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1 Introduction

According to the classical financial theory, through arbitrage, rational investors can benefit

from the price correction that makes irrational investors, who misperceive asset returns, buy

high and sell low, causing them to lose their wealth; see for example, Sandroni (2001) and

Blume and Easley (2006). However, recent researches, such as De Long, Shleifer, Summers and

Waldman (1991), and Kogan, Ross, Wang and Westerfield (2006) advocated that investors with

biased beliefs might form portfolio holdings performing a higher growth rates that outgrow that

of rational investors. For example, the optimistic trader bets on good states of the economy

(with under-diversification), massively investing in the contingent claims of good states. It

would cause rational investors switching to buy the contingent claims of bad states and give up

those of good states, including those with high probabilities. As a result, the optimistic trader

may end up with more wealth.

It appears that the outperformance in investment for irrational investors is possible in terms

of theoretical modelling. It motivates this study to empirically investigate the performance

of the portfolio allocations that calculated by the investors with various belief formation algo-

rithms. Specifically, we examine whether the investment performances of the irrational investors

with psychological biases in beliefs are superior to that of the Bayesian investor from the asset

allocation perspective.

To address this issue and make a meaningful comparison without the internal inconsistency,

we propose a tangible dynamic asset allocation model. We assume that investors have iden-

tical information on the investment opportunity set, identical investment horizon, identical

risk-aversion coefficient and identical utility specification. They fail to correctly calculate or

update their own beliefs because of psychological biases. Specifically, the investors with an

Epstein-Zin recursive utility attempt to allocate their wealth into several risky assets, savings

and consumption. The dynamics of the investment opportunity set described by a vector of

risky asset returns and predictors are assumed to be driven by a discrete and unobserved regime

variable that determines the levels, volatility and correlations of the corresponding joint distri-

bution. It would cause the investor’s optimal investment strategy associated with the beliefs

of regime predictions. In effect, predicting the state of regime reflects the investor’s subjective

perspective about the forward outlook of the economy. In this study, we specify seven regime

predicting/updating algorithms that are related to the psychological biases the most relevant

and interesting in financial literature. These algorithms are termed as the belief formation

mechanisms and consistent with that of Barberis, Shleifer, and Vishny (1998), Cecchetti, Lam

and Mark (2000) and Brandt, Zeng, and Zhang (2004).

This paper contributes the literature in several aspects. First, we extend the framework of
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Campbell, Chan and Viceira (2003) and incorporate (i) a regime-switching investment oppor-

tunity set; (ii) the psychological-based belief formation mechanisms. This is important because

our proposed model offer tractable (analytical) solutions for the optimal portfolio weights that

can be implemented easily under an economy with multiple assets and incomplete informa-

tion. Second, we conduct the empirical analysis to examine (i) the effects of the distorted

beliefs on the investor’s asset allocation decision; (ii) the empirical performances of the portfo-

lio allocations calibrated using the real observations and a variety of psychological-biased belief

algorithms. Our calibration exercises are based on three investment opportunity sets, including

five stock portfolios, bond and predictors, such that our findings are supposed to be robust.

For the researches during past two decades in retrospect, investigating the relationship be-

tween the investor’s psychological biases (or investor sentiment) and the dynamic patterns of

stock returns is not new. Barberis, Shleifer and Vishny (1998), for example, proposed a model

of investor sentiment which is characterized by distorted predictions about the regime-shift

stock fundamentals. The short/long run patterns of stock returns can be linked to the shifts

in distorted beliefs. Cecchetti, Lam and Mark (2000) provided a similar model to link dis-

torted beliefs with equity premium puzzle and excessive volatility, both of which have been

long advocated in financial literature. Baker and Wurgler (2006) and Kumar and Lee (2006)

pronounced that investor sentiment can predict the cross-section of stock returns. Although

there are mounting studies that address how psychological biases affect asset returns, they

didn’t explore how to influence the investor’s asset allocation decision.

In light of the asset allocation theory, in order to tackle the time-variant investment opportu-

nity set with predictability patterns, long-term investors are supposed to look for the portfolio

strategies to optimally trade off between the risk and the reward and to hedge the risk from

the negative variation in the investment opportunity set. For example, Brennan, Schwartz and

Lagnado (1997) , Lynch (2001), Wachter (2002) and Jurek and Viceira (2006) examined how

the return predictability is related to the intertemporal hedging demands and the horizon effect;

Liu (2007) and Liu, Longstaff and Pan (2003) explored that the volatility and jump risks in the

investment opportunity may give rise to a substantial intertemporal hedging motivation; Ang

and Bekaert (2002) and Guidolin and Timmermann (2007, 2008) demonstrated the importance

of regimes in the joint distribution of asset returns that would cause a stronger long-term effect.

In comparison with the literature, our proposed model address the issue that how the biased

belief mechanisms about the state of regime affect the portfolio allocations. Our findings are

as follows. (i) as compared to the Bayesian investor, the optimistic one would like to bet on

good states of the economy, more aggressively chasing /shorting the assets with higher rewards

in good/bad times. In contrast, the pessimistic investor would take the opposite positions

to the optimistic one; (ii) the optimistic investor has the best empirical performance of the
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portfolio allocation and in turn outperforms the Bayesian one. The other irrational investors

underperform the Bayesian one in most cases; (iii) while the predictability in the investment

opportunity set is removed, the outperformance of the optimistic investor disappears. It sug-

gests that the benefit from the intertemporal hedging induced by the return predictability is a

potential explanation to the domination of the optimistic investor in our analysis.

In section 2, we propose a regime-switching investment opportunity set and describe the

investor’s dynamic optimization problem. Section 3 derives the approximate solutions for the

optimal portfolio weights and the consumption-wealth ratio, and introduces seven kinds of belief

formation algorithms. The empirical results of the MS-VAR model are shown in section 4. In

section 5, we discuss the effects of the distorted beliefs, the return predictability, and the stock

characteristics on the investor’s optimal portfolio rules via the numerical analysis. Section 6

conducts the empirical analysis of the performance of the portfolio allocations associated with

various belief formation algorithms using the real observations. Section 6 concludes.

2 The Model

We consider a discrete-time, incomplete-information dynamic asset allocation decision. Broadly

speaking, an infinitely long-lived investor characterized by an Epstein-Zin recursive utility de-

fined over a stream of consumption attempts to allocate her wealth into risky assets, savings

and consumption. The dynamics of the investment opportunity set described by a vector of

risky asset returns and predictors are assumed to be driven by a discrete and unobserved regime

variable that determines the levels, volatility and correlations of the corresponding joint distri-

bution. As a result, the investor’s optimal investment strategies would be associated with the

investor’s predictions of the states of regime. In effect, predicting the states of regime reflects

the investor’s subjective perspective about the forward market outlook. Our model provides a

belief-dependent optimal investment strategy. Moreover, the investor’s beliefs may be distorted

while the mechanisms of predicting regimes are contaminated by psychological biases. In com-

parison to Campbell, Chan and Viceira (2003), we substantially extend their framework into

a more general one by involving regime shifts into the variation of the investment opportunity

set and considering the various mechanisms of forming investor’s beliefs.

2.1 Investment Opportunity Set

We assume that the investment opportunity set for the investor consists of n+1 tradable assets,

including n risky assets and a riskfree one, and m state variables, used to predict the future

returns of the risky assets. Many empirical articles in recent financial literature point out that

the levels, volatility and correlations of the asset returns distribution may vary with regimes, see
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Hamilton and Susmel (1994), Gray (1996), Ang and Chen (2002) and Perez-Quirors and Tim-

mermann (2000). To the end of characterizing a more realistic and flexible specification for the

investment opportunity set, we postulate a Markov switching first-order vector autoregressive

(MS-VAR(1)) model. The Markov-switching (MS) specification allows regime-dependent lev-

els, volatility and correlations across assets. The vector autoregressive specification (VAR(1))

conveniently captures the predictability of the expected returns by lagged returns and predic-

tors. Since the state of regime changes with time, the expected returns, volatility, correlations

and predictability are in turn time-varying. Moreover, as advocated by Timmermann (2000), a

Markov switching model is able to generate an asset return distribution with complicated forms

of heteroskedasticity, serial correlations, skews and fat tails. In sum, the MS-VAR(1) model

can reconcile the consistent features implied by the realistic observations of asset returns.

Denote rj,t+1 and r̄t+1 as the log returns of the risky asset j and the riskfree one, xt+1 as a

m× 1 vector of predictors, and

zt+1 =

 rt+1 − r̄t+1 ·ϑ

xt+1

 ,
where rt+1 = (r1,t+1, . . . , rn,t+1)′ is the vector of n risky assets and ϑ is the n× 1 vector of ones.

Specifically, the dynamics of zt+1 is given by

zt+1 = Φ◦(st+1) + Φ1(st+1)zt + εt+1, (1)

where st is the latent regime variable, Φ◦(st+1) is the (n + m)× 1 regime-dependent vector of

the intercepts, Φ1(st+1) is the (n + m) × (n + m) regime-dependent matrix of the autoregres-

sive coefficients, and εt+1 is the (n + m) × 1 vector of the random shocks with the following

distribution assumptions:

εt+1
i.i.d.∼ N

(
0,Σε(st+1)

)
,

Σε(st+1) =

 Σδ(st+1) Σ′δx(st+1)

Σδx(st+1) Σx(st+1)

 , (2)

where Σδ(st+1) is the variance-covariance matrix of the log excess returns, Σδx(st+1) is the

covariance matrix between the log excess returns and the predictors vector, and Σx(st+1) is the

variance-covariance matrix of the predictors vector xt+1. The latent regime variable st follows

a J-state first-order Markov chain with transition probabilities: pji = Prob(st+1 = i|st = j),

i, j ∈ {1, 2, . . . , J}, and
∑J
i=1 pji = 1. To better illustrate how the investor’s beliefs affect

the investor’s optimal investment strategy, we adopt a parsimonious model setup by setting

J = 2 and terming regime 1 and 2 as the bull and bear market regimes, respectively. (1) can

4



be reduced to that of Campbell, Chan and Viceira (2003), and Jurek and Viceira (2006) by

imposing the number of regimes equal to one, J = 1.

2.2 Investor Preferences and Optimality Conditions

We assume that the investor has the Epstein-Zin recursive, non-expected utility function1

Ut =
{

(1− β)C
1−γ
θ

t + β
[
Et
(
U1−γ
t+1

)] 1
θ

} θ
1−γ

, (3)

where β is the rate of the time preference, γ is the relative risk aversion coefficient, ψ is the

elasticity of intertemporal substitution and θ = (1 − γ)/(1 − ψ−1). This recursive utility (3)

can be reduced to the time-separable power utility or the log utility if we set γ = ψ−1or γ =

ψ−1 = 1, respectively. Et = E( · |Ωt) is the investor’s subjective expectation conditional on the

available information Ωt. In conjunction with the setting of the investment opportunity set, this

conditional expectation specifically is associated with (i) the investor’s subjective conditional

density f ι(zt+1|st+1,Ωt); (ii) the subjective transition probabilities of regimes Probι(st+1|st);
(iii) the subjective filtering probabilities of regimes πιt|t = Probι(st|Ωt), where ι refers to the

type of the investor’s subjectivity. In the end, if this conditional expectation is calculated

underlying the true probability law, (3) can be reduced to that of Campbell and Viceira (1999,

2002) and Campbell, Chan and Viceira (2003).

According to the psychological experiment evidence, the investor’s subjective expectation is

affected by her sentiment, such as optimism, pessimism and etc. While the new information

arrives, psychological biases would contaminate the investor’s updating or predicting in the

current and subsequent states of regime. In the behavioral finance literature, the psychological-

biased beliefs may persist for a long period of time, and it in turn causes the stock price

departing from its fundamental value in general equilibrium analysis, see for example, De Long,

Bradford, Shleifer and Summers (1990) and Lee, Shleifer and Thaler (1991).

Specifically, at time t+ 1, the investor’s budget constraint is given by

Wt+1 = Rp,t+1(Wt − Ct), (4)

where

Rp,t+1 =
n∑
j=1

αj,t
(
Rj,t+1 − R̄t+1

)
+ R̄t, (5)

Rp,t+1 and Rj,t+1 are the gross returns for the portfolio and risky asset j, R̄t+1 is the return for

the riskfree one, αj,t is the proportion of the investor’s wealth invested in the risky asset j at

1This special utility, proposed by Epstein and Zin (1989), achieve the separation between the risk aversion coefficient and the

elasticity of intertemporal substitution. Note that the risk aversion describes the investor’s reluctance in facing the uncertainty

over various states of the world, whereas the elasticity of intertemporal substitution depicts the investor’s reluctance in changing

consumptions over time. It turns out that the power utility is a pretty restrictive one since it performs a reciprocal relation between

the risk aversion coefficient and the elasticity of intertemporal substitution.
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time t, Ct and Wt are the investor’s consumption expenditure and wealth at time t. Given the

budget constraint (4) and (5), the utility maximization yields a set of the Euler equations:

Et


β (Ct+1

Ct

)− 1
ψ

θ R(θ−1)
p,t+1Ri,t+1

 = 1, (6)

and

Et


β (Ct+1

Ct

)− 1
ψ

Rp,t+1

θ
 = 1. (7)

Note that whether the investment opportunity set is constant or not, and whether the investors

have the complete information or not, the optimal consumption and investment strategy ought

to satisfy the Euler equations (6) and (7).

3 Solving the Model

We follow the Dothan and Feldman (1986), Detemple (1986), Genotte (1968), Detemple and

Murphy (1994), and Xia (2000) to separate the investor’s asset allocation decision into two

parts under the incomplete-information framework: the inference problem and the optimiza-

tion problem. It is called the separation principle. The former one is projecting the latent

variables using the all available information, and the latter one is computing the optimal in-

vestment strategy based on the projected latent variables. In relation to our proposed model

specification, several things need to be sorted out. First, the inference problem indicates calcu-

lating the filtering and prediction probabilities of the current and subsequent states of regime.

The corresponding filtering algorithm is supposed to be exogenous to the investor’s optimiza-

tion. For example, the Hamilton’s algorithm is the optimal filtering one in terms of statistics.

Second, given the inferred probabilities, we turn to compute the optimal portfolio weights and

consumption. In order to obtain the analytical solutions, we follow Campbell and Viceira (1999)

and Campbell, Chan and Viceira (2003) and log-linearize the Euler equations and the budget

constraint to solve the approximate portfolio weights and consumption-wealth ratio. Third,

while the investor adopts the alternative filtering algorithm to calculate the filtering and pre-

diction probabilities of regimes, the “optimal” portfolio weights and consumption-wealth ratio

are still available with respect to those probabilities. Forth, we don’t consider the parameter

uncertainty that implies the parameter coefficients in (1) are random. Although evaluating the

parameter uncertainty can be the other channel to reflect the investor’s beliefs, it goes beyond

our scope.
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3.1 The Optimal Filtering Algorithm

The Hamilton’s (1989) algorithm is described as follows. At time t, the investor’s beliefs on

regimes (filtering probabilities) are given by πBt|t(st) = ProbB(st|Ωt), where Ωt denotes the

filtration generated by the stream of the observations up to time t, {zi}ti=1. The probability of

predicting regime st = j switching to regime st+1 = i (via the transition probabilities pji) is

defined as:

πBt+1|t(st+1 = i) = ProbB(st+1 = i|Ωt) =
2∑
j=1

pji ·πBt|t(st = j). (8)

While the new observation zt+1 comes out, the investor will revise her beliefs by:

πBt+1|t+1(st+1 = i) = ProbB(st+1 = i|Ωt+1),

=
f(zt+1|st+1 = i,Ωt)·πBt+1|t(st+1 = i)

2∑
i=1

f(zt+1|st+1 = i,Ωt)·πBt+1|t(st+1 = i)

, (9)

where f(zt+1|st+1 = i,Ωt) is the conditional density of the MS-VAR(1) process. In fact, (9) is

calculated based on the Bayesian rule and we in turn call the investor who uses this filtering

algorithm as the Bayesian one.

3.2 Log-Linearizing the Euler Equations

Before proceeding to solve the optimal portfolio weights for the risky assets, we need to derive

the approximate expressions of the Euler equations in terms of log returns using the log-

linearization technique of Campbell (1993, 1996) and Campbell and Viceira (1999, 2001). The

log-linearized approximation to the budget constraint (4) and the return on the portfolio (5)

can be expressed as2

∆ct+1 = rp,t+1 + (ct+1 − wt+1)− 1

ρ
(ct − wt) + κ, (10)

and

rp,t+1 = r̄ +α′tδt+1 +
1

2

(
α′tσ

2
δ(st+1)−α′tΣδ(st+1)αt

)
, (11)

where δt+1 = rt+1 − r̄t+1 ·ι is the vector of the log excess returns, σ2
δ(st) ≡ diag(Σδ(st)) is the

vector of the diagonal elements of Σδ(st), ct −wt = log (Ct/Wt) is the log consumption-wealth

ratio, and ∆ct+1 = log (Ct+1/Ct) is the log consumption growth. ρ = 1 − exp [E(ct − wt)] and

2Following Campbell (1993, 1996), log-linearizing the budget constraint (4) yields

∆wt+1 ≈ rp,t+1 +

(
1−

1

ρ

)
(ct+1 − wt+1) + κ,

and then we replace ∆wt+1 with ∆ct+1 + (ct − wt)− (ct+1 − wt+1) to obtain (10). The derivation of (11) can refer to Campbell

and Viceira (2002), or Campbell, Chan, and Viceira (2003).
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κ = log ρ+(1−ρ) log (1− ρ)/ρ are linearization parameters, respectively. In effect, the parame-

ter ρ is an endogenous variable since it is a function of the expected optimal consumption-wealth

ratio3.

Now, we log-linearize the Euler equations. The fraction of the Euler equation (6) for the

risky asset k and the riskfree asset can be written by:

E
{

exp

[
θ log β −

(
θ

ψ

)
∆ct+1 + (θ − 1)rp,t+1 + rk,t+1

] ∣∣∣∣∣Ωt

}

E
{

exp

[
θ log β −

(
θ

ψ

)
∆ct+1 + (θ − 1)rp,t+1 + r̄

] ∣∣∣∣∣Ωt

} = 1.

Applying the law of iterated expectation yields

J∑
j=1

J∑
i=1

Probι(st+1 = i, st = j|Ωt)Ê (j,i)
t

{
exp

[
θ log β −

(
θ

ψ

)
∆ct+1 + (θ − 1)rp,t+1 + rk,t+1

]}
J∑
j=1

J∑
i=1

Probι(st+1 = i, st = j|Ωt)Ê (j,i)
t

{
exp

[
θ log β −

(
θ

ψ

)
∆ct+1 + (θ − 1)rp,t+1 + r̄

]} = 1,

(12)

where Ê (j,i)
t ≡ E( · |st+1 = i, st = j,Ωt) and ̂VAR(j,i)

t ≡ VAR( · |st+1 = i, st = j,Ωt) are

the investor’s subjective expectation and variance operators conditional on the current regime

st, the subsequent one st+1 and the information set Ωt. Probι(st+1 = i, st = j|Ωt) is the

subjective joint probability of the current regime st and the subsequent one st+1 conditional on

the information set Ωt. Specifically, it can be decomposed by

Probι(st+1 = i, st = j|Ωt) = πιt|t(st = j)·Probι(st+1 = i|st = j).

Given the conditional log-normality assumption imposed by the investment opportunity set

specification, applying second-order Taylor expansion to the numerator and denominator of

(12) can obtain the following expression:

J∑
j=1

J∑
i=1

Probι(st+1 = i, st = j|Ωt)
[
Ê (j,i)
t (δk,t+1) +

1

2
̂VAR(j,i)

t (δk,t+1)
]

(13)

=
J∑
j=1

J∑
i=1

Probι(st+1 = i, st = j|Ωt)

[(
θ

ψ

) ̂COV(j,i)

t (∆ct+1, δk,t+1)− (θ − 1) ̂COV(j,i)

t (rp,t+1, δk,t+1)

]
.

The left-hand side of equation (13) is the expected risk premium on risky asset k, adjusted to

the Jensen’s inequality by adding one-half the variance of the excess return. It connects the

asset k’s expected risk premium with its expected covariances between the log consumption

growth and the log portfolio return. If rp,t+1 and ∆ct+1 are assumed to be the exogenous

market return and the exogenous aggregate consumption growth, (13) can be interpreted as

3This is one of the convergence conditions to determine the optimal portfolio weights in the numerical procedure.
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a two-factor intertemporal asset pricing formula4, in which the covariance ̂COV t(rp,t+1, δk,t+1)

measures the systematic risk and the covariance ̂COV t(∆ct+1, δk,t+1) measures the risk of the

change in future investment opportunities. In comparison to Giovannini and Jorian (1989),

Giovannini and Weil (1989), (13) turns out to be a more general result since it is associated

with the market beliefs about the states of regime.

3.3 Solving the Optimal Portfolio Weights and Consumption-Wealth Ratio

To solve the optimal portfolio weights for the risky assets and the optimal consumption-wealth

ratio, we follow Campbell and Viceira (1999, 2002) and Campbell, Chan and Viceira (2003)

and perform the undetermined coefficient method. That is, we conjecture the functional forms

of those solutions and then insert them into the log-linearized Euler equations (13) and (16),

verifying the solutions afterward. Specifically, the conjectured functional forms for the optimal

portfolio weights and consumption-wealth ratio are given by

αt = A◦ + A1zt,

ct − wt = b◦ + b′1zt + z′tB2zt, (14)

where the optimal portfolio weights for the risky assets are an affine function of zt and the

optimal consumption-wealth ratio is an quadratic function of zt. A◦,A1, b◦,b1 and B2 are the

coefficient matrices with dimensions n×1, n× (n+m), 1×1, (n+m)×1 and (n+m)× (n+m),

respectively.

Using the above conjectured solutions, we can solve the log-linearized Euler equation (13)

and obtain the following analytical solution for the optimal portfolio weights for the risky assets

(the derivation is given in the appendix):

αt(π
ι
t|t) =

1

γ
Σ
−1

δ

J∑
j=1

J∑
i=1

πιt|t(j)Probι(st+1 = i|st = j)
[
Hδ

(
Φ◦(i) + Φ1(i)zt

)
+

1

2
σ2
δ(i)

]

+

(
γ − 1

γ

)(
1

ψ − 1

)
Σ
−1

δ

J∑
j=1

J∑
i=1

πιt|t(j)Probι(st+1 = i|st = j) ̂COV(j,i)

t (δt+1, ct+1 − wt+1),

= A◦(π
ι
t|t) + A1(πιt|t)zt, (15)

It is seen that, in the first equality of (15), the optimal portfolio weights is a sum of two

components. The former one is called the myopic demand, the vector of the expected market

prices of risk scaled by the reciprocal of the coefficient of relative risk aversion. The market price

4Note that an investor’s asset allocation problem is just a partial equilibrium in which the return on portfolio rp,t+1 and

consumption ct+1 are endogenous; however, the two-factor intertemporal asset pricing formula is a general equilibrium result in

which the portfolio and consumption strategies have been determined by market clear conditions.
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of risk measures market compensation for the risk within the current opportunities. Current

market condition, thus, is able to directly influences the investor’s optimal investment strategy.

The latter one is called the intertemporal hedging demand, introduced by Merton (1969, 1971).

Since the investment opportunity set is time-varying and switches with regimes, the investor

would like to hedge the negative change in future investment opportunities. This component

is the main difference between the long- and short-term asset demands.

In addition, log-linearizing Euler equation (7) yields

1 = E
{

exp

[
θ log β −

(
θ

ψ

)
∆ct+1 + θrp,t+1

] ∣∣∣∣∣Ωt

}
,

=
J∑
j=1

J∑
i=1

Probι(st+1 = i, st = j|Ωt)Ê (j,i)
t

{
exp

[
θ log β −

(
θ

ψ

)
(ct+1 − wt+1).

+

(
θ

ρψ

)
(ct − wt) + (1− γ)rp,t+1 −

κθ

ψ

]}
.

The second equality above is available by inserting the log-linearized budget constraint (10)

into the Euler equation and in turn applying the law of iterated expectation. By taking a

second-order Taylor expansion and conditional expectation, we acquire a difference equation

for ct − wt :

ct−wt =
J∑
j=1

J∑
i=1

Probι(st+1 = i, st = j|Ωt)

[
− ρψ log β + ρκ+ ρÊ (j,i)

t (ct+1 − wt+1)

+ ρ(1− ψ)Ê (j,i)
t (rp,t+1)− 1

2

(
ρθ

ψ

) ̂VAR(j,i)

t

(
(ct+1 − wt+1) + (1− ψ)rp,t+1

)]
, (16)

in which the optimal consumption-wealth ratio is associated with the expected portfolio return,

the expected future consumption-wealth ratio and the precautionary saving motivation5. In

conjunction with the conjectured quadratic form for the consumption-wealth ratio, (16) can

solve the optimal consumption-wealth ratio:

ct − wt = b◦(π
ι
t|t) + b′1(πιt|t)zt + z′tB2(πιt|t)zt, (17)

where b◦(π
ι
t|t), b′1(πιt|t) and B2(πιt|t) are given in the Appendix.

(15) and (17) show that the verified conjectured functions for the optimal portfolio weights

and consumption-wealth ratio are functions of the investor’s beliefs πιt|t(st). The belief-based

coefficient matrices give rise to nonconstant responses with respect to the variation in zt since

any change in zt (new information arrives) would cause synchronous changes in forming beliefs

and in turn alter the corresponding coefficient matrices in the solutions of the optimal portfolio

weights and consumption-wealth ratio. In comparison to the CCV model that has constant

5Precautionary saving is the economic intuition of the conditional variance term V̂AR
(j,i)

t

(
(ct+1 − wt+1) + (1− ψ)rp,t+1

)
.
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responses to the variation in zt, our belief-dependent solutions manifest the flexibility. Besides,

our proposed solutions are also more general than that of Honda (2003) since we allow the

regime-dependent predictability in the investment opportunity set. In comparison with that of

Ang and Bekaert (2002), and Guidolin and Timmermann (2007, 2008), our proposed optimal

solutions have analytical convenience.

3.4 The Psychological-Biased Filtering Algorithms

In this study, we introduce several psychological biases the most relevant and interesting in

the financial literature that may distort predicting and updating regimes. These psychological-

distorted beliefs implies that the investor fails to correct their psychological biases. Our pro-

posed beliefs are consistent with that of Barberis, Shleifer and Vishny (1998), Cecchetti, Lam

and Mark (2000) and Brandt, Zeng and Zhang (2004).

I. Optimistic and Pessimistic Beliefs: the upbeat investors perform their optimism by

making the systematic deviations on their beliefs in overrating the probabilities on the bull

regime. They always display incredibly a rosy perspective about the future market outlook.

Specifically, optimism gives rise to a distorted transition probability matrix

QO =

 1 ω

0 1− ω


 p11 p21

p12 p22

 =

 p11 + ωp12 p21 + ωp22

(1− ω)p12 (1− ω)p22

 ,
in which the optimistic investors shift ω proportion of the bear regime’s probabilities to the

bull regime. On the contrary, the pessimistic investors move ω proportion of the bull regime’s

probabilities to the bear regime because of their gloomy perspectives about the future market

conditions. The corresponding distorted transition probability matrix yields

QP =

 1− ω 0

ω 1


 p11 p21

p12 p22

 =

 (1− ω)p11 (1− ω)p21

ωp11 + p12 ωp21 + p22

 .

II. Dynamic Switching Beliefs: a more realistic specification of the belief formation is

to allow investors switching their opinions as the state of regime changes. Specifically, they

are supposed to have a subjective regime indicator s̃t. They take an optimistic (pessimistic)

perspective on economy when the subjective regime is a bull (bear) one. It turns out that using

the optimistic or pessimistic transition probability matrix depends on the subjective regime

variable, {
QO, if s̃t = 1,

QP , if s̃t = 2,
(18)
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where s̃t follows a two-state first-order Markov chain with a symmetric transition probability

matrix  η 1− η

1− η η

 ,
in which η = Prob(s̃t = 1|s̃t−1 = 1) = Prob(s̃t = 2|s̃t−1 = 2) measures the persistence of the

subjective regimes. We term the investors with high η as the momentum ones since they believe

the state of the regime will persist. For example, the current bull regime will be followed by an

another bull one and vice versa. Alternatively, we term the investors with low η (equivalently,

high 1 − η) as the reversal ones since they believe the state of the regime will change rapidly.

For example, the current bear regime will switch to the bull one in next period and vice versa.

To complete the specification and facilitate the derivation of the investor’s optimal invest-

ment decision, we define s∗t = (st, s̃t) and let

s∗t = 1, if (st, s̃t) = (1, 1),

s∗t = 2, if (st, s̃t) = (1, 2),

s∗t = 3, if (st, s̃t) = (2, 1),

s∗t = 4, if (st, s̃t) = (2, 2),

, and then obtain an augmented transition probability matrix for the new subjective regime

indicator s∗t

Q∗ =



qO11η qP11(1− η) qO21η qP21(1− η)

qO11(1− η) qP11η qO21(1− η) qP21η

qO12η qP12(1− η) qO22η qP22(1− η)

qO12(1− η) qP12η qO22(1− η) qP22η


. (19)

In the end, the conditional distribution of zt under the subjective regime indicator, s∗t , is given

by f(zt|s∗t ,Ωt−1).

III. Representative-biased and Over-Confident Beliefs: representativeness indicates

that investors make their own subjective beliefs based on some representatives instead of the

whole probability law of the process. i.e. they merely concentrate on today’s realization of data

rather than the whole historical sample. Tversky and Kahneman (1974) first documented this

psychological phenomena on agent’s decision making, and Rabin (2002) termed it as the “law
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of small numbers”. Specifically, this belief formation can be expressed by

πRt+1|t+1(st+1) = (1− ω)πBt+1|t+1(st+1) + ω


f(zt+1|st+1,Ωt)

2∑
st+1=1

f(zt+1|st+1,Ωt)

 , (20)

where f(zt+1|st+1,Ωt)/
∑
st+1

f(zt+1|st+1,Ωt) denotes the information gain from new observa-

tions. The representative investors will assign a large weight on new information gain and a

small one on the Baysian benchmark at time t+ 1.

Over-confidence indicates that investors have a tendency of underweighting latest informa-

tion but concentrates on their prior (or even private) information. Edwards (1968) first iden-

tified this psychological phenomena in which the individual updates his posterior distribution

in the right direction whereas he puts too small weight on the rational Bayesian benchmark6.

Specifically, this belief formation can be expressed as

πCt+1|t+1(st+1) = (1− ω)πBt+1|t+1(st+1) + ωπCt|t(st), (21)

where πCt|t(st) that contains all available information up to time t reflects the investors’ prior

information at the beginning of time t + 1. They will share a large weight in his subjective

prior and a small one in the Baysian benchmark at time t+ 1.

4 Empirical Results

4.1 Data Description

The calibration exercises in this study are based on monthly returns of market portfolio, growth

stocks, value stocks, small caps, large caps and bond. Given all common stocks listed on the

NYSE, AMEX and NASDAQ, the portfolios of value stocks and growth stocks are formed

by the top 30% and bottom 30% deciles sorted by the book-to-market ratio, whereas those

of the small caps and large caps are made by the top 30% and bottom 30% deciles sorted

by the size of market capitalization7. We use the Moody’s AAA corporate bond yields8 to

compute bond returns. Following Campbell, Lo, and Mackinlay (1997), and Campbell, Chan,

6Edwards mentioned that “it turns out that opinion change is very orderly, and usually proportional to numbers calculated from

the Bayes Theorem– but it is insufficient in amount.”

7The sorted stocks cover NYSE, NASDAQ and AMEX stocks in the Center of Research in Security Price (CRSP). The portfolio

returns are value-weighted and for which the corresponding weights are revised at end of June every year and held constant for the

following twelve months. The portfolios for July of year t to June of year t+ 1 are stemmed from market equity data available for

December of year t− 1 to June of year t. Further details of the portfolio return sample are available in Ken French’s web page.

8The data of the Moody’s AAA corporate bond yields is available on the web page of Federal Reserve Bank of St. Louis are

available on the web page of Federal Reserve Bank of St. Louis.
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and Viceira (2003), we calculate the log return on the corporate bond using the log-linearized

approximation:

rn,t+1 ≈ Dnyn,t − (Dn − 1)yn−1,t+1,

where n is the maturity of the bond, Yn,t is the bond yield, yn,t = log (1 + Yn,t) is the log bond

yield, and Dn is the duration of bond9. The riskfree rate is the yield on one-month Treasury

bills. The data period starts from January 1953 to December 2007.

According to the financial literature, the term spread and the log dividend-price ratio are two

popular state variables used to predict the expected mean and volatility of asset returns. The

term spread is the yield difference between the 5 year Treasury bonds and the 90-days Treasury

bills. Many empirical studies, such as Fama and French (1988, 1989), Campbell (1987), and

Kiem and Stambaugh (1986), advocated that the term spread can predict the future macroe-

conomic conditions and future bond returns. To calculate the dividend-price ratio, we first

construct the dividend payout series using the value-weighted return including dividends, and

the price index series associated with the value-weighted return excluding dividends. Following

the standard convention in the literature, we take the dividend series to be the sum of dividend

payments over the past year. The log dividend-price ratio is obtained by the difference between

the log dividend and the log price index. Ait-Sahalia and Brandt (2000) and Campbell, Chan

and Viceira (2003) pointed out that the log dividend-price ratio can induce the substantial

hedging demands for stocks since its predictive ability is able to help the investor hedge the

variation of investment opportunity set over time. The data of the price index and bond yields

are obtained from the Center for Research in Security Prices.

Table 1

Panel A of Table 1 reports the descriptive statistics, including sample mean, standard de-

viation, skewness, kurtosis, maximum and minimum, for the log returns of market portfolio,

small caps, large caps, growth stocks, value stocks as well as bond. Panel B of Table 1 repre-

sents the sample correlations matrix of five stock portfolios, bond and two predictors. Several

observations are in order. First, the sample means for small caps, large caps, growth stocks

and value stocks are all substantially higher than that of market portfolio. Small caps (bond)

has the highest (lowest) mean return. Value stocks and small caps have higher mean returns

than growth stocks and large caps. It simply highlights the size and value effects. Next, growth

stocks, value stocks and small caps perform higher standard deviations than market portfolio.

9In practice, as proposed by Campbell, Lo, and Mackinlay (1997), Campbell, Chan, and Viceira (2003), we set the maturity n

to 20 years (240 months) and replace yn−1,t+1 by yn,t+1. The duration is calculated by

Dn =
1− (1 + Yn,t)−n

1− (1 + Yn,t)−1
.
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Small caps (bond) remains the highest (lowest) one. Except market portfolio, all skewness are

positive. Kurtosis exceeds three in all cases. Finally, stock portfolios and bond are all posi-

tively correlated but negatively (positively) correlated with the log dividend-price ratio (term

spread).

4.2 The Empirical Results of the Investment Opportunity Sets

This study contains three calibration exercises related to three various specifications of the

investment opportunity sets:

• Set A: zt = 〈market portfolio, bond, term spread, log dividend-price ratio〉,

• Set B: zt = 〈small caps, large caps, bond, term spread, log dividend-price ratio〉,

• Set C: zt = 〈growth stocks, value stocks, bond, term spread, log dividend-price ratio〉.

The first set attempts to investigate the investor’s stock-bond allocation decision. The second

and third sets explore the investor’s allocation decision while the size and value effects are con-

sidered. To estimate, we implement these three investment opportunity sets by the maximum

likelihood estimation approach. Given the parameter estimates and the corresponding updating

and predicting probabilities, we can compute the smoothed probabilities that are used to infer

the state of regime at each time point. It is a standard procedure and the details can refer to

Hamilton (1989, 1994).

Figure 1

We now proceed to interpret the economic meanings of regimes. Figure 1 plots the smoothed

probabilities of regime 2 on three investment opportunity sets. It is seen that regime 2 covers

most of the bear market times (the green areas) between 1953 and 2007, including the concerns

over Vietnam in the end of 1960s, the two oil shocks in the 1970s, the 1987’s stock market crash,

Gulf war in the beginning of 1990s, Russia defaults and Long Term Capital Management crashes

in 1998, and the internet bubble burst and corporate malfeasance since 2000. In contrast, regime

1 captures most of the bull markets since 1960, such as two long bull market times in 80s and

90s. We also can find that the smoothed probability patterns in three cases are consistent, even

though they are calculated by different sample.

Based on the smoothed probabilities, we can infer the time periods of regime 2 using the

decision rule: the smoothed probability Prob(st = 2|ΩT ) > 0.5. It seems to be relevant since

only few points lie between 0.3 and 0.7 in Figure 2. We can explore the characteristics of

regimes using the inferred regime times. Panel C of Table 1 reports the summary statistics in

accordance with the regime-sorted monthly returns of five stock portfolios and bond. It is seen
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that regime 1 (regime 2) is a bullish (bearish) state. Market portfolio has a higher mean return

and a lower standard deviation in regime 1 than regime 2. However, small caps and growth

stocks have substantially higher mean returns than large caps and value stocks in regime 2

since investors would like to ask larger risk premiums for holding stocks with small size and

young age in a bearish state. It also suggests that regime 2 (regime 1) performs the typical size

effect (value effect). An interesting finding is that the maximum returns in regime 2 are higher

because the inferred times of regime 2 involve some big bear market rallies in 1987, 1998 and

2001.

Table 2A, 2B and 2C

Table 2A, 2B and 2C report the parameter estimates for three investment opportunity sets.

The “Intercepts” and “Autoregressive Coefficients” panels represent the estimates of the vector

Φ◦ and the autoregressive coefficient matrix, Φ1, respectively. The diagonal elements of the

“Volatility and Correlations” panel are the volatility estimates, and the correlation estimates

are placed on the off-diagonal terms. The transition probability estimates are reported in the

bottom panel. The standard deviations of the parameter estimates are in the parentheses.

In conjunction with the results of these three tables, we can obtain several empirical ob-

servations about the investment opportunity set. First, it is seen that the volatility estimates

of all risky assets in regime 2 are higher than those in regime 1. In contrast, regime 2 is a

less persistent state with short duration 2∼3 months10 in comparison with regime 1 that is a

persistent one with duration about 18 months.

Second, the term spread (log dividend-price ratio) can predict bond (five stock portfolios)

returns. The predictive ability of these two predictors on stock portfolios or bond returns is

regime-dependent. For example, the parameter coefficient estimate of the term spread asso-

ciated with bond are positive and significant under regime 1, whereas it is an insignificant

positive estimate under regime 2. In addition, the parameter coefficient estimates of the log

dividend-price ratio associated with small caps, large caps, growth stocks and value stocks are

significantly positive under regime 1, whereas those are insignificantly negative (positive) for

small caps and growth stocks (large caps and value stocks) under regime 2.

Third, the results of the correlation estimates show that the innovations of the log dividend-

price ratio are negatively correlated with the innovations of the returns for small caps, large

caps, growth stocks and value stocks under regime 1, whereas the correlation estimates change

the sign for small caps and growth stocks under regime 2. In contrast, the innovations of the

term spread are positively correlated with the innovations of the bond returns under regime

10The expected duration is computed by
∑∞

k=1
p
(k−1)
ii (1− pii) = 1/(1− pii).
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1, but the sign of the corresponding correlation becomes negative under regime 2. Stambaugh

(1999) pointed out that the small-sample bias in predictive regressions has the opposite sign

to the sign of the correlation between the innovations of asset returns and the innovations of

the state variables. It turns out that the regime-dependent correlation structure between the

innovations of risky assets and the innovation to predictors, like the log dividend-price ratio or

the term spread, would have profound influence on the conclusion on the return predictability.

In fact, our estimated results on coefficients may be contaminated by the small-sample bias,

but bias correction in the current specification is complicated and beyond the scope of this

study. Instead, the estimated results are assumed to be given by investors and we will focus on

exploring the implication of the investor’s asset allocation decision.

5 Empirical Asset Allocations

In this section, we explore the effects of the distorted beliefs, predictors and stock characteristics

on the investor’s asset allocation decision. To calibrate the optimal portfolio weight (15) and the

optimal consumption-wealth ratio (17), we fix ψ = 0.99, β = 0.92, γ = 5 (or 10) and ω = 0.9

is set for the algorithm generating the distorted beliefs. In this study, we follow Campbell and

Viceira (1999, 2002) and Campbell, Chan and Viceira (2003) and perform a simple numerical

algorithm to calibrate the approximate closed-form solutions. The steps are as follows.

• Step 1: Calculate the current belief πιt|t based on an investor’s learning algorithm, for

example, the Bayesian filtering one, using the observation of a investment opportunity

set zt, given the estimated parameter values of the investment opportunity set and the

previous belief πιt−1|t−1.

• Step 2: Calibrate the coefficient vectors and matrices A◦,A1, b◦,b1 and B2 conditional

on the belief πιt|t using the numerical algorithm that is given in appendix B11.

• Step 3: Compute the approximate closed-form solutions based on the calibrated A◦(π
ι
t|t),A1(πιt|t),

b◦(π
ι
t|t), b1(πιt|t), B2(πιt|t) and the observation zt.

By repeating the above steps from t = 1 to t = T , we can obtain the series of the opti-

mal portfolio weights, the optimal consumption-wealth ratio and the corresponding investor’s

beliefs.

11In fact, we extend Campbell, Chan and Viceira’s (2003) code, which is available from the Campbell’s web page, to involve our

generalizations. We verified our code by replicating Campbell’s results using their information.
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5.1 Asset Allocations under the Bayesain Beliefs

To obtain a preliminary understanding of the effects of the investor’s beliefs on the asset de-

mands, we focus on the investment opportunity set A and calibrate the optimal portfolio

weights at the sample average of zt (see Table 1), varying beliefs within the range [0, 1]12.

Figure 2A illustrates the portfolio weights for stocks and bonds with respect to the investor’s

beliefs πt|t(st = 1). When γ = 5, demands for stocks and bonds are increasing with beliefs. In

particular, the changes in demands for stocks and bonds with respect to the change in beliefs

(the slopes of the demand curves for stocks and bonds) are raising. It suggests that the investor

is inclined to pursuit more stocks and bonds while her beliefs πt|t(st = 1) is high, whereas she

is reluctant to rapidly sell off them while πt|t(st = 1) is low. When γ = 10, the demands for

stocks and bonds shift down. The changes in demands for stocks and bonds become less sensi-

tive to the change in beliefs. However, these curves would not be flatted out while γ becomes

large13. In sum, the investor’s beliefs have substantial impacts on the investor’s asset allocation

decision.

Figure 2A and 2B

Figure 2B plot the calibration results based on the investment opportunity set B and C.

First, the investor reduces the demands for small caps and growth stocks when her beliefs are

bullish. It is understandable that small caps and growth stocks have higher mean returns in

regime 2 than regime 1 since the risk premiums for holding them are expected to be high in a

bearish state. Stocks with small size, young age and less collaterals will be asked for a larger

risk compensation for holding them. Second, the demands for large caps is increasing with the

investor’s beliefs becoming bullish, whereas that of value stocks is rigid with respect to the

investor’s beliefs. Third, when γ increases, the investor would reduce small caps but raise large

caps. In contrast, the demands for growth stocks and value stocks jointly decline when the

investor becomes more risk-averse.

Since the optimal portfolio weights is a linear/nonlinear function of the state vector zt/belief

πιt|t(st), the optimal portfolio allocations are time-varying. In this study, we follow Campbell,

Chan and Viceira (2000) and conduct the analysis for the level effects of the optimal portfolio

weights under various distorted beliefs. We compute the time series averages for the optimal

portfolio weights that are calibrated using real data. Table 3 reports this results.

Table 3

12To fix zt = z̄, the sample average, and let the beliefs πt|t be determined exogenously, we calibrate the optimal portfolio weights

only based on step 2 and 3.

13In our calibration exercise that set γ = 200, the demand curves for stocks and bonds still keep upward sloping.
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Table 3 reports the time series averages of the optimal portfolio wights for three investment

opportunity sets and seven types of belief formation algorithms. For each investment oppor-

tunity set, we present the mean portfolio weights that average for the whole sample period

and two subsample periods sorted by regimes14 over seven belief formation algorithms. The

Bayesian investor attempts to time the market. For example, based on the investment oppor-

tunity set A, the Bayesian investor holds more stocks and bonds in the bullish regime since the

market portfolio and bonds have higher Sharpe ratios during this period of time (see Panel C

of Table 1). In the investment opportunity set B (set C), the Bayesian investor would like to

buy less small caps (growth stocks) but more large caps and bonds (value stocks and bonds)

in the bullish regime than the bearish one, chasing the assets with high Sharpe ratios.

The portfolio allocation to stocks portfolios (such as small caps and large caps/growth stocks

and value stocks), bonds and cash are also understandable. An increase in expected asset

returns represents an improvement in investment opportunity set. According to the parameter

estimates of Table 2B and 2C, a positive correlation between the small caps returns and the

term spread in regime 1 would cause a negative intertemporal hedging demand for small caps.

Since a negative shock to small caps returns is correlated with a negative shock to the term

spread in regime 1 that would persist for a long period of time and the expected returns of small

caps decrease when the term spread declines, the investor will take a short position in small

caps to hedge the corresponding intertemporal risk. In contrast, the expected returns of small

caps increase when the term spread declines in regime 2, a positive correlation between small

caps and the term spread gives rise to a positive intertemporal hedging demand for small caps.

This result deepens the timing effects from Sharpe ratios. The returns of small caps are highly

positive correlated with those of large caps in both regimes, the investor would pursue the asset

with a high Sharpe ratio and short the other one for hedging. The negative demand for large

caps can offset (or exceed) the positive demand for large caps caused by the positive Sharpe

ratio. The bonds and cash demands are associated with the correlation between the small caps

returns and the bond returns. A larger positive correlation in regime 2 would cause a greater

negative intertemporal hedging demand for bonds that exceeds the small positive demand for

bond caused by a small Sharpe ratio in regime 2. Similarly, the returns of growth stocks are

highly positive correlated with those of value stocks in both regimes, the investor would chase

value stocks in regime 1/growth stocks in regime 2 and short growth stocks in regime 1/value

stocks in regime 2 for hedging, strengthening the timing effects from Sharpe ratios. A short

position in bond in regime 2 is caused that a larger positive correlation between the growth

stocks returns and the bond returns in regime 2 would induce a greater negative intertemporal

14The decision rule for identifying the state of regime is the smoothed probability Prob(st = 2|Ωt) above or below 0.5.
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hedging demand for bonds that exceeds the small positive demand for bond caused by a small

Sharpe ratio in regime 2. In the end, the Bayesian investor will take a leveraged portfolio

strategy in regime 1 but an unleveraged one strategy in regime 2.

5.2 The Effects of the Distorted Beliefs

We proceed to explore the effects of distorted beliefs. Several observations are in orders. First,

the optimistic investor attempts to bet on the good states of the economy, chasing the assets

with high Sharpe ratios in the bullish regimes. For example, based on the investment oppor-

tunity set A, the portfolio positions of stocks and bonds for the optimistic investor in regime

2 are larger than those in regime 1, even though the Sharpe ratio of the market portfolio is a

negative one (see Panel C of Table 1). In the investment opportunity set B (set C), the opti-

mistic investor tilts toward small caps and bonds (value stocks and bonds) with large positions

in both regimes although bonds have poor Sharpe ratio than that of small caps (growth stocks

and value stocks). In comparison to the Bayesian investor, the optimistic one purchases more

stocks and bonds in the investment opportunity set A to chase a high reward in the bullish

regime. In the investment opportunity set B (set C), the optimistic investor holds more large

caps and bonds but less small caps (more value stocks and bonds) in the bullish regime, whereas

she takes larger long positions on small caps and bond (value stocks and bonds) and a short

one on large caps (growth stocks) in the bearish regime. The optimistic investor will take a

leveraged portfolio strategy in both regimes.

Third, in contrast to the optimistic investor, the pessimistic one will bet on the bad states

of the economy, chasing the assets with high Sharpe ratios in the bearish regime. For example,

the pessimistic investor takes short positions on stocks and buys less bonds in both regimes

based on the investment opportunity set A since the market portfolio returns have a negative

Sharpe ratio in regime 2. In the investment opportunity set B (set C), the pessimistic investor

chases small caps (growth stocks), short sells bonds and holds cash in both regimes since Small

caps and growth stocks have higher Sharpe ratios in the bearish regime. In comparison to the

Bayesian investor, the portfolio allocation of the pessimistic investor tilts toward buying more

small caps (value stocks) and short selling bonds.

Third, the demand patterns for the representative-biased investor are similar to those of

the Bayesian investor and attempts to time the market. This is not a surprised result be-

cause the updating bias for the representative-biased investor can be alleviated when we allow

predictability for asset returns; the representative-biased investor still adopts the unbiased

transition matrix in calibrating portfolio weights. Computing mean portfolio weight can fur-

ther average the bias and the level effect of the representative-biased investor in turn is sup-

posed to be similar to that of Bayesian one. However, it doesn’t mean that the Bayesian and
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representative-biased investors have similar behaviors. The representative-biased investor has

larger variances of the optimal portfolio weights for risky assets than that of Bayesian one15.

The representative-biased investor is supposed to be frequent-trading. On the other hand, the

over-confident investor seems to perform similar mean portfolio allocation patterns to those of

the Bayesian investor. However, in terms of the variance of the optimal portfolio weights, the

over-confident investor is infrequent-trading.

Forth, the momentum investor has similar mean portfolio allocations to those of the Bayesian.

This may not be a surprised finding. Although the transition matrix for the momentum investor

is distorted, the biased direction is not too far away from the reality. The durations of regimes,

in particular for the bullish regime, are not transient in accordance with the realistic transition

matrix. Instead, they may persist for a period of time. As a result, the regime persistence

assumption for the momentum investor turns out to be a fine one in this regard. However,

the reversal investor believes a regime transient assumption and follows a reversal investment

strategy. In the bearish (bullish) regime, her optimal portfolio allocation tilts toward the assets

with good Sharpe ratios in the bullish (bearish) regime. For example, the reversal investor tilts

toward value stocks and bonds (small caps and bonds) in the bearish regime, but short sells

bonds and buys more growth stocks (shorts bonds and buys more small caps) in the bullish

regime.

5.3 The Effects of Predictors on Asset Demands

We proceed to investigate the effects of predictors on investor’s asset allocation decision. Ait-

Sahalia and Brandt (2001) and Campbell, Chan, and Viceira (2003) find that the term spread

and the log dividend-price ratio have large impacts on the investor’s demands for stocks and

bonds because of their predictive powers on stock and bond returns. To address this question,

we conduct the exercise reported in Figure 3. We calibrate the optimal portfolio weights under

the term spread (the log dividend-price ratio) that can deviate by one standard deviation from

its sample mean, labelled by “High Term Spread (Ln(D/P))”, “Low Term Spread (Ln(D/P))”,

and “Mean Term Spread (Ln(D/P))”, respectively. The other variables in the investment

opportunity set are set to be their sample means. The calibration steps are the same as those

of Figure 2.

Figure 3

The top (bottom) panels of Figure 3 report the results for the log dividend-price ratio (term

spread). It is apparent that the log dividend-price ratio only has significant influence on stocks,

15The results about variance of the portfolio weight are available if the authors are requested.
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whereas the term spread has substantial impacts on both of stocks and bonds. A high log

dividend-price ratio (term spread) drives up the demands for stocks (stocks and bonds). Since

both of the term spread and log dividend-price ratio are persistent, higher values for them

would bring up expected returns of stocks and bonds in the future, driving up the demands for

stocks and bonds. Note that the effect of Ln(D/P)t on the expected bond returns is closed to

zero, thus it fails to influence the bond demands.

In unreported results, a high (low) log dividend-price ratio drives down (up) the demands

for small caps and growth stocks, but bring up (down) large caps and value stocks. However, a

high term spread raises the demands for small caps, large caps, value stocks and bonds, except

for growth stocks that is neutral to the term spread. In sum, predictability from the term

spread and the log dividend-price ratio uncovers the deeply influence on the demands for stocks

and bonds.

6 Assessing the Asset Allocations under Distorted Beliefs

6.1 Performance Measures

Insofar as the calibration exercises we have done reveal that distorted beliefs may give rise to a

substantial influence on the investor’s demands for stocks and bonds, it is natural to calibrate

the optimal portfolio weights using the real observations to examine the empirical performances

over investors with different belief formation algorithms. To address this issue, we use several

measures to evaluate the empirical performance of portfolio returns.

Graham and Harvey (1997) proposed risk-adjusted performance metrics that match the

portfolio return volatility to that of the benchmark by adjusting expected return up or down

to obtain a better measure of return for a given level of risk. For example, GH1 is the metric

that adopt the market volatility as the benchmark risk. Specifically, it is expressed by

GH1ι = rιp,t − r∗p,t, (22)

where rιp,t is the portfolio return calculated by the optimal portfolio weights associated with the

belief algorithm ι, r∗p,t = rf,t+
σιp
σm

(rm,t−rf,t) is the risk-adjusted portfolio return by the market’s

risk, rm,t, rf,t are the market portfolio return and riskfree rate, and σιp, σm are the sample

standard deviations of the investor ι’s portfolio returns and market portfolio, respectively. GH

SCORE is the sum of two metrics, GH1 and GH216.

Another risk-adjusted performance metric is the intercept estimate of the time series regres-

sion based on the Fama-French four factor model. Specifically,

rιp,t − rBp,t = αF + βmRMRFt + βsSMBt + βhHMLt + βuUMDt + εt, (23)

16GH2 is a similar performance metric to GH1. The details can refer to Graham and Harvey’s (1997) article.
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where RMRFt, SMBt,HMLt and UMDt are the time t return spreads on zero-investment factor-

mimicking portfolios for aggregate market proxy, size, book-to-market equity, and one-year

momentum in stock returns, respectively. αF is interpreted as the abnormal return associated

with the belief ι relative to the Bayesian one.

Denote the metric for the long-run portfolio returns associated with the belief algorithm ι

as

LRι
t(τ) =

τ∑
i=1

rιp,t+i−1, (24)

where τ is the forward periods. By controlling the long-run market risk, we obtain a risk-

adjusted performance measure that is the intercept of the following time series regression

LRι
t(τ)− LRB

t (τ) = αL + βM
τ∑
i=1

RMRFt+i−1 + εt, (25)

where αL can be interpreted as the risk-adjusted long-run abnormal return associated with the

belief ι relative to the Bayesian one and
∑τ
i=1 RMRFt+i−1 is the proxy for the long-run market

risk.

6.2 Empirical Performances of Asset Allocation under Distorted Beliefs

The above performance measures may give rise to several econometric issues, such as the non-

normality, the serial correlation caused by the overlapped summation, which in turn could cast

doubt about the traditional statistical inference. To address this concern, we use the bootstrap

method to calculate the empirical distribution of the metric that we want to test, and in turn

assess the significance of the metric computed by real data17. For example, if we want to

test the significance of GH1ι, ¯rp,t
ι − ¯rp,t

B GH1ι − GH1B, or LRι
t(τ) − LRB

t (τ), we resample

the observations using the block bootstrap and calibrate the corresponding optimal portfolio

weights and portfolio returns using the resampled data. The resulting empirical distribution

of the target metric, say for example GH1ι, based on the resampled data can indicate the

significance of the metric calculated by real data.

To avoid the portfolio performance benefitting from the full-sample information, we set the

observations from January 2006 to December 2007 as the out-of-sample period and re-implement

three investment opportunity sets using the data from January 1953 to December 2005. We

then calibrate the optimal portfolio weights using the out-of-sample observations and compute

the corresponding portfolio returns as well as the values of the performance metrics.

Table 4A, and 4B

17The steps are as follows. We use the Politis and Romano (1994) stationary bootstrap to generate a re-sampled data. We

calibrate the optimal portfolio weights using this re-sampled data and calculate the corresponding portfolio returns that can be

used to compute the performance metrics. By repeating these steps 500 times, we obtain the corresponding empirical distribution

of the metric. In the end, the significance result is available via the empirical distribution.
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Panel A of Table 4A reports the in-sample and out-of-sample results for the average port-

folio returns and the GH measures over seven belief formation algorithms. It is seen that the

optimistic investor has the best performance in accordance with the values of the performance

measures. In particular, the average portfolio return and the GH SCORE of the optimistic

investor are significantly superior to those of the Bayesian one. This finding is valid in both of

in-sample and out-of-sample results. In some cases, the performance of the representative-biased

investor is indifferent to that of the Bayesian investor. The pessimistic investor consistently

has the worst performance.

Panel B of Table 4A reports the intercept estimates of the Fama-French four-factor model.

We can find that the optimistic investor continues outperforming the Bayesian one even if the

common risk factors are controlled. The α̂F estimates of the optimistic investor are significantly

positive. However, the other psychological-biased investors underperform the Bayesian one. In

particular, the α̂F estimates for these irrational investors are all significantly negative in the

out-of-sample periods.

Table 4B reports the results for the average long-run returns and the intercept estimates of

the long-run return regression (25) given by three forward periods, 12, 36 and 60 months. It is

apparent that the findings in Table 4B remain valid in most cases, except for the over-confident

investor. According to the results of the investment opportunity set B and C, the over-confident

investor has positive and significant intercept estimates α̂L and higher average long-run returns.

Figure 5A and 5B

In order to verify the robustness of our findings, we assess the empirical performances of

portfolio allocations under various belief formation algorithms over different subsample pe-

riods. Table 5A and 5B report the four empirical performance results over four subsample

periods, including 1970:1 1979:12 (Panel A of Table 5A), 1990:1 1999:12 (Panel B of Table 5A),

1953:1 1979:12 (Panel C of Table 5B) and 1980:1 2007:12 (Panel D of Table 5B). According to

the results over these subsample periods, our findings from Table 4A and 4B continue to be

valid in most cases. In sum, the optimistic investor has the best performance and in turn is

superior to the Bayesian one, in particular for the Set B and Set C. In contrast, the pessimistic

investor has the worst performance. Our findings are consistent with De Long, Shleifer, Sum-

mers and Waldman (1991), and Kogan, Ross, Wang and Westerfield (2006) that the optimistic

investor might earn more wealth than the rational Bayesian one.

6.3 Implications of the Empirical Performance Results

Outperformance and Predictability In this subsection, we start off by offering a poten-

tial explanation for the outperformance of the optimistic investor. We argue that our above
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empirical findings concerning the effect of the predictability from the term spread and the log

dividend-price ratio.

Table 6

To illustrate the benefit from the predictability, we compare the empirical performances of

the portfolio allocations associated with the Bayesian and optimistic belief algorithms based on

the restricted and unrestricted investment opportunity sets. Specifically, the restricted one that

removes the predictors off is expressed as a simple Markov-switching (MS) model with regime-

dependent drifts, whereas the unrestricted one is given by the MS-VAR(1) model of (1). Table 6

reports the results. “MS (MSVAR)” indicates the results based on the restricted (unrestricted)

investment opportunity set. It is seen that when the predictability is off, the Bayesian investor

significantly outperforms the optimistic one. In contrast, while the predictability is invoked,

the optimistic investor turns the tables around. This result has a solid economic interpretation.

The predictability can help investors improve their forecasts on the state of regime as well as

the future stock returns. The duration and the inferred bullish regimes are supposed to larger

than the those of the bearish regime. While the optimistic investor is inclined to bet on good

states, chasing the assets with higher rewards in good times, it would cause higher expected

returns for the optimistic investor (although she takes more risks).

The Effects of Four States In this study we impose a strong assumption of the number

of states to simplify our analysis in distorted beliefs. Recent articles like Guidolin and Tim-

mermann (2007) provide the empirical evidence that the most appropriate number of states is

four, characterizing by crash, slow growth, bull and recovery states. In related to four-state

investment opportunity set specification, our findings remain valid if the predictability from

the predictors, such as the log dividend-price ratio and the term spread, continues. This is

particularly true when the duration of the bull regime is longer. According to the results of

Guidolin and Timmermann (2007), the predictor, the dividend yield, has the substantial pre-

dictive power and the duration of the bull (and slow growth) regime is longer. As a result, our

findings are expected to be robust to the four-state framework.

7 Conclusion

The traditional finance theory advocates that rational investors will benefit from the price

correction and irrational investors will lose their wealth by their sentiment-driven investment

strategy. The behavioral finance theory declare that irrational investors with bullish sentiment

would bear more risk than rational ones and may earn higher a higher expected return. It

appears that a higher expected return in investment for irrational investors is possible on

25



terms of theoretical modelling. In this study, we empirically investigate this issue by utilizing a

dynamic asset allocation model to explore the empirical performance of the portfolio allocations

associated with a variety of belief formation mechanisms.

Our findings are as follows.(i) in comparison with the Bayesian investor, the optimistic one

would like to bet on good states of the economy, more aggressively chasing /shorting the assets

with higher rewards in good/bad times. In contrast, the pessimistic investor would take the

opposite positions to the optimistic one; (ii) the optimistic investor has the best empirical

performance of the portfolio allocation and in turn outperforms the Bayesian one. The other

irrational investors underperform the Bayesian one in most cases; (iii) while the predictability

in the investment opportunity set is removed, the outperformance of the optimistic investor

disappears. It suggests that the benefit from the intertemporal hedging induced by the return

predictability is a potential explanation to the domination of the optimistic investor in our

analysis.

For tractability, our analysis did not consider (i) the transaction cost; (ii) the borrowing

constraints; (iii) short sell constraints; (iv) the parameter uncertainty; (v) taxes. We also

assume a parsimonious two-state MS-VAR model for the investment opportunity set. Extension

of our analysis can involve the above restrictions and may yield unexpected results. What is

more important is that using the investor’s asset allocation perspective to complement the

researches in these behavioral issues is imperative.
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Appendix

A Derivations of (15) and (17)

Step 1: Based on the model specification of the MS-VAR process (1), log-linearized budget

constraint (11) and the conjectured functional forms (14), we can obtain the following moments.

Ê (j,i)
t (δt+1) = Hδ(Φ◦(i) + Φ1(i)zt),

̂VAR(j,i)

t (δt+1) = diag(Σδ(i)) = σ2
δ(i),

̂COV(j,i)

t

(
δt+1, rp,t+1

)
= Σδ(i)αt,

and

̂COV(j,i)

t (δt+1, ct+1 − wt+1) = HδΣε(i)b1(i) + HδΣε(i)(B2(i) + B2(i)′)(Φ◦(i) + Φ1(i)zt),

= Λ◦(i) + Λ1(i)zt,

where diag(A) indicates the vector of diagonal elements in matrix A and

Λ◦(i) = HδΣε(i)b1(i) + HδΣε(i)(B2(i) + B2(i)′)Φ◦(i),

Λ1(i) = HδΣε(i)(B2(i) + B2(i)′)Φ1(i).

Step 2: Plugging the log-linearized budget constraint (10) into the log-linearized Euler equation

(13) and stacking up all risky assets being a n× 1 vector, we have

J∑
j=1

J∑
i=1

Probι(st+1 = i, st = j|Ωt)

[
Ê (j,i)
t (δt+1) +

1

2
̂VAR(j,i)

t (δt+1)

−
(
θ

ψ

) ̂COV(j,i)

t (δt+1, ct+1 − wt+1)− γ ̂COV(j,i)

t (δt+1, rp,t+1)

]
= 0.

Inserting the results of the moments computed in Step 1 yields

J∑
j=1

J∑
i=1

Probι(st+1 = i, st = j|Ωt)
[
Hδ

(
Φ◦(i) + Φ1(i)zt+1

)
+

1

2
σ2
δ(i)

]

=
J∑
j=1

J∑
i=1

Probι(st+1 = i, st = j|Ωt)

[(
θ

ψ

)
(Λ◦(i) + Λ1(i)zt) + γΣδ(i)αt

]
.

As a result, we can obtain the optimal portfolio weights

αt(π
ι
t|t) = A◦(π

ι
t|t) + A1(πιt|t)zt, (26)

where

A◦(πt|t) =
1

γ
Σ
−1

δ

 J∑
j=1

J∑
i=1

πιt|t(j)·Probι(st+1 = i|st = j)
(
HδΦ◦(i) +

1

2
σ2
δ(i)

)
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+

(
1− 1

γ

)
Σ
−1

δ

 J∑
j=1

J∑
i=1

πιt|t(j)·Probι(st+1 = i|st = j)

(
−Λ◦(i)

1− ψ

) ,
A1(πt|t) =

1

γ
Σ
−1

δ

 J∑
j=1

J∑
i=1

πιt|t(j)·Probι(st+1 = i|st = j)HδΦ1(i)


+

(
1− 1

γ

)
Σ
−1

δ

 J∑
j=1

J∑
i=1

πιt|t(j)·Probι(st+1 = i|st = j)

(
−Λ1(i)

1− ψ

) ,
Σδ =

J∑
j=1

J∑
i=1

πιt|t(j)·Probι(st+1 = i|st = j)Σδ(i).

Step 3: In order to compute the optimal log consumption-wealth ratio, we have to know the

following two moments.

Ê (j,i)
t (rp,t+1) = r̄ +α′tÊ

(j,i)
t (δt+1) +

1

2

(
α′tσ

2
δ(i)−α′tΣδ(i)αt

)
,

= r̄ + (A◦ + A1zt)
′Hδ(Φ◦(i) + Φ1(i)zt) +

1

2
(A◦ + A1zt)

′σ2
δ(i)

− 1

2
(A◦ + A1zt)

′Σδ(i)(A◦ + A1zt),

= Γ(i)
◦ + Γ

(i)
1 zt + Γ

(i)
2 vec(ztz

′
t),

where

Γ(i)
◦ = r̄ + A

′
◦HδΦ◦(i) +

1

2
A
′
◦σ

2
δ(i)−

1

2
A
′
◦Σδ(i)A◦,

Γ
(i)
1 = A

′
◦HδΦ1(i) + Φ◦(i)

′H′δA1 +
1

2
σ2
δ(i)A1 −A

′
◦Σδ(i)A1,

Γ
(i)
2 = vec(A

′
1HδΦ1(i))′ − 1

2
vec(A

′
1Σδ(i)A1)′.

and

̂VAR(j,i)

t [(ct+1 − wt+1) + (1− ψ)rp,t+1]

=
[
Π

(i)
1 Σε(i)Π

(i)′

1 + vec(B2)′V̂ar
(i)

t

(
vec(εt+1ε

′
t+1)

)
vec(B2)

]
+ 2Π

(i)′

1 Σε(i)Π
(i)′

2 zt + vec
(
Π

(i)
2 Σε(i)Π

(i)′

2

)′
vec(ztz

′
t),

= V (i)
◦ + V

(i)
1 zt + V

(i)
2 vec(ztz

′
t).

Step 4: Plugging the above two moments into the difference equation on log consumption-

wealth ratio (16) yields

ct − wt =
J∑
j=1

J∑
i=1

Probι(st+1 = i, st = j|Ωt)

{
ρ(1− ψ)

[
Γ(i)
◦ + Γ

(i)
1 zt + Γ

(i)
2 vec(ztz

′
t)
]

+ ρÊ (j,i)
t

(
b◦ + b′1zt+1 + vec(B2)′vec(zt+1z

′
t+1)

)
− ρψ log β + ρκ
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− 1

2

(
ρθ

ψ

) [
V (i)
◦ + V

(i)
1 zt + V

(i)
2 vec(ztz

′
t)
]}
,

=
J∑
i=1

P i

(
Ξ(i)
◦ + Ξ

(i)
1 zt + Ξ

(i)
2 vec(ztz

′
t)
)
,

where

Ξ(i)
◦ = ρ

[
− ψ log β + κ− 1

2

(
θ

ψ

)
V (i)
◦ + (1− ψ)Γ(i)

◦ + b◦ + b′1Φ◦(i)

+ vec(B2)′vec(Φ◦(i)Φ◦(i)
′) + vec(B2)′vec(Σε(i))

]
,

Ξ
(i)
1 = ρ

[
− 1

2

(
θ

ψ

)
V

(i)
1 + (1− ψ)Γ

(i)
1 + b′1Φ1(i) + 2Φ◦(i)

′(B2 + B′2)Φ1(i)

]
,

Ξ
(i)
2 = ρ

[
− 1

2

(
θ

ψ

)
V

(i)
2 + (1− ψ)Γ

(i)
2 + vec(Φ1(i)′B2Φ1(i))′

]
,

P i =
J∑
j=1

Probι(st+1 = i, st = j|Ωt).

As a result, the parameter vectors and matrix {b◦,b1,B2} in the log consumption-wealth ratio

are given by

b◦(π
ι
t|t) =

J∑
i=1

P iΞ
(i)
◦ ,

b1(πιt|t) =
J∑
i=1

P iΞ
(i)′

1 ,

vec(B2(πιt|t)) =
J∑
i=1

P iΞ
(i)′

2 .

B Numerical Procedure

Thanks for the availability for the analytical solutions that make the numerical procedure quite

simple. The Numerical procedure is identical to that of Cambell, Chan and Viceira (2003). To

facilitate the implementation as well as achieve desirable convergent results, we follow Cambell,

Chan and Viceira (2003) to set ψ = 1. It gives rise to ρ = δ, so that ρ is no longer the

endogenous variable and choosing ρ is equivalent to choosing δ. Fixing the value of γ, β, δ, ω

and initial values {b(0)
◦ ,B

(0)
1 , vec(B

(0)
2 )}, the numerical procedure is the following. We compute

the corresponding {A(1)
◦ , A

(1)
1 }, then we continue to compute the updated {b(1)

◦ ,B
(1)
1 , vec(B

(1)
2 )}.

Continues this iterative procedure until it accomplishes convergence. The convergence criterion

is the norm ||B(n+1)
1 −B

(n)
1 ||+ ||vec(B

(n+1)
2 )− vec(B

(n)
2 )|| < 1e− 5.
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Table 1:
Descriptive Statistics for the Stock Portfolios and Bond

This table reports summary statistic for monthly returns on market portfolio, bond, small
caps, large caps, growth stocks and value stocks. The sample period is 1953:1-2007:12. Panel
A and B reports descriptive statistics and correlation matrix based on the whole sample.
Panel C is based on regime-sorted sample.

Panel A: Summary Statistics for the Portfolio Returns 

 
Market Bond Growth Value Small Caps Large Caps 

Mean 0.0047  0.0023  0.0088 0.0106  0.0140  0.0070  

Standard Dev. 0.0426  0.0083  0.0438 0.0421  0.0538  0.0401  

Skewness -0.7722 0.1959  0.2179 0.3312  0.4881  0.0596  

Kurtosis 6.0021  5.8673  3.8398 4.3570  4.1703  3.9143  

Maximum 0.1489  0.0384  0.2123 0.2095  0.2532  0.1839  

Minimum -0.2631 -0.0405  -0.1090 -0.1035 -0.1091 -0.1086  

 
 Panel B: Correlation Matrix 

Market 1 

Growth 0.6489  1 

Value 0.6574  0.7196  1 

Small Caps 0.4800  0.6306  0.7012 1 

Large Caps 0.7739  0.8690  0.7717 0.5762  1 

Bond 0.0961  0.1530  0.1960 0.0559  0.1882  1 

Term Spread 0.1056  0.0293  0.0825 0.0353  0.0777  0.1847  1 

Ln(D/P) -0.0394 -0.0339  -0.0211 -0.0428 -0.0308 -0.0001  -0.0557 1 

Panel C: Summary Statistics for the Regime-Sorted Portfolio Returns  

 Regime 1:Bullish Regime 

Market Bond Growth Value Small Caps Large Caps 

 Mean 0.0076  0.0022  0.0060 0.0088  0.0102  0.0071  

Standard Dev. 0.0371  0.0072  0.0398 0.0381  0.0478  0.0358  

Skewness -0.3307 -0.2764  -0.1413 -0.0880 0.1041  -0.1782  

Kurtosis 4.2679  6.4286  3.0820 -2.9897 3.1862  3.2669  

Maximum 0.1489  0.0300  0.1292 0.1294  0.1727  0.1196  

Minimum -0.1767 -0.0405  -0.1090 -0.1024 -0.1089 -0.1086  
 

Regime 2:Bearish Regime 

Market Bond Growth Value Small Caps Large Caps 

 Mean -0.0093 0.0029  0.0408 0.0317  0.0519  0.0059  

Standard Dev. 0.0612  0.0123  0.0696 0.0716  0.0871  0.0700  

Skewness -0.7522 0.5473  -0.0068 0.3785  0.1259  0.4160  

Kurtosis 4.6960  4.3992  2.6102 3.0289  2.5874  -0.4463  

Maximum 0.1273  0.0384  0.2123 0.2095  0.2532  0.1839  

Minimum -0.2631 -0.0232  -0.0862 -0.1035 -0.1091 -0.1023  
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Table 2A:
Parameter Estimates of the MS-VAR(1) Model for the Investment Opportunity Set A
This table reports parameter estimates of the MS-VAR(1) model for the investment opportunity set A:

zt+1 = Φ◦(st+1) + Φ1(st+1)zt + εt+1

where εt+1 ∼ N (0,Σε(st+1)) and st+1 is the unobserved regime variable governed by a two-state, first-
order Markov Chain. The panels of Intercepts and Autoregressive Coefficients report the estimates
of Φ◦ and Φ1. The diagonals of the Volatility and Correlation panel are the volatility estimates and
the off-diagonals are the correlation ones. The sample period is 1953:1-2007:12. Standard errors are in
parentheses.

 

܌ܖܗ۰ ܜܜ܍ܓܚ܉ۻ ܕܚ܍܂ ܜ܌܉܍ܚܘ܁ ሺ۲ܖۺ ⁄۾ ሻ ܜ  ܜ

Intercepts 
Regime 1 0.0163  0.0004  0.0001  -0.0038  

(0.0158)  (0.0027) (0.0001)  (0.0070)  
Regime 2 0.0858  0.0044  0.0000  -0.0369  

(0.0450)  (0.0088) (0.0004)  (0.0201)  
Autoregressive coefficients 

Regime 1

 
 
 
 
 
 
 

 ૚ିܜܜ܍ܓܚ܉ۻ

 ૚ିܜ܌ܖܗ۰

૚ିܜ܌܉܍ܚܘ܁ ܕܚ܍܂

ሺ۲ܖۺ ⁄۾ ሻିܜ૚ 

܍ܓܚ܉ۻ

-0.0465  -0.0256 0.0002  0.0244  
(0.0436)  (0.0073) (0.0003)  (0.0191)  
0.9169  0.3883  -0.0116  -0.4481  

(0.2172)  (0.0390) (0.0020)  (0.0970)  
0.5308  1.1874  0.9976  -0.3426  

(1.7753)  (0.3125) (0.0078)  (0.7950)  
0.0067  0.0001  0.0001  0.9982  

(0.0101)  (0.0017) (0.0001)  (0.0045)  
Regime 2

 
 
 
 
 
 
 

ܜ
 

 ૚ିܜ

 ૚ିܜ܌ܖܗ۰

૚ିܜ܌܉܍ܚܘ܁ ܕܚ܍܂

ሺ۲ܖۺ ⁄۾ ሻିܜ૚ 

0.1729  -0.0514 -0.0004  -0.0574  
(0.1017)  (0.0199) (0.0009)  (0.0450)  
1.3296  0.3079  0.0201  -0.5636  

(0.4872) (0.0983) (0.0047)  (0.2166)  
2.8851  1.6811  0.8575  -0.2132  

(0.2530)  (0.9498) (0.0395)  (0.5719)  
0.0679  0.0032  -0.0001  0.9703  

(0.0300)  (0.0059) (0.0003) (0.0135)  
Volatility and Correlations 

Regime 1

 
 
 
 
 
 
 

ܜܜ܍ܓܚ܉ۻ

 
 

܌ܖܗ۰  

܌܉܍ܚܘ܁ ܕܚ܍܂  

ሺ۲ܖۺ ⁄۾ ሻ  

܍ܓܚ܉ۻ

0.0335  
(0.0014)  

ܜ 0.0434  0.0058  
(0.0000)  (0.0006) 

ܜ 0.0688  -0.0275 0.0001  
(0.0002)  (0.0000) (0.0002)  

ܜ -0.9602  -0.0473 -0.1002  0.0150  
(0.0001)  (0.0022) (0.0020)  0.0000  

Regime 2

 
 
 
 
 
 
 

ܜܜ
  

܌ܖܗ۰  

܌܉܍ܚܘ܁ ܕܚ܍܂  

ሺ۲ܖۺ ⁄۾ ሻ  

0.0612  
(0.0003)  

ܜ -0.0011  0.0121  
(0.0002)  (0.0000) 

ܜ 0.0747  -0.0402 0.0005  
(0.0002)  (0.0052) (0.0011)  

ܜ -0.9471  -0.0079 -0.0796  0.0273  
(0.0008)  (0.0001) (0.0008) (0.0014)  

Transition Matrix 
Regime 1 

Regime 1 0.9091  0.0909  
- (0.0303) 

Regime 2 0.3945  0.6055  
(0.0747)  - 
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Table 2B:
Parameter Estimates of the MS-VAR(1) Model for the Investment Opportunity Set B
This table reports parameter estimates of the MS-VAR(1) model for the investment opportunity set B:

zt+1 = Φ◦(st+1) + Φ1(st+1)zt + εt+1

where εt+1 ∼ N (0,Σε(st+1)) and st+1 is the unobserved regime variable governed by a two-state, first-
order Markov Chain. The panels of Intercepts and Autoregressive Coefficients report the estimates
of Φ◦ and Φ1. The diagonals of the Volatility and Correlation panel are the volatility estimates and
the off-diagonals are the correlation ones. The sample period is 1953:1-2007:12. Standard errors are in
parentheses.

 
      

ܛܘ܉۱ ܔܔ܉ܕ܁  ܍܏ܚ܉ۺ ܜܛܘ܉۱ ܌ܖܗ۰ ܕܚ܍܂ ܌܉܍ܚܘ܁ ሺ۲ܖۺ ⁄۾ ሻܜ ܜ ܜ ܜ 
Intercepts      
Regime 1 0.0211  0.0181  -0.0010 0.0000  -0.0055  

 (0.0184)  (0.0141) (0.0025) (0.0001)  (0.0063)  
Regime 2 -0.0591  0.0393  0.0146  0.0007  -0.0292  

 (0.0752)  (0.0605) (0.0133) (0.0005)  (0.0280)  
Autoregressive coefficients     

   Regime 1   
૚ିܜܛܘ܉۱ ܔܔ܉ܕ܁

૚ିܜܛܘ܉۱ ܍܏ܚ܉ۺ

૚ିܜ܌ܖܗ۰

૚ିܜ܌܉܍ܚܘ܁ ܕܚ܍܂

ሺ۲ܖۺ ⁄۾ ሻିܜ૚

૚ିܜܛܘ܉۱ ܔܔ܉ܕ܁

૚ିܜܛܘ܉۱ ܍܏ܚ܉ۺ

૚ିܜ܌ܖܗ۰

૚ିܜ܌܉܍ܚܘ܁ ܕܚ܍܂

ሺ۲ܖۺ ⁄۾ ሻିܜ૚

 0.1196  -0.0605 -0.0152 0.0000  0.0138  
 (0.0509)  (0.0369) (0.0065) (0.0002)  (0.0164)  

 0.1006  0.0050  -0.0116 0.0001  0.0005  
 (0.0671)  (0.0496) (0.0087) (0.0003)  (0.0219)  

 0.6647  0.7690  0.3915  -0.0098  -0.3750  
 (0.2646)  (0.2012) (0.0360) (0.0012)  (0.0902)  

2.5102  2.0933  1.3171  0.9847  -0.9531  
 (2.1362)  (1.6321) (0.2897) (0.0094)  (0.7300)  

 0.0117  0.0093  -0.0008 0.0000  0.9965  
 (0.0018)  (0.0091) (0.0016) (0.0001)  (0.0041)  
   Regime 2   

 -0.4030  -0.0475 -0.0109 -0.0004  -0.0570  
 (0.1547)  (0.1239) (0.0273) (0.0011)  (0.0574)  

 0.3613  0.2250  -0.0733 -0.0021  -0.0918  
 (0.2493)  (0.2011) (0.0450) (0.0018)  (0.0917)  

 -0.0920  0.7071  0.3186  0.0327  -0.6663  
 (0.8393)  (0.6806) (0.1496) (0.0062)  (0.3165)  

-0.0288  2.1353  0.9607  0.8919  2.1547  
 (8.6138)  (7.0339) (1.5395) (0.0611)  (3.2326)  

 -0.0757  0.0245  0.0092  0.0005  0.9724  
 (0.0509)  (0.0408) (0.0090) (0.0004)  (0.0189)  

Volatility and Correlations     
   Regime 1   

ܛܘ܉۱ ܔܔ܉ܕ܁

ܛܘ܉۱ ܍܏ܚ܉ۺ

܌ܖܗ۰

܌܉܍ܚܘ܁ ܕܚ܍܂

ሺ۲ܖۺ ⁄۾ ሻ

ܛܘ܉۱ ܔܔ܉ܕ܁

ܛܘ܉۱ ܍܏ܚ܉ۺ

܌ܖܗ۰

܌܉܍ܚܘ܁ ܕܚ܍܂

ሺ۲ܖۺ ⁄۾ ሻ

      0.0461 ܜ
 (0.0014)      

     0.0350  0.7670 ܜ
 (0.4380)  (0.0000)    

    0.0061  0.0845  0.0137 ܜ
 (0.0003)  (0.0000) (0.0003)   

   0.0002  0.0051 0.0062-  0.0328 ܜ
 (0.0000)  (0.0002) (0.0001) (0.0072)   

  0.0157  0.0207- 0.0669- 0.9526-  0.7977- ܜ
 (0.0058)  (0.0018) (0.0001) (0.0037)  (0.0013)  
        Regime 2   

      0.0800 ܜ
 (0.0012)      

     0.0655  0.2196 ܜ
 (0.0005)  (0.0007    

    0.0142  0.2386  0.0960 ܜ
 (0.0002)  (0.0000 (0.0002)   

   0.0006 0.1171-  0.0657  0.0457 ܜ
 (0.0082)  (0.0018 (0.0001) (0.0038)   

  0.0301  0.0801-  0.0149 0.2375-  0.0536 ܜ
 (0.0001)  (0.0036 (0.0000) (0.0036)  (0.0026)  
 Regime 1 Regime 2    

Regime 1 0.9425  0.0575     
 - (0.0212)    

Regime 2 0.5193  0.4807     
 (0.0866)  -    

36



Table 2C:
Parameter Estimates of the MS-VAR(1) Model for the Investment Opportunity Set C
This table reports parameter estimates of the MS-VAR(1) model for the investment opportunity set C:

zt+1 = Φ◦(st+1) + Φ1(st+1)zt + εt+1

where εt+1 ∼ N (0,Σε(st+1)) and st+1 is the unobserved regime variable governed by a two-state, first-
order Markov Chain. The panels of Intercepts and Autoregressive Coefficients report the estimates
of Φ◦ and Φ1. The diagonals of the Volatility and Correlation panel are the volatility estimates and
the off-diagonals are the correlation ones. The sample period is 1953:1-2007:12. Standard errors are in
parentheses.

 
      

ܐܜܟܗܚ۵  ܍ܝܔ܉܄ ܌ܖܗ۰ ܕܚ܍܂ ܌܉܍ܚܘ܁ ሺ۲ܖۺ ⁄۾ ሻܜ ܜ ܜ ܜ ܜ 
Intercepts      
Regime 1 0.0119  0.0142  -0.0012 0.0000  -0.0019  

 (0.0154)  (0.0146) (0.0025) (0.0001)  (0.0062)  
Regime 2 0.0100  0.0569  0.0177  0.0010  -0.0815  

 (0.0675)  (0.0657) (0.0150) (0.0006)  (0.0345)  
Autoregressive coefficients     

   Regime 1   
૚ିܜܐܜܟܗܚ۵

૚ିܜ܍ܝܔ܉܄

૚ିܜ܌ܖܗ۰

૚ିܜ܌܉܍ܚܘ܁ ܕܚ܍܂

ሺ۲ܖۺ ⁄۾ ሻିܜ૚

૚ିܜܐܜܟܗܚ۵

૚ିܜ܍ܝܔ܉܄

૚ିܜ܌ܖܗ۰

૚ିܜ܌܉܍ܚܘ܁ ܕܚ܍܂

ሺ۲ܖۺ ⁄۾ ሻିܜ૚

 0.0423  -0.0087 -0.0254 -0.0003  -0.0196  
 (0.0563)  (0.0533) (0.0090) (0.0003)  (0.0226)  

  -0.1003  0.0586  -0.0038 0.0004  0.0374  
 (0.0592)  (0.0564) (0.0095) (0.0003)  (0.0238)  

 0.9136  0.8715  0.3871  -0.0102  -0.4365  
 (0.2240)  (0.2138) (0.0362) (0.0012)  (0.0901)  

1.3362  2.1163  1.3293  0.9860  -0.6858  
 (1.7949)  (1.6911) (0.2910) (0.0096)  (0.7187)  

 0.0057  0.0069  -0.0009 0.0000  0.9988  
 (0.0018)  (0.0094) (0.0016) (0.0001)  (0.0040)  
   Regime 2   

 0.2979  -0.0651 -0.0430 -0.0002  -0.1389  
 (0.2221)  (0.2135) (0.0489) (0.0020)  (0.1052)  

  -0.3861  -0.2873 -0.0659 -0.0019  0.0453  
 (0.2185)  (0.2181) (0.0500) (0.0022)  (0.1067)  

 -0.0327  0.9126  0.3965  0.0360  -0.7466  
 (0.7777)  (0.7631) (0.1697) (0.0073)  (0.3579)  

2.4317  6.1492  0.4640  0.9106  -1.2290  
 (7.4603)  (7.2594) (1.7176) (0.0695)  (3.4869)  

 -0.0190  0.0213  0.0114  0.0007  0.9355  
 (0.0466)  (0.0449) (0.0103) (0.0004)  (0.0241)  

Volatility and Correlations     
   Regime 1   

ܐܜܟܗܚ۵

܍ܝܔ܉܄

܌ܖܗ۰

܌܉܍ܚܘ܁ ܕܚ܍܂

ሺ۲ܖۺ ⁄۾ ሻ

ܐܜܟܗܚ۵

܍ܝܔ܉܄

܌ܖܗ۰

܌܉܍ܚܘ܁ ܕܚ܍܂

ሺ۲ܖۺ ⁄۾ ሻ

      0.0391 ܜ
 (0.0011)      

     0.0372  0.7903  ܜ
 (0.0003)  (0.0000)    

    0.0062  0.0954  0.0669 ܜ
 (0.0003)  (0.0000) (0.0002)   

   0.0002  0.0088  0.0030  0.0138- ܜ
 (0.0000)  (0.0002) (0.0002) (0.0066)   

  0.0158  0.0194- 0.0845- 0.8620-  0.9264- ܜ
 (0.0059)  (0.0020) (0.0001) (0.0043)  (0.0014)  
   Regime 2   

      0.0652 ܜ
 (0.0013)      

     0.0660  0.4451  ܜ
 (0.0005)  (0.0007)    

    0.0149  0.2045  0.2152 ܜ
 (0.0002)  (0.0000) (0.0002)   

   0.0006 0.1754-  0.1117  0.1723 ܜ
 (0.0087)  (0.0020) (0.0001) (0.0043)   

  0.0316  0.0472-  0.1361 0.1747-  0.0363 ܜ
 (0.0001)  (0.0043) (0.0001) (0.0044)  (0.0031)  
 Regime 1 Regime 2    

Regime 1 0.9446  0.0554     
 - (0.0101)    

Regime 2 0.5978  0.4022     
 (0.1185)  -    
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Table 3:
Empirical Asset Allocations for Three Investment Opportunity Sets

This table reports the results of the mean optimal portfolio weights that average the whole sample period
and two subsample periods sorted by regimes. It covers seven belief formation algorithms and three
investment opportunity sets. The parameter values of the investment opporunity set are given in Table
2A, 2B and 2C and the preference parameters are ψ = 0.99, β = 0.92, γ = 5, ω = 0.9.

        

 Bayesian 
Representative- 

Biased 
Over-Confident Optimistic Pessimistic Reversal Momentum

   Set A     
Stock 0.974  0.800  0.892  1.697  -0.342  0.171  0.769  
Bond 6.837  6.056  6.064  10.641  2.530  3.869  6.033  
Cash -6.810  -5.855  -5.956  -11.338  -1.189  -3.040  -5.802 
Regime 1:Bullish Regime       
Stock 1.033  0.848  0.919  1.675  -0.350  0.062  0.857  
Bond 7.010  6.159  6.129  10.483  2.411  3.315  6.275  
Cash -7.043  -6.007  -6.048  -11.159  -1.061  -2.377  -6.132 
Regime 2:Bearish Regime      
Stock 0.685  0.562  0.763  1.802  -0.300  0.704  0.341  
Bond 5.988  5.551  5.745  11.413  3.109  6.575  4.854  
Cash -5.673  -5.113  -5.508  -12.214  -1.809  -6.278  -4.195 
        
   Set B     
Small Caps 0.557  0.569  0.605  0.470  1.000  0.989  0.630  
Large Caps 0.038  0.035  -0.016  0.134  -0.149  -0.160  -0.015 
Bond 3.257  3.112  2.962  4.172  -0.247  0.114  2.640  
Cash -2.852  -2.717  -2.551  -3.776  0.396  0.058  -2.255 
Regime 1:Bullish Regime       
Small Caps 0.546  0.558  0.584  0.427  1.028  1.000  0.622  
Large Caps 0.049  0.046  0.014  0.196  -0.152  -0.138  -0.006 
Bond 3.585  3.424  3.207  4.439  -0.231  -0.020  2.946  
Cash -3.180  -3.028  -2.804  -4.062  0.355  0.158  -2.562 
Regime 2:Bearish Regime      
Small Caps 0.669  0.685  0.824  0.900  0.721  0.876  0.707  
Large Caps -0.066  -0.071  -0.316  -0.489  -0.119  -0.383  -0.102 
Bond -0.027  -0.009  0.512  1.505  -0.409  1.449  -0.409 
Cash 0.424  0.394  -0.021  -0.915  0.807  -0.942  0.805  
        
   Set C     
Growth 0.259  0.292  0.263  0.046  0.653  0.590  0.374  
Value 0.525  0.511  0.535  0.626  0.638  0.640  0.502  
Bond 2.792  2.646  2.549  3.884  -1.130  -0.718  1.986  
Cash -2.577  -2.450  -2.347  -3.556  0.839  0.488  -1.862 
Regime 1:Bullish Regime       
Growth 0.228  0.264  0.261  0.056  0.643  0.621  0.341  
Value 0.537  0.521  0.532  0.614  0.655  0.641  0.509  
Bond 3.155  2.991  2.836  4.206  -1.045  -0.789  2.336  
Cash -2.920  -2.776  -2.628  -3.876  0.747  0.527  -2.187 
Regime 2:Bearish Regime                            
Growth 0.617  0.628  0.283  -0.069  0.769  0.230  0.758  
Value 0.386  0.398  0.576  0.757  0.434  0.631  0.415  
Bond -1.440  -1.389  -0.800  0.132  -2.122  0.112  -2.096 
Cash 1.437  1.362  0.941  0.180  1.919  0.028  1.923  
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Table 4A:
Comaprison of the Empirical Performances for Investors with Different Belief Formation

Algorithms I
This table reports the resuls of the empirical performance of the portfolio allocations asso-
ciated various belief formation algorithms. Panel A represents the metrics associated with
the sample averge of portfolio returns and the Graham and Harvey’s measures. Panel B
reports the intercept estimates of the Fama-French four-factors model and the Newey-West
standard errors are in the parentheses. The sample period is 1953:1-2007:12. Set A (or B,
C) indicates the investment opportunity set. Boldfaced numbers in Panel B indicates the
corresponding numbers that are significant at 95% significant level.

        Panel A:  Summary Statistics of the Portfolio Returns and GH Metrics 

 Bayesian 
Representative 

-Biased 
Over-Confident Optimistic Pessimistic Reversal Momentum

In-Sample         
   Set A     
ુܜ,ܘܚ  0.0756 0.0700  0.0741  0.1111 0.0429  0.0690  0.0671 
,ܘܚ െ ુ,ܘܚ

ܜ ܜ
۰    -0.0056  -0.0015  0.0355 -0.0327 -0.0066  -0.0085 

GH1 0.0591 0.0554  0.0553  0.0773 0.0334  0.0440  0.0536 
GH SCORE 0.0760 0.0732  0.0692  0.0882 0.0498  0.0524  0.0724 
   Set B     
ુܜ,ܘܚ  0.0533 0.0500  0.0569  0.0819 0.0211  0.0399  0.0426 
,ܘܚ െ ુ,ܘܚ

ܜ ܜ
۰    -0.0033  0.0036  0.0286 -0.0322 -0.0134  -0.0107 

GH1 0.0434 0.0410  0.0456  0.0650 0.0146  0.0278  0.0347 
GH SCORE 0.0642 0.0624  0.0647  0.0831 0.0254  0.0386  0.0554 
   Set C     
ુܜ,ܘܚ  0.0537 0.0507  0.0568  0.0779 0.0209  0.0356  0.0421 
,ܘܚ െ ુ,ܘܚ

ܜ ܜ
۰    -0.0030  0.0030  0.0241 -0.0328 -0.0182  -0.0116 

GH1 0.0442 0.0418  0.0454  0.0618 0.0140  0.0237  0.0346 
GH SCORE 0.0662 0.0640  0.0642  0.0800 0.0236  0.0330  0.0561 
        
Out-of-Sample       
   Set A     
ુܜ,ܘܚ  0.0860 0.0814  0.0797  0.1025 0.0348  0.0345  0.0710 
,ܘܚ െ ુ,ܘܚ

ܜ ܜ
۰    -0.0046  -0.0063  0.0166 -0.0512 -0.0515  -0.0150 

GH1 0.0589 0.0542  0.0560  0.0746 0.0174  0.0213  0.0544 
GH SCORE 0.0753 0.0713  0.0697  0.0848 0.0257  0.0252  0.0730 
   Set B     
ુܜ,ܘܚ  0.0989 0.0942  0.0892  0.1373 0.0159  0.0245  0.0817 
,ܘܚ െ ુ,ܘܚ

ܜ ܜ
۰    -0.0047  -0.0098  0.0383 -0.0830 -0.0745  -0.0172 

GH1 0.0403 0.0389  0.0338  0.0507 0.0035  0.0013  0.0337 
GH SCORE 0.0590 0.0587  0.0475  0.0645 0.0060  0.0019  0.0533 
   Set C     
ુܜ,ܘܚ  0.0895 0.0862  0.0839  0.1179 0.0282  0.0343  0.0751 
,ܘܚ െ ુ,ܘܚ

ܜ ܜ
۰    -0.0033  -0.0056  0.0284 -0.0613 -0.0552  -0.0144 

GH1 0.0364 0.0354  0.0316  0.0430 0.0088  0.0066  0.0312 
GH SCORE 0.0541 0.0537  0.0444  0.0553 0.0147  0.0092  0.0501 
        

          
         Panel B: Intercept Estimates of  હ۴ෞ

              
  Representative- 

Biased Over-Confident Optimistic Pessimistic Reversal Momentum

     
In-Sample        
Set A  -0.0054  -0.0011  0.0357 -0.0323 -0.0046  -0.0083 
  (0.0013)  (0.0039)  (0.0118) (0.0050) (0.0099)  (0.0024) 
Set B  -0.0032  0.0039  0.0283 -0.0314 -0.0121  -0.0104 
  (0.0007)  (0.0022)  (0.0054) (0.0034) (0.0045)  (0.0017) 
Set C  -0.0030  0.0036  0.0245 -0.0324 -0.0168  -0.0113 
  (0.0005)  (0.0019)  (0.0048) (0.0031) (0.0038)  (0.0017) 
Out-of-Sample       
        
Set A  -0.0027  -0.0081  0.0131 -0.0429 -0.0457  -0.0129 
  (0.0013)  (0.0037)  (0.0061) (0.0119) (0.0111)  (0.0033) 
Set B  -0.0031  -0.0113  0.0357 -0.0779 -0.0725  -0.0159 
  (0.0010)  (0.0036)  (0.0071) (0.0134) (0.0125)  (0.0031) 
Set C  -0.0020  -0.0063  0.0259 -0.0564 -0.0523  -0.0130 
  (0.0008)  (0.0022)  (0.0054) (0.0075) (0.0069)  (0.0021) 
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Table 4B:
Comaprison of the Empirical Performances for Investors with Different Belief Formation

Algorithms II
This table reports the resuls of the empirical performance of the portfolio allocations asso-
ciated various belief formation algorithms. Panel A represents the metrics associated with
the sample averge of long-run portfolio returns. Panel B reports the intercept estimates of
the long-run return regression model and the Newey-West standard errors are in the paren-
theses. The sample period is 1953:1-2007:12. Set A (or B, C) indicates the investment
opportunity set. Boldfaced numbers in Panel B indicates the corresponding numbers that
are significant at 95% significant level.

ુ Panel A:Sample Averages of the Long-Run Returnsܜ܀ۺ (ૌ)    
      

 Bayesian 
Representative 

-Biased 
Over-Confident Optimistic Pessimistic Reversal Momentum

   τ =12M     
Set A 0.9142  0.8468  0.8964  1.3453 0.5192 0.8378  0.8105 
Set B 0.6453  0.6051  0.6893  0.9926 0.2600 0.4888  0.5157 
Set C 0.6507  0.6142  0.6881  0.9432 0.2575 0.4357  0.5105 
   τ =36M     
Set A 2.7800  2.5751  2.7244  4.1015 1.5886 2.5680  2.4604 
Set B 1.9637  1.8397  2.1044  3.0376 0.7848 1.4973  1.5642 
Set C 1.9727  1.8617  2.0904  2.8706 0.7735 1.3259  1.5440 
   τ =60M     
Set A 4.6884  4.3408  4.5942  6.9244 2.6979 4.3594  4.1483 
Set B 3.3091  3.0955  3.5617  5.1510 1.3070 2.5378  2.6261 
Set C 3.3211  3.1318  3.5283  4.8499 1.2899 2.2394  2.5926 

 
Panel B: the intercept estimates   હۺෞ    
    

  
Representative 

-Biased 
Over-Confident Optimistic Pessimistic Reversal Momentum

   τ =12M     

Set A 
 -0.0545  -0.0075  0.3868 -0.3235  -0.0114  -0.0913 
 (0.0131)  (0.0398)  (0.1318) (0.0477)  (0.1081)  (0.0253) 

Set B 
 -0.0411  0.0776  0.3913 -0.3938  -0.1252  -0.1381 
 (0.0057)  (0.0251)  (0.0654) (0.0360)  (0.0483)  (0.0185) 

Set C 
 -0.0398  0.0645  0.3224 -0.4218  -0.2022  -0.1459 
 (0.0039)  (0.0241)  (0.0595) (0.0335)  (0.0404)  (0.0195) 

                  τ =36M                                            

Set A 
 -0.1396  0.0966  1.1451 -0.8072  0.2736  -0.2534 
 (0.0454)  (0.1297)  (0.5109) (0.1833)  (0.4027)  (0.0971) 

Set B 
 -0.1710  0.3592  1.4295 -1.3002  -0.3064  -0.4884 
 (0.0282)  (0.0888)  (0.2474) (0.1474)  (0.2052)  (0.0714) 

Set C 
 -0.1300  0.2760  1.0327 -1.2230  -0.4935  -0.4536 
 (0.0111)  (0.0732)  (0.2158) (0.1062)  (0.1579)  (0.0702) 

   τ =60M     

Set A 
 -0.2079  -0.0816  0.5344 -0.7971  -0.1597  -0.1500 
 (0.0941)  (0.1670)  (0.6891) (0.3101)  (0.5108)  (0.1572) 

Set B 
 -0.3171  0.4445  1.8898 -2.0602  -0.8849  -0.7079 
 (0.0544)  (0.1084)  (0.2829) (0.2932)  (0.3213)  (0.1079) 

Set C 
 -0.1991  0.3206  1.1926 -1.7832  -0.9812  -0.5710 
 (0.0283)  (0.0798)  (0.2585) (0.2079)  (0.2507)  (0.0978) 
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Table 5A:
Empirical Performances for Investors with Different Belief Formation Algorithms during 70’s

and 90’s
This table reports the resuls of the empirical performance of the portfolio allocations asso-
ciated various belief formation algorithms. Panel A represents the metrics associated with
the sample averge of portfolio returns and the Graham and Harvey’s measures. Panel B
reports the intercept estimates of the Fama-French four-factors model and the Newey-West
standard errors are in the parentheses. The sample period is 1953:1-2007:12. Set A (or B,
C) indicates the investment opportunity set. Boldfaced numbers in Panel B indicates the
corresponding numbers that are significant at 95% significant level.

 
 

Panel A: Subsample Period I (1970:1--1979:12) 

 Bayesian 
Representative- 

Biased 
Over-Confident Optimistic Pessimistic Reversal Momentum

ુܜ,ܘܚ         

Set A 0.057  0.054  0.066  0.083  0.046  0.073  0.051  

Set B 0.049  0.043  0.061  0.091  0.011  0.042  0.034  

Set C 0.052  0.048  0.063  0.087  0.019  0.044  0.038  

GH SCORE       

Set A 0.051  0.050  0.050  0.049  0.053  0.046  0.052  

Set B 0.056  0.051  0.061  0.087  0.006  0.032  0.041  

Set C 0.061  0.056  0.063  0.082  0.016  0.035  0.046  

Intercept Estimates of  હ۴ෞ      

  
Representative- 

Biased 
Over-Confident Optimistic Pessimistic Reversal Momentum

Set A  -0.002  0.008  0.021  -0.008  0.015  -0.004  

  (0.002)  (0.009)  (0.021)  (0.008)  (0.016)  (0.004)  

Set B  -0.006  0.011  0.040  -0.036  -0.008  -0.015  

  (0.003)  (0.006)  (0.012)  (0.007)  (0.010)  (0.004)  

Set C  -0.003  0.010  0.032  -0.030  -0.007  -0.013  

  (0.001)  (0.005)  (0.011)  (0.005)  (0.007)  (0.003)  

Panel B: Subsample Period II (1990:1--1999:12) 

 Bayesian 
Representative- 

Biased 
Over-Confident Optimistic Pessimistic Reversal Momentum

ુܜ,ܘܚ         

Set A 0.085  0.076  0.079  0.102  0.029  0.031  0.082  

Set B 0.054  0.052  0.054  0.070  0.021  0.024  0.047  

Set C 0.053  0.052  0.053  0.062  0.026  0.027  0.047  

GH SCORE       

Set A 0.097  0.090  0.088  0.104  0.035  0.038  0.094  

Set B 0.078  0.077  0.079  0.093  0.026  0.030  0.070  

Set C 0.080  0.079  0.079  0.087  0.037  0.039  0.073  

Intercept Estimates of  હ۴ෞ      

  
Representative- 

Biased 
Over-Confident Optimistic Pessimistic Reversal Momentum

Set A  -0.010  -0.007  0.017  -0.059  -0.055  -0.003  

  (0.002)  (0.005)  (0.007)  (0.009)  (0.010)  (0.002)  

Set B  -0.001  0.000  0.015  -0.030  -0.028  -0.006  

  (0.000)  (0.001)  (0.002)  (0.005)  (0.005)  (0.001)  

Set C  -0.002  0.000  0.008  -0.024  -0.022  -0.006  

  (0.001)  (0.000)  (0.002)  (0.005)  (0.005)  (0.001)  

      

41



Table 5B:
Empirical Performances for Investors with Different Belief Formation Algorithms during

1953:1-1979:12 and 1980:1-2007:12
This table reports the resuls of the empirical performance of the portfolio allocations asso-
ciated various belief formation algorithms. Panel A represents the metrics associated with
the sample averge of portfolio returns and the Graham and Harvey’s measures. Panel B
reports the intercept estimates of the Fama-French four-factors model and the Newey-West
standard errors are in the parentheses. The sample period is 1953:1-2007:12. Set A (or B,
C) indicates the investment opportunity set. Boldfaced numbers in Panel B indicates the
corresponding numbers that are significant at 95% significant level.

 

 
   

Panel C: Subsample Period III (1953:1--1979:12) 

 Bayesian 
Representative- 

Biased 
Over-Confident Optimistic Pessimistic Reversal Momentum

ુܜ,ܘܚ         

Set A 0.035  0.035  0.038  0.044  0.029  0.038  0.034  

Set B 0.035  0.032  0.040  0.055  0.016  0.029  0.028  

Set C 0.035  0.033  0.040  0.053  0.013  0.024  0.027  

GH SCORE       

Set A 0.033  0.034  0.028  0.022  0.037  0.022  0.035  

Set B 0.044  0.043  0.044  0.054  0.018  0.026  0.038  

Set C 0.045  0.042  0.043  0.053  0.010  0.018  0.037  

Intercept Estimates of  હ۴ෞ      

  
Representative- 

Biased 
Over-Confident Optimistic Pessimistic Reversal Momentum

Set A  0.000  0.001  0.004  -0.005  0.001  -0.001  

  (0.001)  (0.003)  (0.007)  (0.004)  (0.005)  (0.001)  

Set B  -0.003  0.004  0.018  -0.019  -0.007  -0.007  

  (0.001)  (0.002)  (0.005)  (0.004)  (0.004)  (0.002)  

Set C  -0.002  0.004  0.016  -0.021  -0.012  -0.007  

  (0.000)  (0.002)  (0.004)  (0.004)  (0.004)  (0.001)  

Panel D: Subsample Period IV (1980:1--2007:12) 

 Bayesian 
Representative- 

Biased 
Over-Confident Optimistic Pessimistic Reversal Momentum

ુܜ,ܘܚ         

Set A 0.114  0.104  0.109  0.176  0.057  0.099  0.099  

Set B 0.071  0.067  0.074  0.108  0.026  0.050  0.057  

Set C 0.071  0.068  0.073  0.102  0.028  0.047  0.056  

GH SCORE       

Set A 0.119  0.112  0.110  0.154  0.064  0.082  0.109  

Set B 0.085  0.083  0.085  0.112  0.032  0.051  0.073  

Set C 0.088  0.086  0.085  0.107  0.037  0.048  0.075  

Intercept Estimates of  હ۴ෞ      

  
Representative- 

Biased 
Over-Confident Optimistic Pessimistic Reversal Momentum

Set A  -0.010  -0.004  0.064  -0.058  -0.011  -0.015  

  (0.002)  (0.006)  (0.018)  (0.007)  (0.016)  (0.004)  

Set B  -0.004  0.004  0.037  -0.043  -0.017  -0.014  

  (0.001)  (0.003)  (0.008)  (0.005)  (0.007)  (0.002)  

Set C  -0.004  0.003  0.032  -0.043  -0.021  -0.015  

  (0.001)  (0.002)  (0.007)  (0.004)  (0.006)  (0.002)  
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Table 6:
Comaprison of the Empirical Performances with/without Predictability Between the Bayesian

and Optimistic Investors
This table reports the results of the empirical performance of the portfolio allocations as-
sociated various belief formation algorithms. Panel A represents the sample averge of the

single-period and long-run portfolio returns, r̄
o(orB)
p,t and LR(τ = 60M)o(orB). Panel B re-

ports the intercept estimates of the regression models, (23) and (25), and the Newey-West
standard errors are in the parentheses. The sample period is 1953:1-2007:12. Boldfaced num-
bers in Panel B indicates the corresponding numbers that are significant at 95% significant
level.

 
 

Panel A:                                                  

  Bayesian Optimistic 

۰ܜ,ܘܚ    ܜ܀ۺ 
۰ ( ) ૌ ൌ ૟૙ۻ ܜ ,ܘܚ

۽   ܜ܀ۺ 
۽ ( )ૌ ൌ ૟૙ۻ

                               

    

S 0.0 6 0.2069 .0070 -0.0132 

AR 

Set B

S 0.0 9 0.2799 .0007 0.0796 

AR 

              Set C 

MS  -0.0008 -0.0177 

AR 

 Set A 

M  03 -0

MSV  0.0756 4.6884 0.1111 6.9244 

       

M  03 0

MSV  0.0533 3.3091 0.0819 5.1510 

                

0.0002 0.0365 

MSV  0.0537 3.3211 0.0779 4.8499 

      

 
Panel B:     

Intercept estima s હ۴te ෞ  

  Set A Set B       Set C       

S -  -

 

M  0.0034 0.0030 -0.0014 

  (0.0012) (0.0009) (0.0010) 

MSVAR 

tercept estima s હۺ

 0.0357  0.0283 0.0245 

  (0.0118)  (0.0054) (0.0048) 

In te ෞ                  

MS  -0.4673 -0.3582 

SVAR 

   

-0.2761 

  (0.0603) (0.0523) (0.0532) 

M  0.5344  1.8898 1.1926 

  (0.6891)  (0.2829) (0.2585) 
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Figure 1:
Smoothed Probabilities of Regime 2 for Three Investment Opportunity Sets
The graphs plot the smoothed probabilities of regime 2 for three investment opportunity sets.
The sample period is 1953:1-2007:12. The red bars indicate the bear market periods.
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Figure 2A:
The Investor’s Beliefs and the Demands for Stocks and Bond

This figure show that the demand curves for stocks and bonds with respect to the investor’s
beliefs. The Vertical (horizontal) axis is the demands(beliefs πt|t(st = 1)). The parameter
values of the investment opporunity set are given in Table 2A and the preference parameters
are ψ = 0.99, β = 0.92, γ = 5, 10.

                                       

0.00 

0.20 

0.40 

0.60 

0.80 

1.00 

1.20 

0.
00

 

0.
05

 

0.
10

 

0.
15

 

0.
20

 

0.
25

 

0.
30

 

0.
35

 

0.
40

 

0.
45

 

0.
50

 

0.
55

 

0.
60

 

0.
65

 

0.
70

 

0.
75

 

0.
80

 

0.
85

 

0.
90

 

0.
95

 

Allocation to Stocks

Bayesian Beliefs(RRA=5) Bayesian Beliefs(RRA=10)

 

0.00 

1.00 

2.00 

3.00 

4.00 

5.00 

6.00 

7.00 

8.00 

0.
00

 

0.
05

 

0.
10

 

0.
15

 

0.
20

 

0.
25

 

0.
30

 

0.
35

 

0.
40

 

0.
45

 

0.
50

 

0.
55

 

0.
60

 

0.
65

 

0.
70

 

0.
75

 

0.
80

 

0.
85

 

0.
90

 

0.
95

 

Allocation to Bonds

Bayesian Beliefs(rra=5) Bayesian Beliefs(rra=10)

 

 

 

 

 

 

 

 

 

 

 

45



Figure 2B:
Stock Characteristics and the Portfolio Allocations

This figure plots the portfolio allocations under the investment opportunity set B and C.
The Vertical (horizontal) axis is the demands(beliefs πt|t(st = 1)). The parameter values of
the investment opporunity set are given in Table 2B and 2C and the preference parameters
are ψ = 0.99, β = 0.92, γ = 5.
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Figure 3:
Predictability from the Term Spread and the log Dividend-Price Ratio

The figure plots the demands for stocks and bonds with respect to the investor’s beliefs with
different term spread (log dividend-price ratio) values. The Vertical (horizontal) axis is the
demands(beliefs πt|t(st = 1)). The parameter values of the investment opporunity set are
given in Table 2A and the preference parameters are ψ = 0.99, β = 0.92, γ = 5.
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