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Abstract

Loss aversion, an important element in prospect theory, explains many

types of psychological behavior. In this paper, we formally define an in-

dex of loss aversion as a function of the location, to reflect gain/loss com-

parisons. This index, different from the one defined by Kobberling and

Wakker (2005), can be used to fully describe the characteristics of loss

aversion without making strong assumption on the utility function. Dis-

tinctions of our definition from the previous ones are discussed in details.

We also attempt to fit the special classes of utility functions into our defi-

nition. Indices of different decision makers’ loss aversion can be compared

through Yaari’s acceptance sets or asset demand in investment strategy.

Generally speaking, the more loss averse the agent is, the smaller the

acceptance set is and the less he will invest in risky asset.

EFM Classification Numbers: 720

Keywords: Prospect theory; Cumulative prospect theory; Loss aversion; Accep-

tance set
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Introduction

Most economics models in finance and economics have traditionally assumed

implicitly or explicitly von Neumann and Morgenstern (1953) expected utility

(EU) maximization. However, from the late 1970’s, dissatisfaction with EU

theory begins to emerge on a number of fronts: experimental economists begin

to disclose a lot of evidence that subjects systematically violate the axioms of

EU theory in a variety of settings. Actually, many different versions of non-EU

behaviors are motivated by two simple-thought experiments, the famous Allais

(1953) paradox and Ellsberg (1961) paradox. Allais puzzle refers to the problem

of comparing participants’ choices in two different experiments, each of which

consists of a choice between two gambles. In the first experiment, you are faced

with 100% of winning $1 million or 89% of winning $1 million, 10% of winning

$5 million and another 1% of receiving nothing. In the second experiment, you

can choose either 11% of winning $1 million and 89% of nothing or 10% of win-

ning $5 million and 90% of nothing. The result is that a majority of participants

choose first gamble in experiment I and second in experiment II. However this

result is inconsistent under the EU setting. Ellsberg’s paradox also involves a

comparison of participants’ choices in two different experiments, each of which

consists of a choice between two gambles. Suppose you have an urn containing

30 red balls and 60 other balls that are either black or yellow. You do not know

the distribution, but the total number is fixed 60. In experiment I, you are

faced with A: receiving $100 if you draw a red ball and B: receiving $100 if you

draw a black ball. In experiment II, choice A gives you $100 if you draw a

red or yellow ball and choice B gives you $100 if you draw a black or yellow

ball. The result shows that most of the participants choose A in the first experi-

ment and B in the second, which is also in contradiction with the EU framework.

Microeconomists and some decision analysts feel that EU theory places too
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much constraints on the modeling of rational behavior. This urges the devel-

opment of alternative tractable theories for making decisions. Popular choices

include Tversky and Kahneman’s (1979) prospect theory and Quiggin’s (1981)

rank-dependent theory. Prospect theory is recognized as a descriptive model of

choice under uncertainty. It is different from EU theory in two main aspects:

1. The determinant of utility is not final wealth, but rather gains and losses

relative to a reference point. The value function is normally concave for

gains and convex for losses, a phenomenon called the “reflection effect”.

The value function is generally steeper for losses than it is for gains.

2. Individuals evaluate uncertain prospects with “decision weights” which

are distorted versions of probabilities. In particular, they overweight small

probabilities and underweighted moderate and high probabilities.

Quiggin’s approach, which is an axiomatically sound way to represent prefer-

ences, distorts cumulative probabilities rather than original probabilities. This

automatically avoids the violation of first stochastic dominance.1

Later until 1992, Tversky and Kahneman’s improved version of prospect

theory succeeds in replacing the distorted probabilities in the original theory

with distorted cumulative probabilities. It is both rank and sigh dependent for

gains and losses. As commented by Kobberling and Wakker (2005), it combines

the mathematical elegance of Quiggin’s theory with the empirical realism of

Kahneman and Tversky’s original prospect theory.

1Suppose two prospects P = (p1, x1; · · · ; pn, xn) and Q = (q1, y1; · · · ; qm, ym) (The

definition of this short writing is introduced later.) First mix {xi} and {yj} and rank them

as {zk}, then rewrite P and Q with possible outcomes {zk}.

PT (P ) = u(z1)w(pz
1) +

∑m+n

k=2
u(zk)(w(

∑k

1
pz

i ) − w(
∑k−1

1
pz

i ))

=
∑m+n−1

k=1
(u(zk) − u(zk+1))w(

∑k

1
pz

i
) + u(zm+n)w(

∑m+n

1
pz

i
)

is apparently greater than PT (Q) if P is first stochastic dominant over Q. Note: pz
i denotes

the probability weight assigned for prospect P among outcomes zi.
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Loss aversion, which emerges as an important concept in prospect theory,

reflects the phenomenon that individuals are more sensitive to losses than gains.

This pattern implies that the utility function is steeper for losses than it is for

gains. This theory has been widely used in many applications. Benartzi and

Thaler (1995) discuss equity puzzle and conclude if loss aversion is taken into

account the risk premium can be more substantial than when it is not consid-

ered. This helps explain the empirical fact that stocks have outperformed bonds

over the last century by a surprisingly large margin. Thaler (1980) discusses

endowment effect and concludes that the disparity between willingness-to-pay

and willingness-to-accept can be explained since removing a good from the en-

dowment creates a loss while adding the same good (to an endowment without

it) generates a gain. Therefore, people value more for those owned by them-

selves and less for those belonging to others. The status quo bias is noticed

by Samuelson and Zeckhauser (1988) that most real decision-makers, unlike

those of economics texts, prefer to maintain their current or previous decisions.

Their significant bias towards status quo alternatives is explained since the po-

tential loss from changes will cause more pains than the euphoria brought by

potential gains. Barberis, Huang and Thaler (2006) discuss stock market non-

participation phenomenon that even though the stock market has a high mean

return and a low correlation with other household risks, many households have

historically been reluctant to allocate any money to it. They suggest that pref-

erences that combine loss aversion with narrow framing will have an easier time

explaining so.

Although referred to as an important element to help explain phenomena,

only a few studies formally discuss this concept. Even within the relatively small

amount of literature, there exists difference regarding the definitions. Wakker

and Tversky (1993) explain loss aversion as value function is steeper for losses

than for gains and clarify this concept in their own settings. Neilson (2002)

provides another definition for loss aversion that a chord connecting the origin

to f(z) for any z < 0 is steeper than a chord connecting the origin to f(y) for
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any y > 0. This can be interpreted as the maximal average utility from any gain

is less than the minimal average disutility from any loss. Stronger definition for

loss aversion, adopted by Bowman et al. (1999), Breiter et al.(2001) and Neil-

son (2002), states that the marginal utility of a gain is less than the marginal

disutility from a loss. This actually restricts the function to be steeper at every

loss than it is at every gain.

Kobberling and Wakker (2005) simply define loss aversion through the char-

acteristics of the utility function around the kink. They first bring in the concept

of index of loss aversion and then equalize loss aversion as the requirement that

the index is greater than 1. Actually only when the strong assumption of the

utility function is made can the feature around the kink represent the whole

domain. Hence the acceptance of their definition hinges much on the assump-

tion of the utility function. Motivated by their work and aiming to broaden

the applicability, we redefine the index of loss aversion as a function, reflecting

the comparisons of the steepness between symmetric locations. Similar to their

conclusion, loss aversion holds only when the index of loss aversion is always

greater than a constant. We hope this way of definition will make the concept

more natural and tractable, hence eliminating the dispute with respect to this

concept. Distinctions and connections between our and other existing defini-

tions are also provided. Our definition makes possible the comparison of loss

aversion between different individuals, subject to certain assumptions.

The paper is structured as follows. First we provide the background frame-

work for this conception. Tversky and Kahneman’s latest version of prospect

theory has been chosen. The next section defines loss aversion and compares

different existing definitions for this concept. Implications for the regular forms

of utility functions are discussed in section 3. Section 4 and 5 try to elaborate

our definition from Yaari’s sense and investment strategy. Conclusion follows in

the last section.
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1 Cumulative Prospect Theory

Outcomes are monetary. The reference point is the status quo. We may as-

sume 0 as the reference point through rescaling the outcomes. A prospect,

denoted by P = (p1, x1; · · · ; pn, xn), assigns probability pi for any possible

outcome xi, where pi > 0 and
∑n

i=1 pi = 1. The outcomes are also ordered

x1 ≥ x2 ≥ · · ·xk ≥ 0 > xk+1 ≥ · · · ≥ xn. The preferences of an agent over some

prospects are denoted by �, with indifference by ∼.

Upon these notations, EU holds if the prospect is evaluated according to:

EU(P ) =

n
∑

i=1

piU(xi)

where U is the utility function.

However, for prospect theory to hold, the prospect P would be evaluated

respectively for gain part and loss part. Formally, an evaluation function PT

represents preference, where PT is defined as follows:

1. There exists a utility function U : < → <, which is continuous and strictly

increasing with U(0) = 0.

2. There exist weighting functions w+(−) : [0, 1] → [0, 1], which are continu-

ous and strictly increasing with w+(−)(0) = 0 and w+(−)(1) = 1.

3. PT (p1, x1; · · · ; pn, xn) =
∑n

i=1 πiU(xi), with πi = w+(p1 + · · · + pi) −

w+(p1+· · ·+pi−1) for i ≤ k and πi = w−(pi+· · ·+pn)−w−(pi+1+· · ·+pn)

for i > k. In particular π1 = w+(p1) if k ≥ 1 and πn = w−(pn) if k < n.

For most of the cases, we assume the utility is concave for gains and convex

for losses. Although in some literatures it is suggested that the utility function

is concave for losses, most studies agree on that the marginal utility should also

be decreasing for losses. The sketch of the utility is provided below:
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Figure 1: Utility Function in Cumulative Prospect Theory
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For the special case when w+(p) = 1 − w−(1 − p) for any 0 ≤ p ≤ 1, the

cumulative prospect theory will degenerate into rank-dependent theory if the

utility is not defined over changes in wealth. Tversky and Kahneman choose

the expressions for the weighting functions w+(p) = pγ

(pγ+(1−p)γ)1/γ and w−(p) =

pδ

(pδ+(1−p)δ)1/δ . The estimated parameters values are γ = 0.61 and δ = 0.69. The

resulting weighting functions exhibit the following characteristics:

1. regressive: intersecting the diagonal from above which means w(p) > p

first and then w(p) < p.

2. asymmetric: with fixed point around 1/3,

3. s-shaped: concave on an initial interval and convex beyond that.

Later, Prelec (1998) suggests an alternative form for the weighting function

w(p) = exp(−(−lnp)α), 0 < α < 1. His construction stems from the subpro-

portional requirement for common-ratio effect.2 He points out the previous

2Common-ratio effect in Tversky and Kahneman (1979): if (x, p) is equivalent to (y, pq)

then (x, pr) is not preferred to (y, pqr), 0 < p, q, r ≤ 1. It holds if and only if lnw(p) is a

convex function of lnp.
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Figure 2: Weighting Functions in Cumulative Prospect Theory
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expressions for the weighting functions fail to satisfy this requirement for small

probabilities.

We also have a continuous version for cumulative prospect theory:

PT (P ) =

∫ 0

−∞

U(x)
d

dx
(w−(F (x)))dx +

∫ +∞

0

U(x)
d

dx
(−w+(1 − F (x)))dx

where F (x) =
∫ x

−∞
dp is the cumulative probability.

2 Concept of Loss Aversion

Loss aversion, which is different from risk aversion and actually a component

of that in most cases, implies there must be some (potential) losses associated.

Therefore, it is expected to reflect the comparisons between two sides of the

status quo. In the original prospect theory, Tversky and Kahneman describe

loss aversion in the language of preference that individuals dislike symmetric

50 − 50 bets and the averseness of symmetric fair bets generally increases with

the size of the stake. Some others, equalize the definition of loss aversion as
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the requirement that utility function being steeper for losses than for gains. We

first clarify the word “steeper” appeared in their definition, for which there are

generally two interpretations.

Definition 1 A utility function is said to be steeper3 for losses than for gains

if U(x) − U(y) < U(−y) − U(−x) for all x > y ≥ 0.

An alternative expression is:

Definition 2 A utility function is said to be steeper for losses than for gains if

U ′(x) < U ′(−x) for all x > 0.

Seemly, these two definitions are not exactly the same. We will clarify the

relationship between them:

1. If U ′(x) < U ′(−x), then
∫ x

y
U ′(t)dt <

∫

−y

−x
U ′(t)dt for any x > y ≥ 0.

Hence we have U(x) − U(y) < U(−y) − U(−x).

2. If U(x)−U(y) < U(−y)−U(−x) for all x > y ≥ 0, then limy→x
U(x)−U(y)

x−y
≤

lim(−y)→(−x)
U(−y)−U(−x)

−y−(−x) . Hence U ′(x) ≤ U ′(−x). Actually we have

U ′(x) < U(−x) almost surely for x > 0. If not, we integral the in-

equality for a small area with non-zero length and will contradict with

U(x) − U(y) < U(−y) − U(−x).

The second definition therefore is a little bit stronger than the first. Actu-

ally for general cases, these two criteria are equivalent.4 Counter-examples only

exist within the realm of mathematicians.

The definition of loss aversion by Tversky and Kahneman in the language

of preference is presented below:

Definition 3 Loss aversion holds if the prospect (0.5, y; 0.5,−y) is always pre-

ferred to (0.5, x; 0.5,−x) for all x > y ≥ 0.

3Here steeper actually refers to strictly steeper
4Hereafter, we simply take the second definition for “steeper”.
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This statement, which can be decomposed into two aspects of the require-

ments, is initially formalized by Schmidt and Zank (2005). In the original

prospect theory, it has been proved that this definition is equivalent to the fact

that the utility function is steeper for losses than for gains,5 such that we have

a kink at the reference point. In the framework of cumulative prospect theory,

the conclusion will change as well.

Theorem 1 In cumulative prospect theory, loss aversion is satisfied if and only

if for all x > 0 it holds that

U ′(−x)

U ′(x)
>

w+(0.5)

w−(0.5)

We start from the comparisons between two prospects P = (0.5, x; 0.5,−x)

and Q = (0.5, y; 0.5,−y) with x > y ≥ 0. According to its definition in pref-

erence language PT (P ) < PT (Q), we have U(x)w+(0.5) + U(−x)w−(0.5) <

U(y)w+(0.5) + U(−y)w−(0.5), i.e. U(−y)−U(−x)
U(x)−U(y) > w+(0.5)

w−(0.5) . This could further

be simplified as
U ′(−x)
U ′(x) >

w+(0.5)
w−(0.5) due to the equivalence of

U(−y)−U(−x)
U(x)−U(y) and

U ′(−x)
U ′(x)

. The advantage of this simplification is that now we have an unary crite-

rion for this concept, which is much easier to check. According to the estimates

by Tversky and Kahneman (1992), we have w+(0.5)
w−(0.5) = 0.927.6 This is striking

because we actually do not need to impose that U(x) is steeper for losses than

for gains to guarantee loss aversion in cumulative prospect theory setting.

Definition 4 λ(x) = U ′(−x)
U ′(x) (where x > 0) is defined as the index of loss

aversion.

The index of loss aversion, basically a function, is defined as a ratio of the

steepness between two sides. It measures the comparison between symmetric

locations −x and x. Based on this, the above theorem can be rewritten as:

5We do not allow different weighting functions in original prospect theory.
6In the figure for the weighting functions, we notice the real line is below the dashed line

at p = 0.5.
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Proposition 1 In cumulative prospect theory, loss aversion is satisfied if and

only if for all x > 0 it holds that

λ(x) >
w+(0.5)

w−(0.5)

In cumulative prospect theory, loss aversion is embodied in the interaction

between utility functions and weighting functions. One of the purposes of al-

lowing two different weighting functions is to allow more degrees of flexibility in

the model, hence better capturing the data. In Tversky and Kahneman (1992),

they assume specific functional forms for utilities and probability weightings,

and estimate the parameters according to their survey results. If the weighting

functions for gains and losses were the same or at least they valued the same

for 0.5, we would have a more neat result.

Proposition 2 In cumulative prospect theory with the same weighting function,

loss aversion is satisfied if and only if for all x > 0 it holds that

λ(x) > 1

This conclusion just meets someone’s expectation. What’s more important?

In these two propositions, we succeed in equalizing loss aversion as a condition

on λ(x). This partly explains why we call it index of loss aversion. Take an

analogy in EU theory, risk averse is valid only when absolute risk aversion is

uniformly greater than 0.

An alternative definition of the index of loss aversion is raised by Kobberling

and Wakker(2005). They suggest the observed utility U is a composition of a

loss aversion index λ > 0, reflecting the different processing of gains and losses,

and the basic utility u.7 Formally,

U(x) =







u(x) if x ≥ 0

λu(x) if x < 0

7u is hypothetic and not necessarily to be an odd function.
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In their supposition, this basic utility function u is differentiable everywhere, in-

cluding the reference point. Based on the setting, the index of loss aversion can

be calculated as λ = −U(x2)
U(x1)

where u(x1) = −u(x2) for any x2 < 0 < x1. Later

in their formal definition, they extract the index of loss aversion as λ =
U ′

↑(0)

U ′
↓
(0) .

However, they do not provide the intermedial steps for this definition. We try

filling this gap through offering an intuitive derivation:

lim
ε→0+

−u(−ε) = lim
ε→0+

u(ε)

where ε > 0,

λ = limε→0+ −U(−ε)
U(ε)

= limε→0+
(U(−ε)−U(0))/(−ε−0)

(U(ε)−U(0))/(ε−0)

= limε1→0+,ε2→0+
U ′(−ε1)
U ′(ε2)

=
U ′

↑(0)

U ′
↓
(0)

They define that loss aversion is achieved once λ > 1. Their conclusion has

nothing with the weighting functions, therefore can not explain the effect of

weighting functions for loss aversion. Besides, loss aversion is supposed to be a

holistic phenomenon rather than a local one around the kink. Their so-called

“loss aversion” is defined around the origin, therefore only implies local loss

aversion. Their definition is meaningful only when strong assumption about

the utility functions is assumed, which guarantees the property around 0 can

represent that of the whole domain.

Besides the above referred definition for loss aversion through the index, Neil-

son (2002) characterizes a condition for loss aversion, requiring that U(x)/x >

U(y)/y for all x < 0 < y. Bowman et al. (1999) and Breiter et al. (2001)

impose a stronger condition that U ′(x) > U ′(y) for all x < 0 < y. We plan to

compare these conditions listed below:

1. U(x)/x > U(y)/y for all x < 0 < y.
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2. U ′(x) > U ′(y) for all x < 0 < y.

3. U ′(x) > U ′(−x) for all x < 0.

4. −U(x) > U(−x) for all x < 0.

As no weighting functions get involved, we may restrict our comparisons

within original prospect theory framework:

(I): 2 =⇒ 3. This is evident as long as we substitute −x for y in 2.

(II): 2 =⇒ 1.
U(x)

x
=

U(x) − U(0)

x − 0
= U ′(ξ)

where ξ ∈ (x, 0). Similarly

U(y)

y
=

U(y) − U(0)

y − 0
= U ′(ζ)

where ζ ∈ (0, y). According to U ′(x) > U ′(y) for all x < 0 < y, U ′(ξ) > U ′(ζ).

This implies U(x)/x > U(y)/y.

(III): 1 =⇒ 4. This is evident as long as we substitute −x for y in 1.

(IV): 3 =⇒ 4.
∫ 0

x (U ′(t) − U ′(−t))dt > 0

=⇒
∫ 0

x
U ′(t)dt >

∫ 0

x
U ′(−t)dt

=⇒
∫ 0

x
U ′(t)dt >

∫ 0

−x
U ′(s)d(−s)

=⇒
∫ 0

x U ′(t)dt >
∫

−x

0 U ′(s)ds

=⇒ U(0) − U(x) > U(−x) − U(0)

=⇒ −U(x) > U(−x) for all x < 0

(V): However, 1 and 3 are not comparable. Counter examples which satisfy one

and violate the other can be easily found (in the following figures).

In figure 3, the average utility for losses is everywhere greater than that

for gains. But the slope of the utility for losses varies a lot, sometimes steep

and sometimes flat. In figure 4, the marginal utility for losses is greater than

that of the symmetric point for gains. However, if we take the dashed line as a

standard, the average utility for gains sometimes exceeds that for losses.
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Figure 3: An Example Which Satisfies Definition 1 but Violates Definition 3

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

To summarize, 2 is the strongest definition and 4 is the weakest. 1 and 3 are

moderate definitions and can not be compared. Neilson (2002) proves if util-

ity function is s-shaped, definition 1 and 2 are equivalent. Actually, we think

definition 2 is a little bit too strong because euphoria from gains and pains for

losses are both marginal decreasing. The first dollar gain will probably bring

you more pleasure than the additional pain caused by the nth dollar loss.

Schmidt and Zank (2005) raise strong loss aversion in comparison with loss

aversion and suggest strong loss aversion may be the most appropriate definition

of loss aversion.

Definition 5 Strong loss aversion holds if the prospect

(p1, z1; · · · ; pi−1, zi−1; α, y; pi+1, zi+1; · · · ; pj−1, zj−1; α,−y; pj+1, zj+1; · · · ; pn, zn)
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Figure 4: An Example Which Satisfies Definition 3 but Violates Definition 1
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is always preferred to

(p1, z1; · · · ; pi−1, zi−1; α, x; pi+1, zi+1; · · · ; pj−1, zj−1; α,−x; pj+1, zj+1; · · · ; pn, zn)

for all x > y ≥ 0 and 0 < α ≤ 0.5.

The prospects here differ from the above ones in that they no longer require

the middle payoff to be equal to the status quo, and can be any common out-

come. Strong loss aversion means among two lotteries for which one can win

or lose a given amount with equal probability, that lottery will be preferred for

which this amount is smaller. This is apparently a model-independent behavior

concept, for which loss aversion is a special case when α = 0.5.

Theorem 2 In cumulative prospect theory, strong loss aversion is satisfied if

16



and only if for all x > 0 and p, q ≥ 0 that p + q ≤ 1 it holds that

λ(x) >
(w+)′(p)

(w−)′(q)

We start from comparing two prospects and get the equivalent condition

that for all x > y ≥ 0, all 0 < α ≤ 0.5 and all γ, δ ≥ 0 with 1 − 2α ≥ γ + δ it

holds that
U(−y) − U(−x)

U(x) − U(y)
>

w+(γ + α) − w+(γ)

w−(δ + α) − w−(δ)

The left hand side of this inequality can be simplified as U ′(−x)
U(x)

, and the right

hand side can be summarized as (w+)′(p)
(w−)′(q) where p, q need to satisfy some condi-

tions. Therefore, strong loss aversion means

λ(x) >
(w+)′(p)

(w−)′(q)

for all x > 0, 0 ≤ p, q and p + q ≤ 1. It is fansinating that strong loss aversion

can also be defined through the index of loss aversion.

If strong loss aversion holds under cumulative prospect theory, for the special

case 0 < p = q < 0.5, we have

(w+)′(p) < (w−)′(p) ∗ λ(x)

Do the integration from 0 to 0.5,

∫ 0.5

0

(w+)′(p)dp <

∫ 0.5

0

(w−)′(p)dp ∗ λ(x)

i.e.

w+(0.5) < w−(0.5) ∗ λ(x)

This is exactly the condition for loss aversion to hold in cumulative prospect

theory. Someone dispute that loss aversion should be replaced by strong loss

aversion since strong loss aversion is more generous and has been partly verified

by experimental study (Brooks and Zank (2004)).

17



3 Implications for the Regular Form of Utilities

We are interested in the cases with regular form of utilities. In academy, a

certain number of researchers agree on constant relative risk aversion (CRRA

hereafter). Referring to their suggestion, we assume

U(x) =







xr if x ≥ 0

−s(−x)t if x < 0

where 0 < r, t < 1. Actually this form of utility function is also taken by Tversky

and Kahneman (1992). For x > 0

λ(x) =
U ′(−x)

U ′(x)
=

st

r
xt−r

Disregarding the factor of weighting functions, loss aversion holds only when

λ(x) > 1 for all x > 0. This actually requires t = r 8 and s > 1.9

Another common preference assumption is constant absolute risk aversion

(CARA hereafter),

U(x) =







1−e−µx

µ if x ≥ 0

s( eνx
−1

ν ) if x < 0

where µ, ν > 0. Then for x > 0

λ(x) =
U ′(−x)

U ′(x)
= se(µ−ν)x

Not considering the distinction of weighting functions, loss aversion is achieved

as long as µ ≥ ν 10 and s > 1.

To step further, we will introduce a general group: HARA utility

U(x) =







(x+a)1−γ

1−γ − a1−γ

1−γ if x ≥ 0

s( b1−β

1−β − (−x+b)1−β

1−β ) if x < 0

8If t > r, as long as x is small enough, λ(x) < 1; if t < r, as long as x is large enough,

λ(x) < 1.

9if weighting functions are considered, we need s >
w+(0.5)

w−(0.5)
. This applies in the following

two cases as well.
10when µ < ν, we always have sufficient large x to make λ(x) < 1 no matter how large s is.
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where a, b > 0 and 0 < γ, β < 1. Then for x > 0

λ(x) =
U ′(−x)

U ′(x)
= s

(x + a)γ

(x + b)β

This is composed of three different situations:

1. First case is when a = b: we need s (x+a)γ

(x+b)β = s(x + a)γ−β > 1. Obviously

γ ≥ β is necessary. Based on this we further have s > aβ−γ .

2. Second case is when a > b: to guarantee limx→∞ λ(x) > 1, we need

γ ≥ β. We further consider the monotony of (x+a)γ

(x+b)β . If γb − βa ≥ 0, it is

always increasing in the domain x > 0. We only need s > bβ

aγ to ensure loss

aversion. Else if γb−βa < 0, (x+a)γ

(x+b)β is first decreasing and then increasing

in the area x > 0 with the minimum value achieved at x0 = βa−γb
γ−β . As

long as we ensure s >
(x0+b)β

(x0+a)γ loss aversion is valid.

3. The last case is when a < b: the necessary condition is γ ≥ β. We simply

know (x+a)γ

(x+b)β is always increasing in the positive domain. Therefore loss

aversion can be ensured as long as s > bβ

aγ .

The discussion about the compatibility of the regular form of utilities with

our definition of loss aversion in prospect theory will hopefully shed some light

on the future empirical work in this area. If you are based on our framework and

assume regular form of utilities, some basic constraints about the parameters

have to be satisfied.

4 Comparative Loss Aversion in Yaari’s Sense

Another advantage that we define the index of loss aversion is we can easily com-

pare different individuals’ loss aversion. We use Yaari’s acceptance sets (1969)

as a supplementary tool to help explain comparative loss aversion. Different

from Kobberling and Wakker’s definition where index of loss aversion is only a

number, here the index is a function of the location. Unless we make some as-

sumptions for the utility functions and the weighting functions, it is impossible
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to use the acceptance sets to compare them.

Assume two agent, 1 and 2, whose preferences over L, denoted by �1 and

�2, can be modeled by prospect theory with utility functions U1 and U2, loss

aversion indices λ1 and λ2 and weighting functions w+
1 , w−

1 , w+
2 , w−

2 , respec-

tively. We assume the reference point of each agent by 0, where this can refer

to different absolute levels of wealth for the two agents.

L+ denotes the set of prospects with no loss result, and L− denotes the op-

posite. A prospect is said to be mixed if is neither contained in L+ nor in L−, so

that it yields both gains and losses with positive probability. We are interested

in mixed prospects because we always believe loss aversion should be a concept

describing the comparison between two sides of the reference point. For an out-

come x, we define A1(x) = {P ∈ L|P �1 x} to be agent 1’s acceptance set, i.e.

the set of prospects that agent 1 prefers to a fixed outcome x. The gain accep-

tance set A+
1 (x) = A1(x) ∩ L+ restricts the set to prospects with no possible

losses. Analogically the loss acceptance set is defined as A−

1 (x) = A1(x) ∩ L−.

Apparently for x > 0, A+
1 (−x) = L+ and A−

1 (x) = ∅. Agent 2’s A+
2 (x), A−

2 (x)

and A2(x) could be similarly defined.

Theorem 3 Assume that the preferences of agents 1 and 2 can be modeled

through cumulative prospect theory and W−

1 = W−

2 , then the following state-

ment (i) will imply (ii).

(i) The following three conditions hold:

(a) W+
1 = W+

2 ;

(b) U1(x) = σU2(x) for all x > 0;

(c) λ1(x) ≤ λ2(x) for all x > 0.

(ii) The following two conditions hold:

(a) A+
1 (x) = A+

2 (x) for all x > 0;

(b) A1(x) ⊃ A2(x) for all x > 0.
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We introduce these two groups of conditions first. Group (i) consists of

three items, all of which are from the view of prospect theory. The first con-

dition means the weighting functions for gains coincide across individuals. The

second implies there only exists a multiple difference for the gain part utilities.

The last one says the index of loss aversion for agent 1 does not exceed that

for agent 2. The conditions in group (ii) are written in the language of accep-

tance sets. The first item means the gain acceptance sets are coincident across

two agents.11 The other one requires the acceptance set of agent 1 w.r.t. a

positive outcome is greater than that of agent 2. We should not neglect the

premise ahead that weighting functions for losses are assumed the same across

two agents. In Kobberling and Wakker (2005), risk attitude is decomposed into

three distinct components: basic utility , probability weighting and loss aver-

sion. That’s why they restrict the basic utilities and probability weightings to be

the same for both agents. In our definition, risk attitude is composed of utility

function for gains, probability weighting and index of loss aversion. Statement

(i) exactly reflects this decomposition. Proof is provided as follows:

(i)→(ii): Let (i.a-c) hold. We have to show that (ii.a-b) hold, of which only

(ii.b) is explained, because (ii.a) is trivial. Assume x > 0 and P ∈ A2(x), i.e.

PT2(P ) ≥ U2(x). Suppose P = (p1, x1; · · · ; pn, xn) with x1 ≥ · · · ≥ xk ≥ 0 >

xk+1 ≥ · · · ≥ xn where 1 ≤ k ≤ n. Define P + = (p1, x1; · · · ; pk, xk; 1 − p1 −

· · · − pk, 0) and P− = (1 − pk+1 − · · · − pn, 0; pk+1, xk+1; · · · ; pn, xn). We may,

and will, assume σ = 1 which does not affect the result. λ2(x) ≥ λ1(x) for

x > 0, i.e. U ′

2(−x) ≥ U ′

1(−x). We further have U2(−x) ≤ U1(−x). PT1(P ) =

PT1(P
+) + PT1(P

−) ≥ PT2(P
+) + PT2(P

−) = PT2(P ) ≥ U2(x) = U1(x).

Hence P ∈ A1(x) and therefore A2(x) ⊂ A1(x).

However, we could not infer (i) from (ii). According to the standard unique-

11A+
1 (x) = A+

2 (x) = L+ for all x < 0 naturally holds.
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ness by Wakker (1994), we could have (i.a) and U2(x) = αU1(x) + β for x > 0.

U1(0) = U2(0) = 0 implies β = 0. We could assume α = 1, i.e. σ = 1. Through

constructing the prospect P = (p, y; 1 − p,−x) where x > 0, y > 0 and y is

flexible, we could always have PT2(P ) = U2(t) where t > 0. According to (ii.b),

PT1(P ) ≥ U1(t), which implies −U2(−x) ≥ −U1(−x). However this is a weaker

condition than λ2(x) ≥ λ1(x) for x > 0.

If we replace (i.c) by −U2(−x)/U2(x) ≥ −U1(−x)/U1(x) for all x > 0, we

can say (i) and (ii) are equivalent. However, we reserve our agreement that

−U(−x)/U(x)12 can be used as an index for loss aversion. Although this defini-

tion satisfies individuals dislike symmetric 50-50 bets, it can not ensure averse-

ness of symmetric fair bets increases with the size of the stake.

In the above theorem, we did not compare the situations for x < 0. The

feasibility of comparison for x < 0 hinges on the assumption that utilities are

coincident in the domain x < 0. The conjugated version of the above theorem

is provided below:

Theorem 4 Assume that the preferences of agents 1 and 2 can be modeled

through cumulative prospect theory and W+
1 = W+

2 , then the following state-

ment (i) will imply (ii).

(i) The following three conditions hold:

(a) W−

1 = W−

2 ;

(b) U1(−x) = σU2(−x) for all x > 0;

(c) λ1(x) ≤ λ2(x) for all x > 0.

(ii) The following two conditions hold:

(a) A−

1 (−x) = A−

2 (−x) for all x > 0;

(b) A1(−x) ⊃ A2(−x) for all x > 0.

These two results can be summarized as that the acceptance set of one agent

12This is actually the definition 4 above for loss aversion.
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who is comparatively more loss averse is included in the acceptance set of the

other. As we elaborate earlier loss aversion is a property reflecting the difference

of referent point’s two sides, only mixed prospects can embody this difference.

Initially, we expect to find an equivalent condition for comparative loss aversion.

However, the above results fail to do so.

Kobberling and Wakker (2005) also use Yaari’s definition to compare loss

aversion. They get equivalent conditions because their definition for loss aver-

sion is only a number and they assume homogeneous basic utility across the

whole domain. Whereas the advantage of our theories lies in that we do not

impose identical acceptance sets over the pure gain and pure loss domain: we

leave one-side flexibility to the individuals. As they summarize, in EU theory,

Yaari’s condition characterizes concave transformations of utility while their re-

striction characterizes a special concave transformation of the utility: with a

kink at zero and linear anywhere else. In our theories, we assume linear trans-

formation for only one side, a kink at zero, and irregular transformation which

has to meet some conditions for the other side. Compared to Kobberling and

Wakker’s definition, ours provides a more general framework.

If we play one trick in Theorem 3, we can eventually get equivalent conditions

as well. Suppose for some specific utilities, we can conclude U ′

2(−x) ≥ U ′

1(−x)

from −U2(−x) ≥ −U1(−x) where x > 0. This means λ1(x) ≤ λ2(x) is acting

as −U2(−x)/U2(x) ≥ −U1(−x)/U1(x) where x > 0. Then we will have a new

version for theorem 3.

Theorem 5 Assume that the preferences of agents 1 and 2 can be modeled

through cumulative prospect theory with CRRA utilities, and W−

1 = W−

2 , then

the following statements (i) and (ii) are equivalent.

(i) The following three conditions hold:

(a) W+
1 = W+

2 ;

(b) U1(x) = σU2(x) for all x > 0;
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(c) λ1(x) ≤ λ2(x) for all x > 0.

(ii) The following two conditions hold:

(a) A+
1 (x) = A+

2 (x) for all x > 0;

(b) A1(x) ⊃ A2(x) for all x > 0.

Take CRRA case as an example: we start from s1x
t1 ≤ s2x

t2 for all x > 0.

Cases for large x guarantee that t1 ≤ t2. Cases for small x ensure that t1 ≥ t2.

Therefore t1 = t2. Based on that, we further conclude s1 ≤ s2. Therefore,

s1t1x
t1−1 ≤ s2t2x

t2−1 for all x > 0, which is exactly λ1(x) ≤ λ2(x) for all

x > 0. We say condition (i.c) equals to the condition −s1(−x)t1 ≥ −s2(−x)t2

for all x < 0, which combined with (i.a) and (i.b) are proved to be equivalent

to (ii).

However, for CARA case: s1
eγ1x

−1
γ1

≥ s2
eγ2x

−1
γ2

for all x < 0. Cases for small

−x ensure s1 ≤ s2. Cases for big −x guarantee that γ1

γ2
≥ s1

s2
. However, these

two conditions are not sufficient to guarantee λ1(x) ≤ λ2(x) for all x > 0. If we

let s1 = 0.8, s2 = 0.9, γ1 = 0.45, γ2 = 0.5, it satisfies s1
eγ1x

−1
γ1

≥ s2
eγ2x

−1
γ2

for all

x < 0 but violates s1e
γ1x ≤ s2e

γ2x for some x < 0. Therefore U ′

2(−x) ≥ U ′

1(−x)

and −U2(−x) ≥ −U1(−x) where x > 0 are not equivalent in CARA case.

Actually, it’s quite common that these two conditions are not equivalent.

In the particular CRRA case, the index of loss aversion is actually a number,

which makes possible the equivalence of two conditions. A conjugated version

of necessary and sufficient condition, where utilities functions are coincident in

x < 0, is presented below.

Theorem 6 Assume that the preferences of agents 1 and 2 can be modeled

through cumulative prospect theory with CRRA utilities, and W+
1 = W+

2 , then

the following statements (i) and (ii) are equivalent.

(i) The following three conditions hold:

(a) W−

1 = W−

2 ;
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(b) U1(−x) = σU2(−x) for all x > 0;

(c) λ1(x) ≤ λ2(x) for all x > 0.

(ii) The following two conditions hold:

(a) A−

1 (−x) = A−

2 (−x) for all x > 0;

(b) A1(−x) ⊃ A2(−x) for all x > 0.

5 Comparative Loss Aversion in Asset Demand

This section is specially in comparison with the concept comparative risk aver-

sion in EU theory. As demonstrated by Pratt (1964), more risk aversion im-

plies more demand for asset in a simple investment strategy problem in which

an agent is supposed to have initial wealth w, and can invest in only two as-

sets: risk-free asset with zero return and risky asset with excess return x̃ where

E(x̃) ≥ 0. In original EU framework, the maximum problem is

max
a

E(u(w + ax̃))

However in prospect theory, because only gains and losses matter, the new

maximum problem is

max
a

E(u(ax̃))

In original EU framework, the problem is easy to handle due to global con-

cavity of u, which implies the solution to the first order condition is the optimal

investment level in risky asset. However, in prospect theory, u is assumed to

be concave for gains but convex for losses. That’s why we have to make the

following assumption:

Assumption 1 When E(x̃) ≥ 0, E(x̃u′(ax̃)) is strictly decreasing in a.

This assumption which indicates the first order derivative is decreasing can

ensure the solution to the first order condition is the optimal one. Theorem for

comparative loss aversion in asset demand is presented below:
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Theorem 7 Assume that the preferences of agents 1 and 2 can be modeled

through cumulative prospect theory with W1 = W2 and U1(x) = σU2(x) for all

x > 0, and the above assumption is valid for both agents, then the following

statements (i) and (ii) are equivalent.

(i) λ1(x) ≤ λ2(x) for all x > 0.

(ii) a1 ≥ a2

Suppose a2 is the optimal investment in risky asset for agent 2. It means

E(x̃u′

2(a2x̃)) = 0.

E(x̃u′

1(a2x̃))

= E(x̃u′

1(a2x̃)|x̃ > 0)p(x̃ > 0) + E(x̃u′

1(a2x̃)|x̃ < 0)p(x̃ < 0)

= σE(x̃u′

2(a2x̃)|x̃ > 0)p(x̃ > 0) + E(x̃λ1(−a2x̃)u′

1(−a2x̃)|x̃ < 0)p(x̃ < 0)

≥ σE(x̃u′

2(a2x̃)|x̃ > 0)p(x̃ > 0) + E(x̃λ2(−a2x̃)u′

1(−a2x̃)|x̃ < 0)p(x̃ < 0)

= σE(x̃u′

2(a2x̃)|x̃ > 0)p(x̃ > 0) + σE(x̃λ2(−a2x̃)u′

2(−a2x̃)|x̃ < 0)p(x̃ < 0)

= σ(E(x̃u′

2(a2x̃)))

= 0

Therefore we have a2 ≤ a1. If λ1(x) > λ2(x) for some x > 0, due to the

continuity, we will have an interval of x satisfying λ1(x) > λ2(x). Choose a

binary distribution of x̃ and let aix̃ lies in this interval, we can easily have

a1 < a2. This actually means we can infer (i) from (ii).

6 Conclusion

Stressing our view that loss aversion should be a concept reflecting gain/loss

comparisons, we define the index of loss aversion as a function of the location.

Even though the introduction of cumulative prospect theory would make the

equivalent condition a little more complicated, it is still tractable if we start

from Tversky and Kahneman’s model-free preference definition. We equalize

loss aversion by the requirement that index of loss aversion is always greater

than a constant. Different versions of the definition are compared under the
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framework of original prospect theory so that we can see the differences and

connections. We typically compare our definition of loss aversion index with

that of Kobberling and Wakker’s à la Yaari. The failure to obtain equivalent

condition is discussed. Tricks have been applied to get necessary and sufficient

conditions. Comparative loss aversion in asset demand is specially discussed

in contrary to comparative risk aversion in EU theory. All the conclusions

are within our expectation. We also attempt to relate our definition to several

well-know groups of utilities and provide some useful tips for the future research.

In the area of empirical research, loss aversion, as an important aspect of

prospect theory, begins to show its power. Especially combined with “mental

accounting” and “narrow framing”, it offers some alternative explanations for

some empirical phenomena. What’s more important, it relights our hope for

solving some puzzles which have confused us for a long time. Some practitioners

start bringing this weapon into finance market, such as stock market (Barberis

and Huang in 2001), and make some breakthrough. We expect the explosive

resolution of its application in the near future.
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