before is observable. For low levels of asset risk,
πV CS is higher than πDD, while for high levels of asset risk it is lower. Analogous to
Figure 2, the higher the leverage, the lower σV at the intersection of the two functions.

[Fig. 3 about here.]

For completeness, Figure 4 presents these relationships in three dimensions.

[Fig. 4 about here.]

In the light of precedent empirical evidence, the observed behavior of πV CS relative
to πDD is appealing. Taken together, default estimates derived from virtual credit
spreads are higher for relatively safe �rms and lower for the riskiest �rms. Recalling
the previously cited conclusion by Eom et al. (2004), according to which structural
models underestimate (real-world) credit spreads of safe bonds with low leverage
and volatility, a future application of virtual credit spreads to bond pricing seems
promising.

Both πV CS and πDD are a decreasing function of the risk-free rate r, as shown in
Figure 5. The reason is, of course, that r is the � or part of the � drift rate of the

21 No di�erence in the de�nition of leverage between the two measures is assumed in the
numerical analysis. However, as outlined in Section 6.2, leverage ratios used as input pa-
rameter for the Merton model are typically below those used for computing virtual credit
spreads, as 50% of long-term debt is simply ignored. Accounting for this di�erence implies
�stretching� πDD as a function of leverage along the x-axis. For example, if a �rm is �nanced
with 50% short-term and 50% long-term debt, leverage ratios in the Merton model are 25%
below leverage ratios based on total debt. In this case, the function needs to be stretched by
1/.75=1.33. As the magnitude of the di�erence in leverage ratios depends on assumptions
about the maturity structure of debt, it is ignored in this context for the sake of simpli�-
cation. Accounting for the di�erence does not change the main takeaways of this section.
In fact, stretching πDD as a function of leverage along the x-axis would even increase the
di�erence to πV CS for �rms with little total debt on their balance sheet and thus strengthen
the potential advantages of πV CS over πDD discussed in the following.

17



stochastic process assumed in the pricing framework. 22 The higher this drift rate,
the faster the call option moves deep into the money and the safer the debt. For
�rms with relatively low asset risk and leverage, πV CS is more sensitive to changes in
r than πDD. For higher numbers, the two functions are more parallel. 23

[Fig. 5 about here.]

As outlined in Section 6.2, when calculating πV CS (πDD), an equal time to maturity of
6 years (1 year) will be assumed for all observations. While a sensitivity analysis in this
case does not tell anything about variations in the two measures across observations
and along time, it is useful to understand the term structures of default implied by
the two approaches. Those are depicted in Figure 6 for di�erent variance-leverage
combinations. The shapes of all functions share two common characteristics typical
for structural models. First, all functions start in the origin. This implies that � even
for high �rm risk and leverage � the instantaneous probability of default is predicted
to be zero. This unsatisfactory feature can be improved by introducing jumps in the
stochastic process underlying the model. Second, the probability of default converges
towards zero over very long-term horizons (not displayed), assuming positive drift
rates and reasonable asset variances. The reason is that under these assumptions
and given constant debt levels, the distribution of asset values moves away from
the strike price over time. Incorporating mean-reverting leverage ratios, as done by
Collin-Dufresne and Goldstein (2001), allows for non-zero default probabilities over
in�nite time horizons. 24

[Fig. 6 about here.]

22 As explained later, the drift rate assumed in the Merton model equals r plus an equity
premium of 6%.
23 Only moderate levels of �rm risk and leverage are shown for displaying purposes.
24 For details on the term structure of credit risk in structural and reduced form models,
see (Du�e and Singleton, 2003), pp.114-116.
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6 Empirical Analysis

6.1 Data and Sample Selection

Empirical analyses are conducted using data from three main sources. Balance sheet
items are from the Compustat Annual Industrial File. These include total assets,
current liabilities, total long-term debt, common dividends, total liabilities, net in-
come and the primary SIC code (Compustat items AT, TLC, DLTT, DVC, LT, NI,
and SIC respectively). Stock market data is from the Center of Research in Secu-
rity Prices (CRSP) Monthly File and includes stock prices, stock returns, and the
number of shares outstanding (CRSP items PRC, RET, and SHROUT), as well as re-
turns on the value weighted S&P500 index and its total market capitalization (items
VWRETD and TOTVAL). Information about delistings is from the CRSP Daily
Event File and includes delisting code and delisting date (items DLSTCD and DL-
STDT). CRSP and Compustat data are matched using the CRSP Compustat Merged
database. Furthermore, I obtain interest rates on constant maturity treasury securi-
ties from the Federal Reserve Board of Governors. 25 Data on implied volatilities of
long term call options with 547 days maturity used for robustness checks is from the
OptionMetrics IVY Database with time series starting in 1996. Monthly levels of the
VIX volatility index are obtained from the Global Insight Financial Market Indexes
database (item CBOEVIXC).

Due to limited availability of Compustat data before 1960, I restrict my analysis to
the subsequent years, forecasting corporate failures and defaults which occurred in
the years 1961 to 2007 using accounting and market data from the years 1960 to
2006. An exception is made for computing �rm risk estimates from 1960-2006, which

25 Taken from the H.15 �le which can be downloaded at www.federalreserve.gov.
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are computed in a regression using Compustat and CRSP data from 1950 to 2006. 26

Following standard methodology, I exclude all �rms active in the �nancial services and
utilities sector (SIC codes 6000 to 6999 and 4900 to 4999). The reasons are twofold.
First, due to di�erent accounting standards, balance sheet items of such �rms are
not fully comparable to those of other �rms. Second, due to their socio-economic
importance for a country, �rms in these industries are likely to behave di�erently
in �nancial distress, as they may receive some kind of governmental support or face
additional restrictions when approaching default.

Closely related to Dichev (1998) and Brockman and Turtle (2003), I de�ne corporate
failure as delistings due to bankruptcy, liquidation, or poor performance. My de�ni-
tion deviates from theirs in that I do not include observations with CRSP delisting
code 573 in the sample, de�ned as delistings requested by companies going private.
My de�nition of failure thus comprises the CRSP delisting codes 400 and 500 to 585,
except code 573. 27 In line with Dichev, corporate defaults are de�ned more narrowly
as all delistings due to bankruptcy or liquidation (codes 400, 572, 574).

After additionally excluding all observations for which not all data required for pa-
rameter estimation is available, my sample includes 4,045 failures, 293 bankruptcies
and 151,451 �rm-year observations. Table 1 displays descriptive sample statistics for
the control variables used in the subsequent regression analysis. Parameter descrip-
tives are reported separately later on, in Table 3.

[Table 1 about here.]

The solid lines in Figure 7 display the number of failures and bankruptcies per year in
my sample. A tremendous increase over time can be observed. This rise is not mainly

26 Several time periods for default prediction using Compustat data exist in the literature.
For instance, Vassalou and Xing (2004) argue that prior to 1971, debt items are only scarcely
available and restrict their analysis to the years thereafter. In contrast, Campbell et al.
(forthcoming) consider a broader time period starting in 1963 with the availability of their
failure indicator. Other studies, for example by Bharath and Shumway (2008) or Brockman
and Turtle (2003), look at shorter time periods.
27 This deviation reduces the sample of bankruptcies by less than one percent and thus is
not expected to have any signi�cant impact on the results.
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due to a lower number of �rms listed in the earlier periods � the same trend can be
observed when plotting these numbers relative to the number of �rms entering the
sample per year (not reported here). Campbell et al. (forthcoming) document the
same phenomenon for di�erent datasets on corporate bankruptcy and failure. They
explain the observable trend with changes in bankruptcy law in the 70s, �nancial
innovations in the 80s and 90s, as well as overall changes in �rms' capital structure
and risk-taking. The spike in corporate failures in the late 90s and before the burst
of the dot-com bubble in 2000-2003 is attributed to numerous listings of small �rms
which occurred during the stock market boom of the late 90s.

[Fig. 7 about here.]

The dashed line in Figure 7 corresponds to the yearly number of failures in the
sample of Campbell et al. (forthcoming). The high correlation to the numbers of
failures in my sample indicates the comparability of the data used in their and this
study. Except for the very last years, my de�nition of failure is broader than theirs,
while my de�nition of bankruptcy is clearly more narrow.

6.2 Parametrization

Similar sets of parameters need to be estimated for calculating probabilities of default
based on the DD measure (πDD) and virtual credit spreads (πV CS). The assumptions
underlying my estimates, their impact on the results, as well as alternative de�nitions
used in related literature are discussed in the following. Asset variance is of particular
importance for the estimation of πV CS and thus discussed extensively. An overview of
the de�nitions used in di�erent studies is given in Table 2. Descriptive statistics of the
model parameters are shown in Table 3. The exact de�nition of all input parameters
is outlined in the following.

[Table 2 about here.]

[Table 3 about here.]
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Strike Price Equivalents In a �rm �nanced with equity and one zero coupon
bond, equity is a call option on the �rm with the strike price equal to the face value
of total debt. When debt matures, stockholders can choose to either buy the entire
�rm from bondholders by paying them o� the face value, or to roll over debt for
another term. However, capital structures are more complex in reality. The debt of a
�rm typically is not homogeneous but usually a combination of numerous �nancing
instruments with di�erent maturities, seniorities, embedded options and so forth. The
right choice of the strike price parameter is thus less trivial than it appears at �rst
sight and depends on the perspective taken in a model.

When assessing a �rm's risk of defaulting during the next year using the DD model, it
makes sense not to consider the full amount of debt on the balance sheet. As pointed
out by Crosbie and Bohn (2003) in their description of Moody's KMV model, long-
term debt provides a �rm in �nancial distress with additional breathing space, as
the �rm does not have to raise the cash for paying o� this debt in the near future.
For the 1-year DD measure it thus seems appealing to ignore long-term debt and
only examine how likely it is that a �rm cannot service its short term obligations in
the next year. However, numerous authors de�ne the strike price of equity as a call
option as the amount of short-term debt plus 50% of long-term debt. 28 The main
reason is that having long-term debt on the balance sheet makes it harder for a �rm
approaching distress to roll-over short-term debt at similar conditions. I thus de�ne
the spot price for the DD measure as current liabilities (Compustat Item LCT) + 0.5
× long-term debt (Compustat Item DLTT). 29

In contrast, long-term debt does matter when assessing the impact of changes in asset
risk on the option value of equity in the derivation of πV CS. In fact, when estimating
this impact in the context of real-world asset substitution phenomena, long-term debt

28 For some studies, see Table 2.
29 Note that in doing so I deviate from the de�nition of short-term debt used in the studies
of Bharath and Shumway (2008) and Vassalou and Xing (2004), who only use debt in
current liabilities (Compustat item DLC). My de�nition thus additionally includes the items
accounts payable, income taxes payable and other current liabilities. Studies de�ning total
debt more broadly as total liabilities include Brockman and Turtle (2003) and Campbell
et al. (forthcoming). Using current and total liabilities instead of short-term and total debt
substantially augments the �t of both, πDD and πV CS to the data for my sample.
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is even more important than short-term debt, since the e�ects of asset substitution
disappear over time as debt contracts are renegotiated. 30 To derive πV CS, I estimate
by how much bondholders would have to raise the interest on their claims to o�set a
hypothetical value increase in equity due to an � also hypothetical � instantaneous rise
in implied asset volatility from zero to current levels. Such a shift in asset risk would
shift value from every single debt claim to stockholders. Of course, the value of short-
term debt would be less a�ected than the value of long-term debt. Ideally, debt should
therefore be modeled as a portfolio of claims with di�erent maturities. However, due
to limited availability of information on the maturity structure of debt and � more
importantly � for the sake of reducing model complexity and increasing transparency,
I simply de�ne the strike price of equity as a call option as total liabilities (Compustat
Item LT).

Spot Price Equivalents The spot price equals the � unobservable � market value
of �rm assets which in turn is the sum of the market value of equity and the market
value of debt. A simple way of de�ning the spot price is thus as strike price plus the
market value of equity. However, as the strike price is correctly de�ned using book
values, this de�nition can overstate the market value of debt and thus the spot price,
which is particularly likely for �rms with deteriorating credit quality. Attempting to
address this problem, authors of recent studies have used a di�erent de�nition of spot
prices derived by using the contingent claims framework. They measure asset values
as they are implied by observable equity values. Assuming that Equations 3-5 hold,
the market value of assets can be inferred numerically as the value that solves this
set of equations for the correct market value of equity. In other words, instead of
computing the value of an option based on the spot price of the underlying, the spot
price of the underlying is derived from the value of the option.

I have two concerns about this approach. First and as discussed in the next para-
graph, the resulting values are sensitive to the underlying assumptions about the
time to maturity of the option. Assuming a time to maturity of one year consistent
with the short-term view taken in the DD model, the time values of equity and debt
30 See Grass (2008).
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are relatively low such that this procedure yields estimates fairly close to the simple
de�nition named above while complicating the procedure. Second and more impor-
tant, this approach by de�nition assumes book values of debt to be upward-biased
estimates of market values of debt if cash-payouts to bondholders are ignored, as they
have been in recent research. However, whether or not book values over- or under-
state market values of debt depends on the conditions under which debt contracts
were negotiated and on unexpected changes in the discount factor since then.

Due to these two reasons, and since I observe a slightly reduced model �t when using
implied spot prices, I follow Eom et al. (2004) and de�ne spot prices as the sum of
strike price and the market value of equity. The latter is computed as the product of
the CRSP items PRC and NOSH at �scal year end.

Asset Variance The previously outlined intuition underlying the calculation of
πV CS assumes a hypothetical shift in asset variance from zero to the current level.
Thus, obtaining a precise estimate of the asset variance used for pricing equity as
a call option is the most crucial part of model parametrization. Approaches used in
past studies and their underlying assumptions are therefore assessed in greater detail
in the following, before proposing a new estimation of asset risk.

Several ways of estimating asset variance exist in the literature. 31 Most of them
use the observable volatility of past stock returns as a starting point and derive
estimates for asset risk based on assumptions about the relation between equity and
�rm returns. As asset volatility can be computed as the portfolio variance of a stock
and bond investment, it is driven by the volatility of stock and bond returns, as well
as their correlation. Given stock returns, more or less explicit assumptions about the
two other factors are required for the measures discussed subsequently.

In the most simple case, asset variance is de�ned as unlevered equity variance using

31 The terms asset risk, asset variance, asset volatility and �rm risk are used as equivalents
in the following.
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the equation
σV =

σE(
1 + D

E

) . (11)

This de�nition assumes constant bondholder value and thus zero risk of debt and no
correlation between stock and bond value. Clearly, this simpli�cation is particularly
unrealistic for �rms in �nancial distress, which are exactly the �rms of interest in
bankruptcy prediction. Ignoring the risk of debt, �rm risk computed using Equa-
tion 11 underestimates the true level of risk and leads to downward-biased estimates
of πDD and πV CS.

One approach accounting for the riskiness of distressed debt uses the �optimal hedge
equation� known from delta-hedging to describe the relationship between equity and
�rm risk:

σV =
σE(

1 + D
E

)
N (d1)

, (12)

where N (d1) is de�ned according to Equation 4. 32 It is the �rst derivative of the value
of a call option as a function of the value of its underlying (also known as delta), re-
�ecting the sensitivity of option values to changes in the underlying. Roughly speaking
and ignoring drift rates, N (d1) is close to .5 for at the money options � corresponding
to �rms in or close to �nancial distress � and approaches 1 as moneyness increases.
Adding the inverse of this factor to Equation 11 thus induces an assumption about
the riskiness of debt consistent with the contingent claims framework. It implies that
the value of debt behaves just as the value of a short put on �rm assets.

One concern about the application of this relationship is its stationarity. As we know
from delta hedging, the relationship described by Equation 12 only holds instan-
taneously. As soon as the value of the underlying changes, deltas change as well
� particularly rapid for at the money options. 33 Crosbie and Bohn (2003) therefore
conclude that �in practice, the market leverage moves around far too much to provide
reasonable results� and propose the following iterative estimation procedure adopted
in several studies.

32 Note that, as N (d1) itself depends on σV , Equation 12 requires a numerical solution.
33 See Figure 7, displaying delta for out of the money (D/V>1), at the money (D/V=1) and
in the money (D/V<1) options.
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As pointed out previously, implied asset values can be obtained using Equations 3-5
given the value of equity and all necessary pricing parameters except for �rm value
but including asset variance. Starting with a naïve value for asset variance, for ex-
ample derived according to Equation 11, a time series of historical �rm values can be
computed. This time series allows the estimation of a new, improved starting value
for asset variance and again the estimation of a new time series of asset values. After
repeating this iteration several times, the estimates for asset risk derived in this man-
ner converge. The iteration's last asset variance is then used as an input parameter
to the default model. In Table 2 I refer to this estimation procedure as �KMV-like�.
Using Bayesian adjustments, Moody's combines this estimate with country, size and
industry averages (labeled �KMV� in Table 2).

While this procedure yields more constant parameter values over time, Bharath and
Shumway (2008) label the procedure �complicated� and � for their simpli�ed model
� de�ne asset variance as

σV =
(

E

D + E

)
× σE +

(
D

D + E

)
× (.05 + .25× σE) , (13)

where the last term in parentheses re�ects a naïve variance estimate of debt. While
the choice of this parameter is arbitrary, it yields estimates of �rm risk far closer to
the ones used by Moody's KMV than the estimates derived from the iterative proce-
dure. 34 Furthermore, the authors show that estimating the Merton model with this
and other naïve parameters yields superior predictions relative to a model based on
more complicated parameter estimates. They conclude that �the iterative procedure
used to solve the Merton model for default probability does not appear to be useful.�

Eom et al. (2004) note that the resulting values for asset variance actually do not
di�er substantially from the ones computed using Equation 12. I argue that the
measures have to be similar by de�nition if assuming a short-term perspective with
option lives of only 1 year, as done in studies implementing the measure: Option
values are the sum of an inner value component, representing the option's payo� if
exercised immediately, and a time-value component, re�ecting the option's chance of

34 See Bharath and Shumway (2008), Table 2.
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moving deeper into the money. Options with a low time-to-maturity can only have
a limited time value by de�nition. The variance of returns on debt as a short put
option on �rm assets is only due to changes in the value of its time component, as
its inner value is constant when in the money (that is, not bankrupt). If the share of
time value in total debt value is relatively low, so are the changes in total debt value.
When decreasing the time to maturity assumed in the iterative procedure towards
zero, asset risk actually converges towards the de�nition re�ected in Equation 11.

The procedure's shortcoming can be overcome by increasing the assumed time to
maturity. When doing so, precise estimates of the payout ratio to debt holders are
required to avoid the misspeci�cation of debt-values. In line with the previous argu-
mentation, the iterative estimate of asset risk proves to be highly sensitive to changes
in the assumed option life and payout ratio. It remains unclear which time to matu-
rity best re�ects the time value component inherent in each equity option and how
to precisely approximate debt payouts.

Overall, the estimates of asset variance (excluding Bharath and Shumway (2008)'s
naïve but arbitrary measure) discussed so far share one common disadvantage. The
average asset risk of �rms decreases heavily in leverage. Using any of these estimates
frequently yields low values of 10% to 20% asset variance for highly levered �rms,
which is clearly below the average asset risk of �rms with a low leverage, amounting
to over 40%. Of course, one reason for this phenomenon is that less risky �rms can
obtain cheaper debt �nancing. Another potential explanation is the underestimation
of the riskiness of distressed debt in all procedures. For example, consider a �rm with
90% leverage and 100% equity volatility. Equation 11 predicts an asset volatility of
10%, Equation 12 an asset volatility of less than 20%, (assuming non-negative drift
rates) and the iterative procedure a volatility of roughly 12% for a one year time to
maturity, depending on the underlying assumptions. Intuitively, none of these values
seems to adequately re�ect �rm risk in the example. Interestingly, the naïve measure
de�ned in Equation 13 yields 37% asset variance.

Concluding, while a �nal assessment of the precision of each of the approaches is
beyond the scope of this study, good reasons exist for questioning their ability to
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estimate asset risk for the most important group of �rms � those with a high likelihood
of �nancial distress. 35 In the following, an entirely new approach is presented, which
avoids explicit assumptions about the relation between debt and equity returns in
highly levered �rms.

As known from the previous discussion, the relationship between equity and debt
returns is described with a high degree of precision by both Equation 11 and Equa-
tion 12 when �rms with very low leverage are considered. The reason is that in a
contingent claims framework the debt of such �rms is almost riskless and � assuming
some degree of tolerance � the optimal hedge equation does not only hold stationary.
Figure 8 displays equity's option delta N(d1) as a function of leverage for asset values
moving from 0 to 1,000 and the level of debt remaining constant at 100. The problem
stemming from the stationarity assumption underlying Equation 12 becomes obvious
when comparing the two dashed lines in the graph, which represents the tangents
to the delta function for a leverage of roughly 90% (V=111) and a leverage of 20%
(V=500). While the linear tangent to the delta function is a good approximation of
the function for low leverage ratios, this is not at all true for higher leverage ratios.

[Fig. 8 about here.]

It is thus possible to compute good proxies for asset risk for the subsample of �rms
with a low leverage, while the asset variances of the � more relevant � subsample of
highly levered �rms remain unknown. 36 However, using the former subsample, it is
possible to analyze the determinants of asset risk using a plain regression model of
the form:

σV [LEV <.25] = β[LEV <.25] ×X[LEV <.25] + ε, (14)

35 An assessment of all described approaches can be done for �rms with available market
prices of debt by comparing the estimates to �uctuations in aggregate debt and equity
market values.
36 For �rms with low leverage ratios, any of the previously outlined estimates (excluding
Bharath and Shumway (2008)'s naïve measure) yields good approximations. I use the one
based on the optimal hedge equation and given by Equation 12. I compute equity risk as
the standard deviation of monthly stock returns over the last 12 months. If no stock returns
are reported for all 12 months of the previous �scal year, I only consider the months for
which data is available. If less than 9 months of data are given, the observation is dropped.
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where σV [LEV <.25] is a vector of asset variances of �rms with leverage ratios below
25%, β[LEV <.25] is a vector of coe�cients and X[LEV <.25] is a matrix containing a set of
independent variables for these �rms. The relationships observed for the small sample
and captured in β[LEV <.25] can then be extrapolated to the entire sample, including
�rms with higher leverage. The new estimate of asset variance is the regression's
expected, or �tted, value:

σV [ALL] = β[LEV <.25] ×X[ALL], (15)

where σV [ALL] are the variances and X[ALL] is the set of independent variables for the
entire sample. 37

When identifying a set of independent variables determining the asset variance used to
derive πDD and πV CS, also factors which relate to uncertainty are worth considering.
As a detailed analysis of factors driving asset risk and uncertainty is beyond the scope
of this paper, I rely on a small set of intuitively appealing variables: The ratio of book-
to-market values of equity (BM), relative �rm size measured as the logarithm of the
market value of a �rm's equity relative to the market capitalization of the S&P500
(RSIZE), the ratio of total liabilities to the market value of assets (TLMTA), the
ratio of net income to the market value of total assets (NIMTA), as well as the
logarithm of the yearly average standard deviation of equity returns (LOGAVGSDE).
A signi�cant part of the value of �rms with low book-to-market ratios is intangible,
and thus represents uncertainty or risk. Firm size is arguably the most obvious proxy
for asset risk; big �rms are expected to exhibit lower risk than small �rms. Risky �rms
are expected to operate with lower leverage ratios, as the indirect costs of �nancial
distress are too high, blocking the access to reasonably priced debt. Accounting for
leverage in the model is particularly important as model coe�cients from a regression
including only �rms with relatively low leverage ratios are extrapolated to all �rms.
The logged average standard deviation of stock returns controls for yearly market-

37 Of course, choosing a leverage ratio of 25% is arbitrary. While estimating regression
coe�cients only based on all-equity �rm-year observations seems even more appealing, it
would not allow capturing the negative relation between leverage and asset risk which most
likely increases the accuracy of �rm risk estimates when applied out-of-sample to �rms with
higher leverage.
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wide variations in risk. The fourth explanatory variable is the ratio of net income to
the market value of total assets (NIMTA), capturing uncertainty about the future
distribution of asset returns. Firms with a low pro�tability are more likely to undergo
fundamental changes in their business strategy or even comprehensive restructuring.
Outliers are eliminated from the variables BM, RSIZE and NIMTA by Winsorizing
them at the 1st and 99th percentile. 38

Finally, instead of regressing on asset variance directly, I regress on its log for two
reasons. First, doing so strongly increases the linearity of the relationship captured in
the regression model and reduces heteroskedasticity. Second, the resulting distribution
of asset variances is not symmetrical but close to log-normal, which is clearly more
consistent with empirical evidence on distributions of asset returns. The regression
model is estimated for each year using all data available since 1950 until the year
for which asset variances are estimated. Given limited data availability in the �rst
years of the sample period, the explanatory power of the regression remains relatively
low until 1970 (with an average R2 of 25.19%) and substantially increases afterwards
(with R2 moving between 45% and 55%). As a robustness check, I calculate asset risk
using coe�cients from a regression including all data. While this approach slightly
improves the predictive power of πV CS and πDD, it can of course be criticized for
predicting corporate failure using future data.

For simpli�cation, I do not report the 47 sets of coe�cient estimates for the years
1960-2006 but only the coe�cients of the pooled regression analysis. Coe�cient signs
and signi�cance are consistent among all regressions conducted.

My measure of asset variance based on the pooled regression is de�ned as

σV = e−1.026−.329×BM−.107×RSIZE−1.965×TLMTA+.701×LOGAV GSDE−.962×NIMTA. (16)

As shown in column 1 of Table 4, all variables enter the equation signi�cantly and

38 Winsorizing implies setting all values below (above) the xth lowest (highest) percentile(s)
of a distribution equal to the xth percentile. The de�nition of the variables TLMTA, RSIZE
and NIMTA is close to the one used in Campbell et al. (forthcoming).
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with the expected sign.

[Table 4 about here.]

The use of implied volatilities in structural models has been discussed and imple-
mented in several studies. 39 The VIX proves to be a clearly better predictor of the
number of failures occurring in the next year than the historical volatility of returns
on the S&P500 for the data in my sample. Table 5 displays correlations between
time-series of monthly historical S&P500 standard deviations, the VIX as well as the
number of defaults occurring over the next 12 months.

[Table 5 about here.]

Attempting to bene�t from the possibly improved variance estimates implied in op-
tion prices, I compute an estimate of implied �rm risk as a robustness check. Again,
the measure is computed as the expected value from a regression model. This time,
instead of �tting the model using historical equity volatilities as dependant variable, I
use the implied volatilities of long-term call options with 547 days to maturity which
I obtain from the OptionMetrics database. 40 As no data is available before 1996,
I use the coe�cients from a regression based on all observations between 1996 and
2006 to compute �rm risk for the years 1960-2006. Results are reported in column 2
of Table 4. All coe�cients are similar in sign and signi�cance, except for BM, which
is positively correlated with �rm risk. This counterintuitive �nding may be caused by
the unrepresentative selection of a sample including only �rms with long-term options
outstanding and spanning over years of extreme market movements. As reported in
the following Section, variance estimates based on implied volatilities yield poorer
values of πV CS and πDD in most cases.

39 For instance, Bharath and Shumway (2008) calibrate the Merton model using implied
volatilities from option markets and Collin-Dufresne et al. (2001) explain changes in bond-
spreads over time using changes in the VIX volatility index.
40 To reduce noise in the data, I use the average of daily implied volatilities of the last
months in a �rm's �scal year instead the last daily volatility of a �scal year.
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Time To Maturity In the simple case where a �rm is �nanced by equity and
one zero coupon bond, the most intuitive way of de�ning the time to maturity of
equity as a call option is as the maturity of the bond. At the time the bond expires
� and not earlier � shareholders have the possibility not to roll the bond over, but to
acquire the entire �rm by paying o� the entire debt. In reality, capital structures are
more complex and consist of instruments with di�erent maturities, coupon payments
before maturity and embedded options that allow for early redemption. Attempting
to capture at least a part of this complexity, Eom et al. (2004) price bonds with the
Merton model by considering each payment � including coupon payments and the
�nal payment of the principal � as an individual bond with maturity equal to the date
of the payment. As described in Crosbie and Bohn (2003), a di�erent view underlies
Moody's KMV model. Given their previously described short-term perspective, where
they consider short-term debt plus a fraction of long-term debt only, they simply set
the time to maturity to one when computing the one-year DD measure. Given the
measure's underlying concept in which total asset value moves randomly towards or
away from liabilities (and thus default) over time, this is a straightforward choice.
Several other recent studies do the same. For Merton's DD model I therefore adopt
a one year time to maturity as well.

The intuition underlying πV CS requires a di�erent view. The measure is driven by
call option sensitivity to changes in volatility (V ega) and in the payout ratio (RhoD).
Simply assuming a short-term horizon of one year despite of a far longer actual
option term yields unrealistic sensitivities and thus unprecise default estimates. Given
limited availability of information about the term structure of �rms' liabilities, I
simply set the time to maturity to six and ten years. 41 An alternative approach
involves using a weighted average measure of debt maturity based on the Compustat
items debt due in year one to �ve, as done in Grass (2008). However, these items are
less frequently available and less consistent with data on total liabilities for the early
years of the sample period.

41 See, for example, Brockman and Turtle (2003).
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Drift Rate For both, the DD and the VCS approach, the drift of the stochastic
process underlying the equity option is de�ned as the di�erence between the as-
sumed growth rate of the stochastic process and the weighted payout to share- and
debtholders.

In the DD model, the drift rate is an important parameter as it determines how
fast the distribution of assets moves towards or away from the bankruptcy threshold.
However, as shown in Table 2, recent literature does not agree about the correct
estimation of this parameter. Some studies suggested the use of past stock returns
or the risk-free rate plus equity premium, while others use only the risk-free rate, or
even assume a zero drift in asset values. 42 Furthermore, cash payouts to share- and
debtholders are neglected in most studies. The scope of this problem is clearly reduced
by looking at short-term horizons of one year as done in various studies, but it still
is an important driver of results. 43 Given empirical evidence that underperforming
�rms are more likely to default it is tempting to use past asset or equity returns as
the future drift rate. However, I follow Campbell et al. (forthcoming) and use the risk
free rate plus an equity premium of .06 as growth rate instead. The simple reason is
that projecting past under- or overperformance into the future implicitly assumes a
misvaluation of �rm assets today. Extending their de�nition, I reduce asset growth by
a cash payout rate equal to the weighted average of dividend payments (Compustat
Item DVC) and interest rate payments (assumed to be equal to the 1-year risk-free
rate plus a �at credit risk premium of .02), as described in Equation 8. 44 In order to
control for the explanatory power of past returns for predicting corporate default, I
follow Bharath and Shumway (2008) and Campbell et al. (forthcoming) and include
stock excess return as an explanatory variable in the regression model described
subsequently.

42 See Crosbie and Bohn (2003), Vassalou and Xing (2004), Bharath and Shumway (2008)
and Campbell et al. (forthcoming), as well as Brockman and Turtle (2003) and Brown et al.
(1995), respectively.
43 Among the studies cited in Table 2, only Eom et al. (2004) use the actual time to maturity.
They are also the only ones capturing the impact of cash payouts in their model.
44 Alternatively, payouts to debtholders can be approximated as accounting interest pay-
ments, which is avoided due to limited data availability in the early years of the sample
period.
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Fewer assumptions are needed when computing πV CS. First, the physical drift rate in
assets is not required as an input parameter, since the risk-neutral valuation frame-
work need not be abandoned. Instead, the assumed asset growth is risk-neutral and
equal to the risk-free rate matched to the maturity of the option. As no 6-year rates
on constant maturity treasuries are available, I construct a yield curve using cubic
spline interpolation to obtain an estimate of the 6-year risk-free rate. 45 Second, no
assumptions are required about the payouts to debt holders. Rather, as described
more extensively in Section 4.3, hypothetical payouts are derived that o�set the re-
duction in bondholder wealth due to a positive asset risk. As for the DD model,
dividend payments are taken from Compustat.

6.2.1 Results

In the following, the measures' ability of forecasting corporate failure are assessed
in a bivariate and multivariate setting. As outlined previously, corporate failure is
de�ned as a delisting due to bankruptcy, liquidation, or poor performance. A far
more narrow de�nition of failure is included merely as an additional robustness check
and should not be overstated in its relevance, as the low number of events reduces
statistical power and is uncommon in the literature on bankruptcy prediction.

Empirical results are reported for three slightly di�erent parameter combinations.
The �rst one is the standard model (labeled �Standard� in the subsequent tables),
where asset variance is computed backward-looking. As described previously, it thus
only incorporates information available up to the date for which default probabilities
are estimated. The set of parameters yielding the best �t to the data of both, the
πV CS and πDD measure (labeled �Best�), includes asset variance de�ned based on the
coe�cients of a regression including all years, which apparently yields more reliable
estimates particularly in the �rst years of the sample period. Furthermore, instead of
using historical risk-free rates for computing drift rates, the risk-free rate is simply set
to 5% for all years. One possible reason for the improvement of model �t due to this
adoption is implied by the unrealistic assumption of constant debt underlying both

45 For details on cubic spline interpolation for yield curve construction, see Ron (2000).
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approaches. In times of high interests and thus high drift rates, the average value
of �rm assets is assumed to move away rapidly from the bankruptcy threshold, that
is, the book value of debt. In reality, however, �rms frequently adjust their leverage
ratios, as modeled by Collin-Dufresne and Goldstein (2001). Assuming a constant
risk-free rate of �ve percent appears to o�er a simpli�ed way to account for this fact.
Finally, the third model (labeled �IV�) is equivalent to the standard model, except
for the de�nition of asset variances, which are derived using implied volatilities as
previously described.

Table 6 reports the results of a bivariate and non-parametric test of each measure's
ability to forecast failure and bankruptcy. To create this overview, I sort all �rm-year
observations by their π-value in a �rst step. In a second step, I count the number of
defaults observed over the next �scal year for each �rm-year observation. The reported
numbers are the percentages of all 4,045 failures (Panel 6(a)) and 293 bankruptcies
(Panel 6(b)) assigned to each decile in that way.

[Table 6 about here.]

For both, the DD and VCS approach, the best parameter set proves to be slightly
superior to the standard one. The estimates based on implied volatilities perform
clearly worse. In this bivariate setting, πV CS seems to perform slightly better than
πDD, as the �rst decile contains the higher share of failures in the standard model.
For the narrower de�nition of default, the DD model performs somewhat better.

The superior performance of the πV CS measure becomes clearer in a multivariate
setting. Table 7 reports results of a dynamic logit regression on corporate failure
using di�erent combinations of independent variables.

[Table 7 about here.]

The ability of both approaches to predict corporate failure is con�rmed in the regres-
sion, as both πV CS and πDD enter the simple models (1) and (2) highly signi�cantly
and with a positive sign. Using standard parameters, the model including only πV CS

as an explanatory variable has a Pseudo R2 of 24.9%, which is clearly above the 16.9%
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R2 of the second model, which only includes πDD. Adding πDD to the �rst model only
marginally increases model �t to an R2 of 25.3%. Interestingly, πDD enters statisti-
cally signi�cantly but with a negative sign. Both approaches perform better than
models derived based on di�erent de�nitions of asset variance. 46 This indicates the
usefulness of my estimate of asset risk as an input parameter for structural models.
In order to test whether the information used to derive asset risk causes the observ-
able dominance of my measure over the DD measure, I include the variables used as
predictors in the regression on asset variance (TLMTA, RSIZE, BM, NIMTA, LO-
GAVGSDE). Furthermore, as explained previously, I include a stock's excess return
EXRET, de�ned as the di�erence between the continuous return of the stock and the
S&P500 over the last 12 months, Winsorized at the 1st and 99th percentile. 47 The
signi�cance of both πV CS and πDD prevails in models 4 and 5. However, including
both variables in an aggregate model, only the πV CS coe�cient is signi�cant. The
previously documented negative signi�cance of the πDD coe�cient disappears.

Table 8, 9, and 10 report the results of several robustness checks. When applied to
the more narrow de�nition of default with only 293 events during the years 1960 to
2006, both measures enter the regression signi�cantly and with the expected sign.
However, as indicated by a lower Pseudo-R2 and disappearing signi�cance in the
augmented models including control variables, the quality of the πV CS measure is
clearly reduced.

[Table 8 about here.]

Using the best set of parameters, model �t of both approaches can be increased fur-
ther. The dominance of the VCS measure over the DD measure prevails, as indicated
by a di�erence in Pseudo-R2s of 7.01% between model 1 and 2, as well as lower z-
values of πDD in regressions combining πV CS and πDD. The negative coe�cient of

46 Campbell et al. (forthcoming) report a Pseudo R2 of approximately 15% for the model
including only the DD measure with input parameters based on the iterative procedure
described previously. I con�rm this number de�ning asset variance based on the optimal
hedge equation instead. Results are not reported.
47 If no stock returns are available for all 12 months of the previous �scal year, I only
consider the months for which data is given. If less than 9 months of data are available, the
observation is dropped.
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πDD in model 6 is unexpected but has a low magnitude and a low z-value.

[Table 9 about here.]

In line with the results of the bivariate analysis reported previously, probabilities of
default estimated based on an asset variance derived using implied volatilities prove
to be less useful for predicting bankruptcy. Pseudo R2s are clearly lower than those
documented above and neither πV CS nor πDD enter the regression models including
the set of control variables signi�cantly.

[Table 10 about here.]

7 Conclusion

The contribution of this paper is threefold.

First, I propose a new method for extracting probability of default estimates from
structural credit risk models. The method is applicable to all models assuming a
contingent claims perspective on debt and equity and value claims as a function of
asset risk and payout-ratio. The estimation procedure consists of two parts. In a
�rst step, I numerically derive virtual credit spreads (VCS) from the increase in the
payout to debtholders necessary to o�set the impact of an increase in asset variance
on the option value of debt and equity. In a second step, I calculate a risk-neutral
probability of default from VCS in a similar way as default estimates are derived from
credit spreads observed at markets. In contrast to real-world credit spreads, VCS do
not contain risk premia for default timing and recovery uncertainty, thus yielding a
purer estimate of physical default probabilities.

Second, I compare the properties of VCS default estimates derived assuming a simple
Merton model of capital strucure to the expected default frequency from the Merton
distance to default (DD) measure in a numerical analysis. Addressing the needs high-
lighted in previous research, the proposed estimate takes on higher values for safe
�rms and lower values for �rms with high leverage and asset volatility.
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Third, I assess my measure's ability to predict corporate failure relative to the DD
measure in an empirical setting. Given doubts about the usefulness of the iterative
procedure frequently employed to compute input parameters for the Merton model,
I propose a new approach for deriving asset volatility. Using this new parameter
estimate increases the explanatory power of the DD model from a Pseudo-R2 of
approximately 15% documented in previous research and con�rmed for my sample
to 16.9% for the standard model and 20.1% for the best model. Employing my VCS-
measure in the same context yields clearly superior results, with R2s increasing to
24.9% for the standard model and 27.2% for the best model. Adding the DD measure
to regressions including the VCS measure only marginally increases the �t.

While the measure is not able to perform as well as the current state-of-the-art model
for bankruptcy prediction presented in Campbell et al. (forthcoming), my results cast
doubt on their conclusion that summarizing default risk in a single predictor is not
feasible. Future research should further explore the potential of the VCS approach
by applying it to more advanced structural models and by using it for the pricing of
corporate bonds.
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Fig. 4. Estimated default probabilities as a function of asset volatility σV and leverage D/V .
The upper and the lower graph display probabilities of default estimated based on virtual
credit spreads (πV CS) and the Merton distance to default model (πDD), respectively.
(V = 100, r = .05, TV CS = 6, TDD = 1, µDD=r+.06, δ=0, LGD=.75).
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Table 1
Descriptive sample statistics.
Market leverage (TLMTA) is measured as the ratio of total liabilities to the market value of
assets (the sum of the market value of equity and the book value of liabilities), relative �rm
size (RSIZE) as the logarithm of the market value of a �rm's equity relative to the market
capitalization of the S&P500, book-to-market (BM) as the ratio of equity's book and market
value, pro�tability (NIMTA) as the ratio of net income to the market value of total assets,
market wide equity risk (LOGAVGSDE) as the natural logarithm of the yearly average
standard deviation of equity returns, and excess return EXRET as the di�erence between
the continuous return of the stock and the S&P500 over the last 12 months. All variables
except πV CS and πDD and LOGAVGSDE are Winsorized at the 1st and 99th percentile.

(a) All observations

Median Mean Quartiles STD
First Third

TLMTA 0.358 0.384 0.172 0.571 0.247
RSIZE −10.563 −10.431 −11.874 −9.127 2.025
BM 0.598 0.816 0.316 1.068 0.775
NIMTA 0.029 −0.007 −0.018 0.053 0.125
LOGAVGSDE −0.795 −0.786 −0.872 −0.684 0.191
EXRET −0.006 −0.011 −0.034 0.017 0.048
Observations 151,451

(b) Subgroup of �rms failing in the next 12 months

Median Mean Quartiles STD
First Third

TLMTA 0.560 0.537 0.277 0.807 0.298
RSIZE −13.257 −13.105 −14.180 −12.312 1.254
BM 0.298 0.707 0.018 1.053 1.142
NIMTA −0.205 −0.258 −0.424 −0.079 0.228
LOGAVGSDE −0.752 −0.704 −0.811 −0.593 0.175
EXRET −0.068 −0.070 −0.121 −0.025 0.064
Observations 4,045

(c) Subgroup of �rms declaring bankruptcy in the next 12 months

Median Mean Quartiles STD
First Third

TLMTA 0.843 0.777 0.697 0.937 0.212
RSIZE −12.347 −12.321 −13.267 −11.444 1.365
BM 0.347 0.800 −0.386 1.289 1.408
NIMTA −0.196 −0.251 −0.389 −0.081 0.214
LOGAVGSDE −0.684 −0.669 −0.798 −0.514 0.183
EXRET −0.081 −0.082 −0.140 −0.035 0.062
Observations 293
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Table 3
Model parameters for estimating default probabilities.
Leverage D/V is the inverse of option moneyness and computed as the ratio of book debt
to the sum of book debt and the market value of equity. For the VCS (DD) approach, debt
is de�ned as total debt (short-term debt + .5 long-term debt). σV is the asset variance
estimate from a regression model, DIV the dividend yield, δDD the cash payout ratio (only
required for the DD model), and rV CS (rDD) the 6- and 1-year risk-free rate on constant
maturity treasuries.

(a) All observations

Median Mean Quartiles STD
First Third

DVCS/VVCS 0.358 0.384 0.172 0.571 0.247
DDD/VDD 0.284 0.328 0.137 0.483 0.230
σV 0.274 0.318 0.193 0.407 0.169
DIV 0.000 0.012 0.000 0.020 0.021
δDD 0.031 0.036 0.013 0.053 0.027
rVCS 0.065 0.071 0.054 0.083 0.025
rDD 0.058 0.063 0.046 0.077 0.029
Observations 151,451

(b) Subgroup of �rms failing in the next 12 months

Median Mean Quartiles STD
First Third

DVCS/VVCS 0.560 0.537 0.277 0.807 0.298
DDD/VDD 0.505 0.501 0.238 0.765 0.294
σV 0.418 0.451 0.248 0.650 0.240
DIV 0.000 0.001 0.000 0.000 0.008
δDD 0.036 0.040 0.018 0.059 0.028
rVCS 0.063 0.069 0.052 0.081 0.024
rDD 0.056 0.060 0.045 0.073 0.026
Observations 4,045

(c) Subgroup of �rms declaring bankruptcy in the next 12 months

Median Mean Quartiles STD
First Third

DVCS/VVCS 0.843 0.777 0.697 0.937 0.212
DDD/VDD 0.778 0.727 0.618 0.899 0.220
σV 0.253 0.295 0.158 0.391 0.183
DIV 0.000 0.004 0.000 0.000 0.015
δDD 0.056 0.057 0.037 0.074 0.026
rVCS 0.063 0.067 0.050 0.079 0.024
rDD 0.056 0.058 0.043 0.071 0.028
Observations 293
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Table 4
Estimates of a pooled linear regression on �rm risk.
This table displays the results of a linear regression on historical �rm risk based on data
from 1950-2006 and implied �rm risk based on data from 1996-2006. Firm risk σV is de�ned
as the unlevered volatility of monthly stock returns, implied �rm risk σV ∗ as the unlevered
implied volatility of long-term (547 day) call options on a �rm's equity. Volatilities are
unlevered using the optimal hedge equation. Book-to-market (BM) is measured as the ratio
of equity's book and market value, relative �rm size (RSIZE) as the logarithm of the market
value of a �rm's equity relative to the market capitalization of the S&P500, market leverage
(TLMTA) as the ratio of total liabilities to the market value of assets, pro�tability (NIMTA)
as the ratio of net income to the market value of total assets, and market wide equity
risk (LOGAVGSDE) as the natural logarithm of the yearly average standard deviation of
equity returns. The variables BM, RSIZE and TLMTA are Winsorized at the 1st and 99th

percentile. The samples only includes �rms with leverage ratios below 25%.

σV σV ∗

(Intercept) −1.026 ∗∗∗ −1.029 ∗∗∗

(.018) (.035)

BM −.329 ∗∗∗ .174 ∗∗∗

(.006) (.042)

RSIZE −.107 ∗∗∗ −.130 ∗∗∗

(.001) (.005)

TLMTA −1.965 ∗∗∗ −2.588 ∗∗∗

(.031) (.095)

NIMTA −.962 ∗∗∗ −1.068 ∗∗∗

(.019) (.102)

LOGAVGSDE .701 ∗∗∗ .891 ∗∗∗

(.009) (.025)

AdjustedR2 .468 .699

Observations 49, 044 1, 429

∗ ∗ ∗ indicates signi�cance at the 1% Level. Standard errors are in parentheses.
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Table 5
Historical and implied volatility versus default risk.
This table displays the correlation between monthly time series of the 12 months backward-
looking S&P500 standard deviation, the VIX and the number of failures occurring in the
next 12 months for the period 1990-2006.

σS&P500 V IX Failures

σS&P500 1.00 0.668 0.568

V IX 1.000 0.680

Failures 1.000
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Table 6
Failures and Bankruptcy per π-Decile.
This table assesses the ability of di�erent default measures to forecast failure and
bankruptcy. Firm-year observations are sorted according to their π-value. The reported num-
bers are the percentages of all 4,045 failures (Panel 6(a)) and 293 bankruptcies (Panel 6(b))
occurring in the subsequent �scal year.

(a) Percentage of 4,045 Failures per π-Decile

Standard Best IV
Decile πV CS πDD πV CS πDD πV CS πDD

1 0.63 0.56 0.67 0.65 0.47 0.54
2 0.15 0.18 0.14 0.15 0.22 0.21
3 0.07 0.09 0.06 0.07 0.13 0.10
4 0.05 0.05 0.04 0.04 0.08 0.06
5 0.03 0.04 0.03 0.02 0.04 0.03
6-10 0.07 0.08 0.06 0.07 0.06 0.06

(b) Percentage of 293 Bankruptcies per π-Decile

Standard Best IV
Decile πV CS πDD πV CS πDD πV CS πDD

1 0.67 0.71 0.65 0.73 0.41 0.59
2 0.13 0.11 0.16 0.12 0.23 0.21
3 0.06 0.05 0.06 0.06 0.15 0.07
4 0.06 0.05 0.05 0.02 0.08 0.03
5 0.04 0.01 0.04 0.03 0.06 0.03
6-10 0.04 0.05 0.04 0.04 0.08 0.06
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Table 7
Estimates of a logit regression on corporate failure.
This table displays the results of a dynamic logit regression on corporate failure with π
values computed using the standard set of parameters. Corporate failure is de�ned as any
delisting due to bankruptcy, liquidation, or poor performance. πV CS and πDD are default
probabilities estimated based on virtual credit spreads and the distance to default measure.
Market leverage (TLMTA) is measured as the ratio of total liabilities to the market value of
assets (the sum of the market value of equity and the book value of liabilities), relative �rm
size (RSIZE) as the logarithm of the market value of a �rm's equity relative to the market
capitalization of the S&P500, book-to-market (BM) as the ratio of equity's book and market
value, pro�tability (NIMTA) as the ratio of net income to the market value of total assets,
market wide equity risk (LOGAVGSDE) as the natural logarithm of the yearly average
standard deviation of equity returns, and excess return EXRET as the di�erence between
the continuous return of the stock and the S&P500 over the last 12 months. All variables
except πV CS and πDD and LOGAVGSDE are Winsorized at the 1st and 99th percentile.

(1) (2) (3) (4) (5) (6)

(Intercept) −4.636 ∗∗∗ −4.072 ∗∗∗ −4.729 ∗∗∗ −12.887 ∗∗∗ −12.840 ∗∗∗ −12.851 ∗∗∗

(0.025) (0.02) (0.027) (0.218) (0.219) (0.22)

πV CS 53.632 ∗∗∗ 64.961 ∗∗∗ 8.295 ∗∗∗ 6.684 ∗∗∗

(0.55) (1.124) (1.269) (1.877)

πDD 14.824 ∗∗∗ −4.284 ∗∗∗ 1.949 ∗∗∗ 0.602

(0.172) (0.372) (0.351) (0.515)

TLMTA 1.277 ∗∗∗ 1.237 ∗∗∗ 1.222 ∗∗∗

(0.089) (0.101) (0.101)

RSIZE −0.730 ∗∗∗ −0.748 ∗∗∗ −0.732 ∗∗∗

(0.016) (0.016) (0.016)

BM −0.451 ∗∗∗ −0.511 ∗∗∗ −0.453 ∗∗∗

(0.03) (0.025) (0.03)

NIMTA −2.603 ∗∗∗ −2.867 ∗∗∗ −2.629 ∗∗∗

(0.122) (0.105) (0.124)

LOGAVGSDE 0.220 ∗∗ 0.352 ∗∗∗ 0.242 ∗∗

(0.109) (0.106) (0.11)

EXRET −4.313 ∗∗∗ −4.224 ∗∗∗ −4.293 ∗∗∗

(0.363) (0.364) (0.364)

Pseudo R2 0.249 0.169 0.253 0.379 0.379 0.379

N 151, 451 151, 451 151, 451 151, 451 151, 451 151, 451

∗ ∗ ∗ indicates signi�cance at the 1% Level. Standard errors are reported in parentheses.
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Table 8
Estimates of a logit regression on bankruptcy.
This table displays the results of a dynamic logit regression on bankruptcy with π values
computed using the standard set of parameters. Bankruptcy is de�ned narrowly in line
with the CRSP delisting codes. πV CS and πDD are default probabilities estimated based
on virtual credit spreads and the distance to default measure. Market leverage (TLMTA)
is measured as the ratio of total liabilities to the market value of assets (the sum of the
market value of equity and the book value of liabilities), relative �rm size (RSIZE) as the
logarithm of the market value of a �rm's equity relative to the market capitalization of the
S&P500, book-to-market (BM) as the ratio of equity's book and market value, pro�tability
(NIMTA) as the ratio of net income to the market value of total assets, market wide equity
risk (LOGAVGSDE) as the natural logarithm of the yearly average standard deviation of
equity returns, and excess return EXRET as the di�erence between the continuous return
of the stock and the S&P500 over the last 12 months. All variables except πV CS and πDD

and LOGAVGSDE are Winsorized at the 1st and 99th percentile.

(1) (2) (3) (4) (5) (6)

(Intercept) −7.395 ∗∗∗ −6.995 ∗∗∗ −7.265 ∗∗∗ −8.905 ∗∗∗ −9.081 ∗∗∗ −9.088 ∗∗∗

(0.096) (0.084) (0.098) (0.591) (0.612) (0.613)

πV CS 50.466 ∗∗∗ 32.049 ∗∗∗ 3.123 8.511

(1.614) (4.501) (3.778) (5.763)

πDD 15.674 ∗∗∗ 6.266 ∗∗∗ −0.126 −1.807

(0.483) (1.399) (0.988) (1.481)

TLMTA 5.957 ∗∗∗ 6.186 ∗∗∗ 6.102 ∗∗∗

(0.415) (0.432) (0.43)

RSIZE −0.004 −0.018 −0.006

(0.043) (0.042) (0.043)

BM −0.273 ∗∗∗ −0.324 ∗∗∗ −0.265 ∗∗∗

(0.075) (0.065) (0.075)

NIMTA −2.645 ∗∗∗ −2.795 ∗∗∗ −2.616 ∗∗∗

(0.378) (0.358) (0.378)

LOGAVGSDE 1.684 ∗∗∗ 1.694 ∗∗∗ 1.654 ∗∗∗

(0.361) (0.36) (0.362)

EXRET −6.893 ∗∗∗ −6.907 ∗∗∗ −6.894 ∗∗∗

(1.307) (1.308) (1.303)

Pseudo R2 0.175 0.170 0.180 0.280 0.280 0.280

N 151, 451 151, 451 151, 451 151, 451 151, 451 151, 451

∗ ∗ ∗ indicates signi�cance at the 1% Level. Standard errors are reported in parentheses.
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Table 9
Estimates of a logit regression on corporate failure.
This table displays the results of a dynamic logit regression on corporate failure with π values
computed using the best set of parameters. Corporate failure is de�ned as any delisting due
to bankruptcy, liquidation, or poor performance. πV CS and πDD are default probabilities
estimated based on virtual credit spreads and the distance to default measure. Market
leverage (TLMTA) is measured as the ratio of total liabilities to the market value of assets
(the sum of the market value of equity and the book value of liabilities), relative �rm
size (RSIZE) as the logarithm of the market value of a �rm's equity relative to the market
capitalization of the S&P500, book-to-market (BM) as the ratio of equity's book and market
value, pro�tability (NIMTA) as the ratio of net income to the market value of total assets,
market wide equity risk (LOGAVGSDE) as the natural logarithm of the yearly average
standard deviation of equity returns, and excess return EXRET as the di�erence between
the continuous return of the stock and the S&P500 over the last 12 months. All variables
except πV CS and πDD and LOGAVGSDE are Winsorized at the 1st and 99th percentile.

(1) (2) (3) (4) (5) (6)

(Intercept) −4.624 ∗∗∗ −4.052 ∗∗∗ −4.578 ∗∗∗ −12.974 ∗∗∗ −12.985 ∗∗∗ −13.039 ∗∗∗

(0.025) (0.02) (0.025) (0.216) (0.217) (0.218)

πV CS 72.063 ∗∗∗ 63.934 ∗∗∗ 15.340 ∗∗∗ 17.979 ∗∗∗

(0.712) (1.155) (1.873) (2.23)

πDD 30.723 ∗∗∗ 5.194 ∗∗∗ 1.724 ∗∗∗ −1.671 ∗∗

(0.338) (0.574) (0.65) (0.775)

TLMTA 1.436 ∗∗∗ 1.483 ∗∗∗ 1.555 ∗∗∗

(0.074) (0.091) (0.092)

RSIZE −0.707 ∗∗∗ −0.753 ∗∗∗ −0.706 ∗∗∗

(0.017) (0.016) (0.017)

BM −0.387 ∗∗∗ −0.550 ∗∗∗ −0.393 ∗∗∗

(0.032) (0.027) (0.032)

NIMTA −2.268 ∗∗∗ −2.942 ∗∗∗ −2.264 ∗∗∗

(0.139) (0.111) (0.139)

LOGAVGSDE −0.083 0.310 ∗∗∗ −0.092

(0.12) (0.109) (0.119)

EXRET −4.160 ∗∗∗ −4.219 ∗∗∗ −4.175 ∗∗∗

(0.364) (0.364) (0.364)

Pseudo R2 0.272 0.201 0.274 0.380 0.378 0.380

N 151, 451 151, 451 151, 451 151, 451 151, 451 151, 451

∗ ∗ ∗ indicates signi�cance at the 1% Level. Standard errors are reported in parentheses.
60



Table 10
Estimates of a logit regression on corporate failure.
This table displays the results of a dynamic logit regression on corporate failure with π values
computed using an asset variance estimate derived using implied volatilities. Corporate
failure is de�ned as any delisting due to bankruptcy, liquidation, or poor performance.
πV CS and πDD are default probabilities estimated based on virtual credit spreads and the
distance to default measure. Market leverage (TLMTA) is measured as the ratio of total
liabilities to the market value of assets (the sum of the market value of equity and the book
value of liabilities), relative �rm size (RSIZE) as the logarithm of the market value of a
�rm's equity relative to the market capitalization of the S&P500, book-to-market (BM) as
the ratio of equity's book and market value, pro�tability (NIMTA) as the ratio of net income
to the market value of total assets, market wide equity risk (LOGAVGSDE) as the natural
logarithm of the yearly average standard deviation of equity returns, and excess return
EXRET as the di�erence between the continuous return of the stock and the S&P500 over
the last 12 months. All variables except πV CS and πDD and LOGAVGSDE are Winsorized
at the 1st and 99th percentile.

(1) (2) (3) (4) (5) (6)

(Intercept) −4.402 ∗∗∗ −4.100 ∗∗∗ −4.308 ∗∗∗ −13.086 ∗∗∗ −13.105 ∗∗∗ −13.088 ∗∗∗

(0.023) (0.02) (0.023) (0.216) (0.218) (0.219)

πV CS 30.399 ∗∗∗ 16.615 ∗∗∗ −1.904 −1.855

(0.384) (0.73) (1.194) (1.529)

πDD 13.030 ∗∗∗ 7.202 ∗∗∗ −0.372 −0.024

(0.158) (0.305) (0.359) (0.46)

TLMTA 1.559 ∗∗∗ 1.657 ∗∗∗ 1.562 ∗∗∗

(0.086) (0.072) (0.106)

RSIZE −0.777 ∗∗∗ −0.768 ∗∗∗ −0.777 ∗∗∗

(0.018) (0.016) (0.018)

BM −0.571 ∗∗∗ −0.583 ∗∗∗ −0.571 ∗∗∗

(0.025) (0.023) (0.025)

NIMTA −3.252 ∗∗∗ −3.161 ∗∗∗ −3.253 ∗∗∗

(0.144) (0.123) (0.144)

LOGAVGSDE 0.521 ∗∗∗ 0.435 ∗∗∗ 0.520 ∗∗∗

(0.136) (0.116) (0.136)

EXRET −4.261 ∗∗∗ −4.257 ∗∗∗ −4.261 ∗∗∗

(0.363) (0.363) (0.363)

Pseudo R2 0.151 0.154 0.168 0.378 0.378 0.378

N 151, 451 151, 451 151, 451 151, 451 151, 451 151, 451

∗ ∗ ∗ indicates signi�cance at the 1% Level. Standard errors are reported in parentheses.61


