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Abstract 

This paper examines the efficiency of the emerging Greek options market of the Athens Derivatives 

Exchange by focusing on the returns of options written on the large capitalization FTSE/ASE-20 index. We 

find that, although individual calls and puts earn substantially higher (absolute) returns than those of 

options in developed markets, these returns are not inconsistent even with the simple Black and Scholes 

theoretical framework. Risk-adjusted returns of naked puts are, in general, significant and, thus, consistent 

with previous empirical findings. Furthermore, option portfolios that are immune to various sources of risk 

are found to earn the risk-free rate, indicating the absence of real profit opportunities. We conclude that, 

although mispricing is potentially an issue in the Greek options market, its magnitude is not necessarily 

higher than that documented in traditional, developed markets. Overall, we cannot reject the efficiency of 

the Athens Derivatives Exchange, since our results do not support the alternative hypothesis that emerging 

markets are likely to be associated with more severe options mispricing, which is not arbitraged away due 

to higher transaction costs and thinner trading. 
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1. Introduction 

 

Market efficiency constitutes a fundamental issue in finance research and has been long 

studied by financial economists. Market efficiency is typically associated with asset 

returns, in the sense that an efficient market is characterized by the absence of mispricing 

with asset returns being commensurate with specific underlying risk factors. Although the 

majority of empirical papers that have examined market efficiency have traditionally 

focused on equity markets, the research interest in the efficiency of options markets has 

been increasing in the finance literature during the past decade.  

This paper examines option returns in an emerging market, namely the Athens 

Derivatives Exchange (ADEX) in Greece, with particular emphasis on the extent of 

mispricing present in the market. Previous papers have mainly focused on developed 

options markets such as the US and the UK, with the issue of market efficiency in 

developing markets having been largely ignored. Although the examination of developed 

options markets is partly justified by the fact that they are characterized by high-volume 

trading so that option prices are likely to be more informative, we propose that emerging 

markets can provide an interesting new field of research. 

Since options are risky assets, standard capital asset pricing theory predicts that 

they should earn a risk-premium related to their systematic risk. Coval and Shumway 

(2001) further demonstrate that, under a set of realistic assumptions, option returns must 

be increasing in strike price space, while calls should earn a return in excess of that of the 

underlying asset and puts should have an expected return below the risk-free rate. 

Focusing on calls and puts written on the S&P 500 index between 1990 and 1995, they 

find that option returns in their sample indeed exhibit these characteristics. However, 

returns do not appear to vary linearly with their respective market betas, indicating that 

additional factors are potentially priced.   

In contrast, Ni (2006) finds that the Coval and Shumway (2001) theoretical 

predictions do not apply for call options written on individual stocks. Examining a 

sample of US calls for the period 1996-2005, she reports average call option returns that 

are decreasing in strike price, with out-of-the-money (OTM) calls earning negative 

returns. This puzzling finding is potentially explained through investors’ seeking of 
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idiosyncratic skewness, leading to higher than expected OTM call prices and, hence, 

lower returns. Jones (2001) analyzes a set of S&P 500 index options and concludes that 

idiosyncratic variance alone is insufficient in explaining short-term OTM put returns. He 

argues, therefore, that a multi-factor model is necessary to understand the risk-premia 

associated with options. Moreover, Broadie, Chernov and Johannes (2009) examine a 

larger sample of S&P 500 index options, namely from 1987 to 2005, with particular 

emphasis on puts. Contrary to Coval and Shumway, they report that the Black and 

Scholes (1973) option pricing model cannot be rejected based on deep OTM put returns. 

Also, at-the-money (ATM) put and straddle returns are found to be consistent with jump 

models.    

Liu (2007) focuses on arguably the two most common sources of risk in the 

options market, namely changes in the value of the underlying and changes in the 

underlying’s volatility. By forming delta and vega neutral straddles with options written 

on the FTSE 100, she explores the hypothesis that option portfolios that are immune to 

delta and vega risk should earn the risk-free rate, and finds that this prediction is 

supported for ATM and in-the-money (ITM) portfolios. However, OTM straddles appear 

to earn significantly negative returns, with one potential explanation for this result being 

the fact that delta and vega neutrality, measured as Black and Scholes local sensitivities, 

do not necessarily hold for the entire holding period of the straddles. The paper also 

examines risk-reversals, which are option positions that profit from negative skewness, 

and finds that, even after controlling for the bid-ask spread, trading these portfolios has 

been significantly profitable during the sample period from 1996 to 2000.   

O’Brien and Shackleton (2005) examine the effect of systematic moments of 

order higher than two in explaining the cross-section of option returns. They focus on 

FTSE 100 index options and conclude that while systematic variance is significant in 

explaining option returns, the effect of historical coskewness and cokurtosis is less 

evident. Finally, one of the papers that have significantly motivated the present study is 

the Santa-Clara and Saretto (2009) examination of S&P 500 options returns. In particular, 

they analyze the performance of various trading strategies and find that these strategies 

are associated with very high returns, an effect that is especially pronounced for those 

that involve short positions in options, and that these returns are not justified by their 
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exposure to market risk according to traditional asset pricing models. However, after 

accounting for transaction costs and margin requirements, the above mentioned returns 

become less significant, or even negative. Consequently, even though a certain level of 

mispricing is documented in the US options market, a typical investor cannot exploit real 

profit opportunities due to the high costs involved and, instead of being arbitraged away, 

options mispricing is allowed to persist. 

The objective of this paper is to shift the focus from developed options markets to 

their emerging counterparts.  To this extent, we examine the returns of options written on 

the Greek large capitalization index FTSE/ASE-20 for the time-period January 2004 to 

January 2007. The main hypothesis of interest is that the Athens Derivatives Exchange 

exhibits a level of efficiency comparable to that of developed markets. Given the global 

nature of today’s marketplace and the fact that large, international investors with 

significant experience in more established options markets account for most of the 

trading volume in Greece, it is not unreasonable to assume that the ADEX should be a 

relatively efficient market, with option prices reflecting ‘true’ asset values that do not 

offer returns that deviate from those justified by their risk-exposure. 

The alternative hypothesis is partly motivated by the Santa-Clara and Saretto 

(2009) study, and states that higher transaction costs, combined with thinner trading, are 

likely to be associated with a higher level of options mispricing, measured by the returns 

of options and options strategies in excess of their exposure to risk. Intuitively, higher 

trading costs will result in a widened no-arbitrage band, and market prices of options will 

be allowed to deviate further from their theoretical price without arbitrageurs being able 

to profit from the discrepancy and, in the process, forcing prices to their ‘fair’ level. 

Given the higher transaction costs that characterize the Athens Derivatives 

Exchange, the above mentioned alternative hypothesis predicts that positions in 

individual options in Greece earn different risk-adjusted returns than those typically 

earned by options in the US or the UK developed markets. In addition, trading strategies 

that are risk-neutral would be more likely to earn returns that are statistically different 

from the risk-free rate in an emerging market compared to its developed counterparts.  

Overall, the results appear to support the efficiency of the Athens Derivatives 

Exchange. Although naked option positions in Greece earn substantially higher returns 
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than their US counterparts, the discrepancy between realized returns and those justified 

by the Capital Asset Pricing Model (CAPM) or the Black and Scholes (1973) option 

pricing model is not necessarily larger than that traditionally documented in the US 

market. More importantly, portfolios that are formed to be delta and/or vega neutral are 

found to earn the risk-free rate, providing further support for the efficiency of the Greek 

options market. In summary, the developing market of the Athens Derivatives Exchange 

does not appear to offer real profit opportunities, after controlling for risk, and the extent 

to which options might be considered as mispriced is not found to be higher than that 

characterizing the US and the UK markets.  

The remaining of the paper is organized as follows. Section 2 presents the data 

used in the empirical analysis and gives an overview of the Greek large-capitalization 

index and its returns throughout the sample period. Section 3 discusses observed returns 

of naked positions in individual, European-style calls and puts written on the FTSE/ASE-

20. Section 4 examines the efficiency of the ADEX using the three most commonly used 

criteria, namely deviations of realized returns from theoretical ones, CAPM alphas, and 

the returns of zero-risk trading strategies, such as delta and vega neutral straddles. 

Finally, Section 5 provides a comparison between the results and previous empirical 

findings from developed markets, while Section 6 concludes. 

 

2. Data 

 

The options data used in this paper refers to European-style options written on the 

FTSE/ASE-20 index which includes the 20 most liquid and largest capitalization Greek 

stocks. All relevant options data is publicly available through the exchange’s website 

(www.adex.ase.gr). For every trading day, option prices are obtained for the two nearest 

expiration dates which are typically more liquid than longer-term contracts. The options 

expire on the third Friday of the month and settlement is in cash.  

The original dataset consisted of 15,198 calls and 18,217 puts traded on the 

Derivatives Market of the Athens Stock Exchange. The sample runs from January 2004 

to January 2007 for a total of 770 trading days. Similarly to previous studies, several 

filters are employed. First, all options with prices that lay outside the well-known 
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theoretical bounds or are near zero are excluded from the dataset. Moreover, calls and 

puts with less than one week (five trading days) to maturity are dropped. Finally, options 

with less than five traded contracts on a given day are excluded to avoid illiquidity 

concerns. The above filters resulted in a reduced dataset of 9,761 calls and 9,212 puts.  

Table 1 reports some descriptive statistics with respect to the number of daily 

observations. Although the sample consists of 12.34 calls and 11.90 puts on average per 

trading day, it can be seen from Figure 1 that the number of observations in a day exhibits 

significant variability throughout the period of January 2004 to January 2007. The 

number of calls (puts) per day exhibits a standard deviation of 3.26 (2.99) and ranges 

from a minimum of 5 to a maximum of 23 (24).  

The risk-free interest rate is proxied by Euribor which, along with the underlying 

FTSE/ASE-20 index, was obtained through DataStream. The Athens Composite Share 

Price Index was obtained from Reuters. The continuous dividend yield of the underlying 

asset was calculated by using futures contracts on the FTSE/ASE-20 index (futures data 

is also available through the exchange’s website) and solving equation (1) for the 

dividend yield q: 

( )

0 0

T r q T
F S e

−=  (1) 

where 0

T
F is the value at time 0 of a futures contract on the index expiring at T, S0 is the 

spot price of the index, and r is the risk-free rate.  

The sample period could be characterized as one of a significantly high increase 

in the level of the underlying large-capitalization FTSE/ASE-20 index. From a level of 

1,194.2 on the first trading day of 2004, the index has experienced a rapid growth to 

reach 2,566 at the end of January 2007. This translates into an overall appreciation of 

114.87% over the entire 37 months period or, equivalently, 28.15% annually. The 

evolution of the FTSE/ASE-20 throughout the sample period is presented in Figure 2.  

The mean daily return is 0.1% with a standard deviation of 105 basis points, and the 

Jarque-Bera test rejects the null hypothesis of normality in the returns’ distribution at the 

5% confidence level. In addition, spot returns appear to be an I(0) process, since the 

Dickey-Fuller test for the order of integration produces a t-statistic equal to 1.64 and 

therefore cannot reject the null hypothesis of stationarity in the time-series of arithmetic 

returns at the 5% significance level.   
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Not surprisingly, returns of the FTSE/ASE-20 index exhibit an extremely high 

correlation with returns of the Athens Composite Share Price Index (ACSPI) which is 

constructed to capture the overall performance of the Athens Stock Exchange (ASE) and 

includes the 60 most liquid and largest capitalization stocks. In addition to a correlation 

coefficient of 0.98, when rolling regressions of FTSE/ASE-20 excess returns on ACSPI 

excess returns are estimated, the resulting betas are very close to unity throughout the 

sample period, reflecting the fact that the 20 largest capitalization stocks that are included 

in the FTSE/ASE-20 heavily influence the overall performance of the ASE.  

 

3. Option Returns 

 

As has been already mentioned in the previous Section, the call options dataset (post 

filtering) consists of 9,761 call observations across 770 trading days. Daily arithmetic 

returns for each individual call are computed using closing prices for each calendar day.1 

Obviously, the fact that not all strike prices have traded options on every day reduces the 

number of calls for which daily returns can be computed. Whenever a specific call is not 

traded on two consecutive trading days, or the call price remains the same over this 

window, the call return is treated as a missing observation. The above limitations reduce 

the number of computable daily returns to 6,884 observations.  

Let ct be the price of a call option with strike price K and time-to-maturity T. The 

daily arithmetic return Rc for this call is estimated as the difference between ct+1 and ct, 

divided by ct.    

1t t
c

t

c c
R

c

+ −
=  (2) 

Options with different strike prices are likely to earn returns that differ 

significantly. For instance, Coval and Shumway (2001) show that option returns should 

be increasing across strike price space. In order to examine the behaviour of call returns 

across different strikes, individual calls are sorted into four groups according to their 

                                                 
1 In addition to being a commonly used methodology in the literature, closing option prices are used in 
computing daily returns since the Athens Derivatives Exchange states that they are quoted to reflect a 
representative estimate of the ‘true’ value of an option contract at the end of the trading day. Option returns 
have also been examined using last trade prices obtaining similar results.  
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moneyness, with moneyness proxied by the option’s Black and Scholes (BS) delta.2 

These moneyness groups are created such that strike prices for calls are increasing across 

the strike group number, with group 1 including calls with the lowest strikes and group 4 

including calls with the highest strikes. The call’s Black and Scholes delta simultaneously 

accounts for differences in underlying index level, index volatility and time-to-maturity 

across individual options. Panel A of Table 2 contains the criteria for assigning call 

option returns to the four strike groups.     

After classifying calls according to their moneyness, summary statistics for call 

returns of each of the strike groups are computed. Panel B of Table 2 presents the mean, 

standard error and skewness of call returns across the four groups. T-statistics for the null 

hypothesis that the average call return is statistically indistinguishable from zero are in 

brackets. Finally, the average call BS beta and average volume of traded contracts for 

each option category are reported. The BS beta βBS for each call is of particular interest 

since standard asset pricing theory predicts that average call returns should increase as 

βBS increases, and it is estimated using equation (3), where K is the option’s exercise price 

and σ is the underlying’s volatility. Following Coval and Shumway (2001), this also 

implies that βBS will be higher for calls with higher strikes than for their lower strikes 

counterparts. The intuition behind this theoretical prediction is that calls with higher 

strike prices represent more levered positions in the underlying asset and are, therefore, 

riskier investments.      

2

0

0

ln( ) ( )
2[ ]

c

S
r q T

S KN
c T

σ

β
σ

+ − +
=  

(3) 

As can be seen from Panel B of Table 2, average daily arithmetic returns for call 

options in the Greek market are positive and particularly high, compared, for instance, to 

call returns in the US. Call returns are found to be statistically significant for near-the-

money contracts in groups 2 and 3, and marginally insignificant for ITM and OTM 

contracts in groups 1 and 4, ranging from a minimum of 1.41% daily for the low-strike, 

                                                 
2 Option moneyness is frequently proxied by the ratio K/S of the strike price K to the price of the 
underlying S, and by the logarithm of the above ratio divided by the underlying’s volatility σ (see Ni (2006) 
for a more detailed discussion). The subsequent analysis of option returns has also been performed under 
these additional moneyness proxies with the results being similar to the ones obtained under the delta 
moneyness classification and, therefore, are not reported for brevity.  
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most in-the-money calls to a maximum of 3.34% for the high-strike, most out-of-the-

money ones. These figures correspond to annual returns of roughly between 352% and 

835%, depending on the options’ moneyness, and are much higher than returns of calls 

written on the S&P 500, which have been around 100% per annum (see Coval and 

Shumway (2001)).  

Furthermore, average call returns appear to support theoretical predictions, in the 

sense that they are strictly increasing across strike price space. The average BS betas for 

the four groups are also increasing as the strike increases, indicating that options which 

exhibit a higher correlation with the market tend to earn higher returns on average than 

options which are more weakly correlated with the market. For instance, βBS ranges from 

15.87 for the low-strike group to 44.42 for the high-strike one.  

Another interesting finding is the monotonic relationship between the variability 

and the skewness of call returns, and the strike group. Call returns are found to be 

generally positively skewed, with the exception of the negative skewness in the low-

strike group 1. In addition to being mostly positive, skewness across the strike groups is 

found to be increasing across the group number, such that deep ITM calls exhibit the 

lowest skewness while deep OTM ones exhibit the highest skewness. With respect to the 

volatility of option returns, calls in the lowest-strike category tend to earn returns that 

exhibit less variability, based on the standard error of the distribution, while returns of 

higher-strike calls are more volatile. Finally, the average number of traded contracts per 

group appears to be increasing in the group number for groups 1 to 3, since the most ITM 

calls have the fewest traded contracts and group 3 has the highest number of contracts per 

option. This monotonic relationship, though, does not hold for the most OTM calls, 

which appear to have less traded contracts than the options in group 3. Overall, call 

returns in the Greek options market are substantially higher than the returns of calls in 

developed markets. Conforming to theoretical predictions, uncovered positions in calls 

have earned returns in excess of the underlying asset and increasing in the strike price.  

With respect to put options, the initial dataset consisted of 9,212 put observations 

for the time-period running from January 2004 to January 2007. With pt denoting the 

closing price at day t of a put option with strike K and time-to-maturity T, the daily 

arithmetic return Rp of the option is calculated as: 
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1t t
p

t

p p
R

p

+ −
=  (4) 

Whenever a specific put does not have trade prices for two consecutive days or 

the put price remains the same over this window, the corresponding put return is treated 

as a missing observation. This results in a reduced dataset of 6,482 put returns. Similarly 

to the methodology used for call options, puts are assigned into four strike groups, using 

the BS delta to proxy for the option’s moneyness. Panel A of Table 2 presents the cutoff 

points, with strike price increasing as the group number increases. This means that group 

1 includes put options with the lowest strikes while group 4 includes puts with the highest 

strikes. However, contrary to calls, moneyness for put options moves in the opposite 

direction, with group 1 representing deep OTM puts and group 4 representing deep ITM 

ones.   

Panel C of Table 2 reports the mean, standard error and skewness of put returns 

across the four strike groups. T-statistics of the average return being different from zero 

(in brackets) are also reported, as well as the average put beta and average number of 

traded contracts, while the BS beta of a put option is estimated using the following 

equation: 

2

0

0

ln( ) ( )
2[ ]

p

S
r q T

S KN
c T

σ

β
σ

+ − +
= − −  

(5) 

As can be seen from the Table, daily arithmetic put returns in the Greek market 

have been highly negative and statistically significant for all strike groups, ranging from a 

minimum of -5.37% for low-strike, deep OTM puts, to a maximum of -3.61% for high-

strike, deep ITM ones. Not surprisingly, puts with higher betas (in absolute terms) tend to 

earn more negative returns than their lower beta counterparts. This makes intuitive sense 

since puts with high (absolute) betas have relatively low strike prices, representing more 

levered positions in the underlying asset, and are, thus, perceived as more risky 

investments.  

Panel C of Table 2 appears to confirm the theoretical prediction of put returns 

increasing in strike price space. As options move from the low-strike puts in group 1 to 

the high-strike ones in group 4, average returns increase by becoming less negative. 

Moreover, the volatility and skewness of returns is monotonically decreasing in strike 
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price, with skewness remaining positive in all categories. For instance, deep OTM puts in 

the lowest strike group 1 exhibit the highest standard error (0.47) and skewness (1.70), 

while high-strike, deep ITM puts in group 4 have returns that are much less volatile (st. 

error 0.20) and skewed (0.64). Finally, unlike calls which are more liquid the closest they 

get to being ATM, put options appear to be more heavily traded when they are OTM. 

Puts in group 2 are the most liquid, in terms of average traded contracts, with group 1 

being the second most liquid category. Deep ITM puts are much less liquid, with average 

trading volume being 3 or 4 times lower than that of the first two strike groups of OTM 

puts. 

Overall, put options in the Greek market earn negative returns which are 

decreasing (in absolute terms) as strike price increases, in line with theoretical predictions 

as well as with empirical findings from other options markets. The returns, however, of 

short positions in Greek puts are significantly larger than those documented in developed 

markets, ranging from 903% to 1,343% per year, depending on the strike price. This 

implies an asymmetric relationship between returns of calls and puts of similar 

moneyness, since average put losses significantly outweigh average gains from their 

corresponding calls. 

 

4. Evaluating Market Efficiency  

 

Trading options in the ADEX appears to offer very high returns, especially in the case of 

shorting OTM puts. Although returns in the Greek options market are significantly higher 

than those traditionally documented in developed markets, this difference in magnitude 

cannot provide a direct measure of the market’s efficiency before the underlying risks are 

taken into consideration. In order to evaluate the efficiency of the ADEX and to compare 

it with the developed US and UK markets, three commonly used methodologies are 

employed. More specifically, the relative efficiency of the Greek market is measured 

based on the difference between actual option returns and those predicted by the 

theoretical Black and Scholes (1973) pricing model, the magnitude and significance of 

CAPM alphas, and the significance of returns of delta and delta/vega neutral straddles.  
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4.1. Deviations of Actual Returns from Theoretical Returns 

 

This subsection examines whether observed returns of calls and puts are consistent with 

option pricing models such as the Black and Scholes (1973) option pricing formula. In 

order to analyze this relationship, actual market prices are substituted with theoretical 

prices, derived from the above model, and option returns are re-estimated.   

The Black and Scholes option pricing formula has been one of the most 

commonly used methods for pricing options in the literature. Within this framework, the 

theoretical BS price of a European-style option is given as a function of the spot price S0 

of the underlying index, the option’s strike price K, the risk-free rate r, the time-to-

maturity T, the standard deviation σ of the underlying, and the dividend yield q. Within 

the BS framework, the theoretical prices CBS and PBS of a European call and a put, 

respectively, are given by: 

0 1 2( ) ( )qT rT

BS
C S e N d Ke N d

− −= −  (6) 

2 0 1( ) ( )rT qT

BS
P Ke N d S e N d

− −= − − −  (7) 

 

with  

 

2

0

1

ln( ) ( )
2

S
r q T

Kd
T

σ

σ

+ − +
=  

 
2 1d d Tσ= −  

For each option in the dataset, its theoretical BS price is calculated by plugging in 

the vector of six parameters in the equations above. Although most of them are readily 

observable, estimating the standard deviation σ of the underlying for the period until the 

option expires is a less straightforward task. For instance, a potential proxy for σ can be 

obtained through a model based on historical levels of realized volatility (an example of 

this would be the volatility forecast of a GARCH specification). However, an estimate of 

implied volatility is used as a proxy for the future standard deviation of the underlying’s 

returns instead, since it is generally considered to be a more appropriate proxy in the 

context of theoretical option prices. More specifically, despite the fact that historically 

fitted models have been shown to predict future volatility accurately compared to option 

implied volatilities in certain cases, the former fail to account for the observed volatility 
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premium (i.e. the widely documented difference between volatility inferred from option 

prices and its subsequent realization). Consequently, in this study, the parameter σ in the 

BS formula is treated as a proxy for investors’ risk-neutral expectations of future 

volatility levels when pricing options, rather than an accurate prediction of its real-world 

future realization.     

The implied volatility for a set of options trading on a given day is obtained by 

minimizing the sum of squared errors between market prices and theoretical BS prices 

with respect to σ. Let Qi,M denote the market price of a given call or put option and Qi,BS 

the theoretical BS price of that option. The following minimization across the available 

strikes K is performed for the nearest as well as for the second nearest expiration, and it 

provides an estimate of the implied volatilityσ̂  that is used in computing theoretical 

returns.  

2

, ,
ˆ

1

ˆmin [( ( , ) ( , , )) ]
K

i M i i BS i

i

SSE Q S K Q S K
σ

σ
=

= −∑  (8) 

Table 3 reports summary statistics for the returns of calls and puts, respectively, 

under theoretical BS prices. It can be easily seen from Panel A of Table 3 that theoretical 

BS call returns are comparable to observed returns, implying that the Black and Scholes 

formula produces option prices that are systematically close to actual market prices. 

Average betas, as well as the other statistics remain at similar levels, while the monotonic 

positive relationship between strike and returns still holds, with low-strike calls earning 

the lowest returns and high-strike calls earning the highest.  

With respect to put options, results in Panel B of Table 3 indicate that, under the 

BS framework, mispricing is even less of an issue for puts relative to calls, in contrast to 

previous empirical papers which argue that mispricing in developed markets is mostly 

evident for put contracts. More specifically, theoretical BS put returns are slightly higher 

(more negative) than realized returns across all moneyness groups, indicating that, 

although writing puts offers very high returns in absolute terms, this is not necessarily 

inconsistent even with the simple BS model. For instance, writing deep OTM puts is 

typically referred to as an example of a trading strategy that offers abnormally high 

returns relative to its risk characteristics. However, the results suggest that although 

writing deep OTM puts in group 1 earns the admittedly high average return of 5.05% per 
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day, the relatively simple BS assumptions predict even higher daily returns (6.68% 

daily). 

 

4.2. Risk-Adjusted Returns 

 

Since options are risky financial assets, standard asset pricing theory predicts that they 

should earn returns that are commensurate with their systematic risk. The Capital Asset 

Pricing Model, in particular, expresses the expected excess return of an option as a linear 

function of the option’s beta and the expected market risk-premium: 

[ ] [ ]
i f i m f

E R R E R Rβ− = −  (9) 

where Ri is the return of the ith option, βi is the option’s beta, Rm is the return of the 

FTSE/ASE-20, Rf is the risk-free rate, and E[·] is an expectation operator. Within the 

CAPM framework, calls that exhibit a higher covariance with the index, as measured by 

the call’s BS beta, are expected to earn on average higher returns than their lower 

covariance counterparts. Put options, on the other hand, were shown to have negative 

betas, which are decreasing in absolute terms as strike price increases. Therefore, puts 

with more negative betas are expected to earn more negative returns than their lower (in 

absolute magnitude) beta counterparts.   

In order to test the above theoretical predictions, equation (10) is regressed 

separately for calls and for puts across different strike groups 

0 1 ( )
i f i m f

R R R Rη η β ε− = + − +  (10) 

where η0 is the intercept term, η1 is the risk-premium earned by the ith option, and ε is a 

random error term. Under the CAPM’s null hypothesis for this test, the intercept should 

be statistically indistinguishable from zero (η0=0) and the risk-premium should be equal 

to unity (η1=1), for both calls and puts.  

Table 4 reports the regression results for all strike groups of calls and puts. As can 

be seen from Panel A, the risk-premium of calls, measured as the slope coefficient η1 of 

(10), is significantly positive in all cases, ranging from 0.86 to 1.03. More importantly, 

risk-premia are found to be statistically indistinguishable from one for ITM calls in 

groups 1 and 2, and very close to (albeit statistically different from) the theoretical value 

of unity for OTM calls in groups 3 and 4. In addition to estimated risk-premia lying close 
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to unity, mostly insignificant intercepts provide further evidence of the CAPM’s ability to 

explain observed call returns. For instance, η0 is found to be statistically insignificant for 

ITM as well as for deep OTM calls (groups 1, 2 and 4), with only OTM contracts in 

group 3 having a significant η0. Finally, it should be noted that the explanatory power of 

the model, measured by the Adjusted R2, is relatively high, ranging from a minimum of 

65% (deep OTM) to a maximum of 90% (deep ITM), indicating that the combination of 

call betas and the market risk-premium can explain a relatively high proportion of the 

variance of call returns. 

Panel B of Table 4 reports regressions results across all put sub-samples. Risk-

premia are statistically indistinguishable from unity for ITM puts (groups 3 and 4) and 

only marginally different from one in the case of OTM puts in group 2. The η1 coefficient 

for deep OTM puts in group 1 is the only exception, since it is found to be significantly 

lower than its theoretical value of one. Regarding the intercept terms, η0 is significantly 

negative in all cases. Proxied by the regression’s intercept, put risk-adjusted returns are 

monotonically increasing (decreasing in absolute terms) across strikes, with deep OTM 

puts losing 2.85% and deep ITM ones losing 1.18% on a daily basis. Finally, the 

Adjusted R2 is again relatively high, exceeding 89% for deep ITM contracts, indicating 

that the CAPM’s beta has significant explanatory power over put returns.  

Overall, options in the Greek market appear to be positively related with BS 

betas, when controlling for the market risk-premium. In the majority of cases, the slope 

coefficients of the CAPM regressions are statistically indistinguishable from the 

theoretical value of unity for both call and put options, while intercepts are equal to zero 

for calls. The above results seem to imply that the linear risk-return relationship of the 

standard, single-factor CAPM goes some way explaining observed option returns in the 

Greek market. However, significantly negative intercepts in put regressions somewhat 

complicate the analysis, implying that other risk-factors are potentially being priced in 

addition to the options’ systematic variance.        

In the mean-variance world of the CAPM, investors are compensated only for 

bearing the systematic risk stemming from asset returns’ covariance with market returns. 

Recent options literature, though, documents an additional risk-factor being priced in the 

options market, namely changes in the underlying’s volatility. Since options are more 
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valuable when volatility is high, volatility changes should be directly related to option 

prices and, therefore, option returns. In order to account for this additional risk-factor, the 

extended version of the CAPM, described in (11) is tested:   

0 1 2

1
( )

f m f i imp

i

R R R R vega
Q

ι ιη η β η σ ε− = + − + ∆ +  (11) 

where vegai is the ith option’s BS vega, ∆σimp is the daily change in the FTSE/ASE-20 

implied volatility, Qi is the market price of option i, and η2 is the corresponding volatility 

risk-premium. The option’s vega is defined as the first derivative of the option’s price Q 

with respect to the underlying’s volatility σ (∂Q/∂σ), and it measures the sensitivity of the 

option’s price to changes in σ. It should also be noted that, in the context of the above 

regression specification, σ is defined as the ATM implied volatility. Due to the use of 

market prices of ATM calls in extracting an estimate of one of the explanatory variables 

in (11), daily returns of ATM calls are excluded from the dependent variable vector [Ri – 

Rf] since they would provide a near-perfect fit in the regression and would, therefore, 

introduce some bias into the estimated coefficients.3   

Similarly to the standard CAPM’s regression in (10), the null hypothesis for the 

extended model in (11) is that both risk-premia are equal to unity, i.e. η1 = η2 = 1.  Panels 

A and B of Table 5 report regression results of the extended CAPM for calls and puts, 

respectively. With respect to call options, it appears that introducing ∆σimp in the 

regression does not significantly alter the estimated intercepts η0 or the slope coefficients 

η1. Consistent with theoretical predictions, calls are found to earn a significant volatility 

risk-premium, with η2 being significantly positive for all strike groups. Moreover, the 

volatility risk-premium is statistically indistinguishable from unity in groups 2 and 4, and 

relatively high, albeit lower than 1, in group 3. The only problematic result in the calls 

sub-sample is the estimated η2 for deep ITM calls in group 2, which is found to be 

significantly higher than its theoretical value. 

Results for put options are not as straightforward at those for calls. Although the 

slope coefficients η1 are still very close to unity, intercept terms remain significantly 

negative, indicating put overpricing. Furthermore, the risk-premium for volatility changes 

                                                 
3 The ATM implied volatility is estimated by substituting QBS with the actual market price of the nearest-to-
the-money call in the Black and Scholes formula, and then solving for the volatility parameter σ. 
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deviates from its predicted value of unity across all strike groups. However, η2 remains 

positive for all groups, confirming the theoretical prediction of changes in volatility being 

positively related to changes in the value of the option. Finally, it should be noted that the 

correlation between the two main regressors in (11), namely between [Rm – Rf] and ∆σimp, 

is -0.10 over the sample period. Although a negative correlation between the market risk-

premium and changes in index volatility is to be expected since it is a well-documented 

empirical finding that index volatility rises following a negative index return compared to 

a positive return of similar magnitude, it could be argued that the low level of dependence 

between the two explanatory variables suggests that the regression results are relatively 

free of collinearity concerns.  

 

4.3. Straddles 

 

Delta-neutral portfolios are formed by combining long positions in calls and puts of the 

same moneyness, with moneyness defined as (1 - Kc/e
rT

S0) and (Kp/e
rT

S0 - 1) for calls and 

for puts, respectively. In order to estimate the weights wc and wp of the portfolio’s value 

that correspond to investing in calls and puts, respectively, the following two equations 

are simultaneously solved. The first equation stems from the straddle’s delta (deltas), 

which is a linear combination of individual options’ deltas (deltac and deltap), being equal 

to zero, while the second one reflects the fact that the possible combinations are restricted 

to only long positions in same-moneyness options. Obviously, since BS deltas are by 

definition positive for call options and negative for put options, there is only one possible 

combination of weights that satisfies both of these conditions. 

deltas = wcdeltac + wpdeltap = 0 

wc + wp = 1 
(12) 

Since both beta and delta are measures of an option’s sensitivity to changes in the 

value of the market index, they are effectively proxies for the same type of market risk. In 

other words, delta-neutral portfolios of index options can also be considered as beta-

neutral positions. In the CAPM world, systematic variance, proxied by a security’s beta, 

is the only source of risk that is priced in the market. Therefore, a delta-neutral index 

straddle has zero exposure to systematic risk, and should earn the risk-free rate of return.  
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Panel A of Table 6 presents descriptive statistics for the daily returns of delta-

neutral straddles across the four moneyness groups. These groups are formed such that 

moneyness increases as options move from the first group to the fourth one, with group 1 

including long positions in deep OTM options and group 4 including deep ITM ones. As 

can be seen from the Table, delta-neutral portfolios are found to earn relatively low 

returns which are increasing across moneyness. More specifically, deep OTM straddles 

lose around 3 basis points, while deep ITM portfolios earn 38 basis points on a daily 

basis, with average returns increasing as we move from group 1 to group 4. More 

importantly, though, straddle returns are statistically indistinguishable from the risk-free 

rate for all moneyness groups, confirming theoretical predictions that option 

combinations that are immune to changes in the value of the underlying should be 

considered as risk-free and, therefore, have returns equal to the daily risk-free rate. In 

addition, straddle returns exhibit low volatility (roughly 1% across all groups), slightly 

negative skewness and negative excess kurtosis.    

Overall, results from examining delta-neutral straddles provide some support for 

the validity of the Black-Scholes model as well as the CAPM in the Greek options 

market. However, although the theoretical prediction that portfolios with zero delta-risk 

should offer returns that are equal to the risk-free rate is empirically confirmed, it should 

be noted that delta-neutral straddles are potentially exposed to other sources of risk. An 

additional, widely recognised source of risk in the options market refers to changes in the 

level of the underlying’s volatility until the option’s expiration, and it is measured by the 

option’s vega (∂Q/∂σ). Intuitively, since the value of an option is positively related to the 

future volatility σ of the underlying, changes in volatility will affect the option’s price 

and, consequently its expected return. 

The methodology of Liu (2007) is followed to create delta and vega neutral 

portfolios by combining long positions in the underlying and in puts with short positions 

in calls of similar moneyness. More specifically, on each calendar day, delta and vega 

neutral straddles are formed by buying one unit of the index and wc units of the call, 

while selling wp units of the put, the moneyness of which is the closest to the call’s 

moneyness. In order for the straddle’s exposure to delta and vega risk to be zero, the 

following conditions must be met: 
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deltas = 1 + wcdeltac + wpdeltap = 0 

vegas = wcvegac + wpvegap = 0 
(13) 

Obviously, the delta of the underlying is equal to one and its vega is zero. Also, 

calls have positive deltas and puts have negative ones, but both options have positive 

vegas. Therefore, wp must be positive and wc negative to ensure that deltas = vegas = 0. In 

total, 6,562 delta and vega neutral straddles are formed following the previously 

described methodology. The average difference in moneyness between calls and puts is 

0.0126, with 69% of straddles including options with moneyness levels that differ by a 

maximum of 0.01. Straddles are then assigned to four groups based on their moneyness, 

with group 1 including combinations of options that are deep OTM and group 4 including 

deep ITM options. Panel B of Table 6 presents summary statistics for the daily returns of 

delta and vega neutral straddles, across the four moneyness groups.  

The null hypothesis is that straddles with zero risk-exposure to market movements 

and to volatility changes must earn the risk-free rate. Indeed, it is found that daily 

straddle returns for all moneyness groups are statistically indistinguishable from zero, as 

well from the daily risk-free rate. Average returns are increasing across moneyness, with 

deep OTM straddles earning negative returns (0.09%) and deep ITM straddles earning 

the highest positive returns (0.35%).   

Although these results are in line with theoretical predictions, it should be noted 

that this methodology suffers from a relatively well known limitation. More specifically, 

BS delta and vega are measures of local sensitivity, referring to expected changes in the 

option’s price for a marginal change in the index’s level and volatility, respectively. 

Therefore, straddles created in the above way will be delta and vega neutral only 

instantaneously and with respect to very small changes in the FTSE/ASE-20 and its 

volatility. In order to ensure near-zero risk-exposure, straddles have to be rebalanced 

regularly, at the obvious expense of higher transaction costs. For instance, Liu (2007) 

argues that such portfolios ‘… start off delta and vega neutral, but the neutrality is 

unlikely to hold in one week’s time’. In this study, straddle returns are examined at a 

daily frequency in an attempt to minimise the impact of changing delta/vega across our 

holding period and it is found that, even without considering the substantially higher 
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transaction costs, the null hypothesis of straddles earning the risk-free rate cannot be 

rejected.  

In order to determine whether straddles are indeed delta and vega neutral, 

portfolio returns are regressed against the future changes in the underlying FTSE/ASE-20 

and the future changes in implied volatility that corresponds to the period until the 

options’ expiration, using equation (14). 

0 1 2[ ] [ ]
s m imp

E R E Rη η η σ ε= + + ∆ +  (14) 

where Rs is the daily straddle return, and ∆σimp is the daily change in BS implied 

volatility. Under the assumption of delta and vega neutrality, the null hypothesis is that η0 

= η1 = η2 = 0, and Panel C of Table 6 reports the regression results across the four 

moneyness groups.  

The first thing to notice is that η1 is insignificant for groups 2 to 4 and borderline 

insignificant for deep OTM options in group 1. In effect, straddles across all moneyness 

categories remain approximately delta-neutral during the trading day of interest and are, 

thus, not affected by changes in the level of the underlying index. However, although 

delta neutrality seems to hold, not all straddle types are vega neutral. The vega-neutrality 

coefficients η2 for OTM groups 1 and 2 are marginally insignificant with t-stats equal to 

1.62 and 1.63, respectively, while ITM straddles in groups 3 and 4 have significant values 

of η2 (t-stats are 2.07 and 3.23, respectively). 

In summary, delta and vega neutral straddles appear to earn returns that are 

statistically indistinguishable from the daily risk-free rate, irrespective of their 

moneyness. This finding supports the theoretical prediction that positions that are 

immune to the two most common sources of risk in the options market (namely changes 

in the level of the underlying and changes in the underlying’s volatility) should earn the 

risk-free rate. In addition, although straddle returns have been calculated using closing 

option prices, it should be mentioned that the results remain unchanged even when last 

trade prices are used instead. However, when interpreting these results, one should have 

in mind that, despite the fact that all straddles appear to be delta-neutral in the one-day 

period, ITM positions are subject to some vega risk.        
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5. Comparison with Findings from Developed Markets  

 

In order to put the above findings into context, option returns in the Greek market are 

compared to those observed in developed markets. Although the high magnitude of 

returns to individual calls and puts written on the FTSE/ASE-20 seems puzzling at a first 

glance, compared to option returns written on the S&P 500 or the FTSE100, it is 

concluded that they are not necessarily inconsistent with traditional option pricing 

models. Furthermore, returns of various trading strategies, such as delta and vega neutral 

straddles, indicate that risk-return theoretical predictions are strongly supported in the 

Greek market, similarly to its UK and US counterparts. 

First, call options in developed markets have been found to earn relatively high 

average returns. For instance, Coval and Shumway (2001) focus on options written on the 

S&P 500 index from January 1986 to October 1995, and report weekly call returns 

ranging from 1.48% for deep ITM calls to 5.13% for deep OTM ones. Supporting 

theoretical predictions, these returns are in excess of the underlying’s rate of appreciation 

for the same time period and monotonically increasing as strike price increases. On the 

other hand, Driessen and Maenhout (2006) examine returns of options written on the 

FTSE100 from April 1992 to June 2001, and find that, in contrast to S&P options, returns 

of UK calls have been significantly lower. Average weekly returns of short-term 

FTSE100 calls range from 0.28% for ATM options to 0.04% for deep OTM ones, while 

the theoretical monotonic relationship between returns and moneyness is not supported. 

As was discussed in Section 3, returns of calls written on the FTSE/ASE-20 have been 

significantly higher than those previously documented in the US and the UK markets. 

More specifically, deep ITM calls earn 7.05% per week, while deep OTM ones earn 

around 16.70% per week, with call returns strictly increasing across strikes. As has 

already been noted, though, the fact that average returns of Greek call options are four 

times higher compared to the US, and more than fifty times the magnitude of UK call 

returns of similar moneyness, might be at least partially explained by the rapid growth of 

the underlying FTSE/ASE-20 during the 2004-2007 sample period.       

A well documented finding in the related literature refers to the fact that put 

options tend to earn on average higher returns (in absolute terms) than calls of similar 
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moneyness. This asymmetry is highlighted by Coval and Shumway (2001) for the US 

market, with puts written on the S& 500 losing between -14.56% for deep OTM puts to -

6.16% for deep ITM ones. Confirming theoretical predictions, these put returns are below 

the risk-free rate, as well as increasing (becoming less negative) as strike price increases 

(see also Bondarenko (2003) and Broadie, Chernov and Johannes (2009) for returns of 

S&P 500 puts within different sample periods). With respect to the UK, Driessen and 

Maenhout (2006) find that puts written on the FTSE100 have highly negative returns, 

ranging from -6.86% for short-term, deep OTM options to -4.58% per week for deep 

ITM ones. In contrast to FTSE100 calls, puts support the theoretical prediction of strictly 

increasing returns (decreasing in magnitude) across moneyness, while the difference 

between put returns in the US and in the UK is significantly smaller than the one 

documented for calls. Section 3 reports that puts written on the FTSE/ASE-20 lose 

between -26.85% (deep OTM) and -18.05% (deep ITM) on a weekly basis, while, 

similarly to results for developed markets, put returns in Greece become less negative as 

strike price increases. Overall, writing put options on the FTSE/ASE-20 results in higher 

average returns compared to same-moneyness S&P 500 or FTSE100 puts, with put 

returns in the Greek market being closer to results from the US rather than the UK 

options market.  

The fact that options are found to consistently earn very high returns, with the 

most extreme case typically being returns to writing deep OTM puts, has led some 

authors to describe options returns as ‘puzzling’. However, Broadie, Chernov and 

Johannes (2009) argue that, unless they are compared to a reasonable benchmark, it is 

difficult to conclude whether high option returns constitute in fact a paradox. Instead of 

examining the absolute magnitude of option returns, they propose comparing them with 

returns calculated by theoretical option pricing models in order to determine whether 

realized returns differ significantly from what standard options theory predicts. Following 

this line of thought, Coval and Shumway (2001) estimate theoretical US call returns 

under the Black and Scholes/CAPM framework and find that they are even higher than 

those observed in the market, concluding that, if anything, actual US call returns are in 

fact lower than what would be expected based on their market risk. For instance, 

theoretical weekly returns for ATM calls written on the S&P 500 are around 4%, 
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compared to realized returns of only 2% per week. This study shows that theoretical call 

returns in the Greek market are only slightly lower than observed returns, and that this 

difference is likely to be economically insignificant. Although this methodology does not 

imply that the Black and Scholes is an exact option pricing model or that the CAPM 

assumptions necessarily hold in the Greek market, comparing observed returns with a 

theoretically reasonable benchmark goes some way rejecting a ‘naïve’ conclusion that 

high Greek call returns are particularly puzzling. In addition, it should be noted that 

alternative theoretical models that account for stochastic volatility and jump-risk, such as 

Heston (1993) and Merton’s (1976) models, might go a step further in explaining 

observed call returns. 

In contrast to previous empirical findings, it is found that put returns in the Greek 

market are more easily explainable by simple theoretical models compared to calls. 

Broadie, Chernov and Johannes (2009) show that the significantly negative returns of 

S&P 500 puts are not inconsistent even with the basic Black and Scholes option pricing 

model, since theoretical put returns are even more negative than actual returns. Applying 

this methodology to puts written on the FTSE/ASE-20 yields similar results, with BS put 

returns consistently found to be somewhat higher (more negative) than observed returns.   

In addition to comparing realized returns with model-based ones, the significance 

of observed returns can also be examined by focusing on risk-adjusted estimates, proxied 

by the intercepts of CAPM regressions on option returns. Under standard CAPM theory, 

alphas are expected to be statistically indistinguishable from zero, since expected returns 

are only compensating investors for bearing systematic risk. Focusing on the Greek 

market, this theoretical prediction is supported in the case of calls which have 

insignificant alphas. Put returns appear to be relatively puzzling, since after controlling 

for their systematic risk, intercepts remain statistically significant across all moneyness 

categories. These results are similar to Broadie, Chernov and Johannes’ (2009) 

examination of risk-adjusted returns of puts written on the S&P500, who report 

statistically significant CAPM alphas, ranging from -51.72% for OTM puts to -24.60 for 

deep ITM ones (on a monthly basis). Also note that, these results remain unchanged, 

even after incorporating changes in the underlying’s volatility as an additional 

explanatory factor in the extended CAPM, indicating that additional factors are 
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potentially priced in the Greek market, a conclusion that is consistent with the 

explanation proposed by Broadie, Chernov and Johannes (2009) for the US market.  

After examining individual option returns, the focus moves to returns of option 

portfolios. First, a trading strategy that has received a fair amount of attention in the 

related literature explores returns of delta-neutral combinations of options which, under 

the CAPM’s assumptions, should be equal to the risk-free rate. The intuition behind this 

methodology is that, since these straddles are formed such that they are essentially zero-

delta (or, equivalently, zero-beta), they have no exposure to risk from market movements 

and, consequently, should earn the risk-free rate. However, Coval and Shumway (2001) 

as well as Broadie, Chernov and Johannes (2009) report that delta-neutral straddles which 

are formed by combining calls and puts written on the S&P 500 have, in fact, statistically 

significant returns in their respective sample periods. For instance, Coval and Shumway 

(2001) find that ATM straddles lose around 3% on a weekly basis, with straddle returns 

generally increasing (becoming less negative) as strike price increases. In contrast, zero-

delta straddles in Greece are found to have insignificant returns, irrespective of their 

moneyness, indicating that the CAPM’s market-risk alone goes some way into explaining 

the return characteristics of options combinations.  

It has been suggested that the significant returns of delta-neutral straddles in 

developed markets are due to the fact that, although these straddles are theoretically 

immune to changes in the value of the underlying, they might still be exposed to other 

sources of risk. The attention that volatility risk has received in recent studies prompts 

Liu (2007) to focus on delta and vega neutral straddles, combining long positions in the 

underlying and a put with a short position in a call of similar moneyness. Since these 

straddles have zero exposure to the two most commonly accepted sources of risk in the 

options market, namely changes in the value of the underlying as well as changes in the 

underlying’s volatility, they are expected to earn the risk-free rate. However, Liu (2007) 

examines a sample of options written on the FTSE100 from January 1996 to April 2000, 

and finds that, while weekly returns of delta and vega neutral straddles are insignificant 

for ATM and ITM combinations, OTM and deep OTM straddles have significantly 

negative returns. Moreover, she argues that one potential explanation for the above 

mentioned results might be that, since delta and vega are estimated as local sensitivities, 
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the straddles’ neutrality is unlikely to hold across her return-estimation period of one 

week. As was discussed in Section 4.3, delta and vega neutral straddles on the 

FTSE/ASE-20 have returns that are slightly negative and increasing across strikes. More 

importantly, though, straddle returns across all moneyness levels are statistically 

indistinguishable from the risk-free rate, supporting theoretical predictions.  

 

6. Conclusion  

 

This paper has examined the efficiency of the emerging market of the Athens Derivatives 

Exchange compared to developed options markets, from the perspective of returns that 

are commensurate with underlying risks. It is shown that returns of individual options in 

Greece are not inconsistent with empirical findings from developed options markets, such 

as the US and the UK. In addition, returns of delta and delta/vega neutral straddles are 

found to be statistically indistinguishable from the risk-free rate, implying that returns of 

these trading strategies are in line with theoretical predictions, with p-values even higher 

than those documented in traditional, developed markets. 

These results appear to reject the hypothesis of ADEX exhibiting a lower level of 

efficiency, attributed to the relatively high transaction costs and illiquid trading in the 

Greek options market, compared to the US. Santa-Clara and Saretto (2009) document a 

potential mispricing in S&P options that results in various option strategies earning 

abnormally high returns relative to their risk. However, these profit opportunities are 

allowed to persist instead of being arbitraged away due to the relatively high bid-ask 

spread, as well as the strict margin requirements in the US market. Following this line of 

thought, one might expect that the Greek market would offer a greater scope for options 

mispricing, since exploiting these profit opportunities would be even more costly for a 

typical investor due to the significantly higher bid-ask spreads as well as to thinner 

trading.  

In order to put the significant difference in trading costs between developed and 

emerging markets into context, one should consider that trading volume in Greece is 

dramatically lower than, for instance, the US. During 2006, slightly less than 600,000 

FTSE/ASE-20 option contracts were traded in ADEX, while the respective volume for 
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S&P500 options traded in CBOE exceeded 104 million. In addition, the fees charged by 

the exchange for each transaction are higher in the Greek market, with ADEX charging 

market-makers around €0.20 per trade (depending on the option’s moneyness) while 

CBOE charging around $0.20 per trade (depending on total contracts traded). 4 

However, the relative efficiency of ADEX cannot be rejected, since trading 

strategies do not appear to offer significant profit opportunities in this emerging options 

market, even without accounting for transaction costs. This seems to indicate that the 

Greek market exhibits a degree of efficiency comparable to that of developed markets, at 

least with respect to the absence of opportunities for abnormal profits in excess of the 

underlying risks. 
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Table 1: Option Observations per Trading Day 

 Calls Puts 

Mean 12.34 11.90 

Median 12 12 

Standard deviation 3.26 2.99 

Minimum 5 5 

Maximum 23 24 

This Table presents descriptive statistics of the options dataset used. Calls and puts are tabulated separately. 
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Figure 2: FTSE/ASE-20 Index 
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Table 2: Option Returns 

Panel A: Strike Groups 

Strike Group 1 2 3 4 

Calls 0.75 ≤ delta ≤ 1 0.5 ≤ delta < 0.75 0.25 ≤ delta < 0.5 0 ≤ delta < 0.25 

Puts -0.25 ≤ delta ≤ 0 -0.5 ≤ delta < -0.25 -0.75 ≤ delta <-0.5 -1 ≤ delta < -0.75 

Panel B: Call Returns 

Beta 15.87 21.73 30.90 44.42 

Volume  41.31 99.81 195.30 135.59 

Average Return 0.0141 0.0159 0.0299 0.0334 

t-stat (1.90) (3.07) (4.95) (1.50) 

St. Dev 0.1721 0.2438 0.3540 0.5866 

Skewness -0.1030 0.2828 0.8311 1.1761 

No. of Obs 538 2,195 3,453 697 

Panel C: Put Returns 

Beta -43.79 -27.67 -21.20 -16.74 

Volume  113.78 132.66 74.19 29.97 

Average Return -0.0537 -0.0430 -0.0374 -0.0361 

t-stat (-4.90) (-6.39) (-6.18) (-4.56) 

St. Dev 0.4749 0.3248 0.2445 0.2003 

Skewness 1.7023 1.6737 0.8470 0.6410 

No. of Obs 1,875 2,331 1,635 640 

Panel A tabulates the cutoff points for assigning calls and puts into moneyness bins based on the options’ 
Black and Scholes deltas. Panels B and C present descriptive statistics of call and put returns, respectively.  
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Table 3: Option Returns under Theoretical Black and Scholes Prices 

Strike Group 1 2 3 4 

Panel A: Calls 

Average Return 0.0126 0.0175 0.0236 0.0378 

t-stat (1.73) (3.58) (4.06) (1.71) 

St. Dev 0.1691 0.2292 0.3409 0.5846 

Skewness -0.10 0.36 0.65 1.16 

No. of Obs 538 2,195 3,453 697 

Panel B: Puts 

Average Return -0.0668 -0.0443 -0.0390 -0.0379 

t-stat (-6.63) (-6.87) (-6.68) (-4.95) 

St. Dev 0.4363 0.3113 0.2362 0.1940 

Skewness 1.27 1.86 0.86 0.62 

No. of Obs 1,875 2,331 1,635 640 

This Table presents descriptive statistics of theoretical option returns under Black and Scholes prices. Panel 
A refers to calls while B refers to puts.  
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Table 4: Estimated Regression Coefficients of the CAPM 

0 1
( )

i f i m f
R R R Rη η β ε− = + − +  

Strike Group 1 2 3 4 All 

Panel A: Calls 

η0 -0.0038 -0.0022 -0.0068 0.0112 -0.0026 

t-stat (η0=0) (-1.65) (-1.08) (-2.39) (0.86) (-1.28) 

η1 1.0254 0.9858 0.9476 0.8595 0.9291 

t-stat (η1=0) (70.22) (112.55) (110.20) (35.91) (144.91) 

t-stat (η1=1) (1.74) (-1.62) (-6.09) (-5.87) (-11.06) 

Adj. R2 0.90 0.85 0.78 0.65 0.75 

Panel B: Puts 

η0 -0.0285 -0.0143 -0.0115 -0.0118 -0.0184 

t-stat (η0=0) (-4.90) (-4.81) (-4.89) (-4.54) (-8.70) 

η1 0.8627 0.9806 0.9931 0.9919 0.9158 

t-stat (η1=0) (69.37) (98.48) (96.04) (73.43) (145.16) 

t-stat (η1=1) (-11.04) (-1.95) (-0.67) (-0.60) (-13.35) 

Adj. R2 0.72 0.81 0.85 0.89 0.76 

This Table tabulates the results from estimating the standard CAPM regression on the daily returns of options written 
on the FTSE/ASE-20 index. The sample period runs from January 2004 to January 2007. Results for calls and for puts 
are presented in Panels A and B, respectively.  
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Table 5: Estimated Regression Coefficients of the extended CAPM 

0 1 2

1
[ ]

f m f i imp

i

R R R R vega
Q

ι ι
η η β η σ ε− = + − + ∆ +  

Strike Group 1 2 3 4 All 

Panel A: Calls 

η0 -0.0039 -0.0023 -0.0075 0.0038 -0.0038 

t-stat (η0=0) (-1.77) (-1.24) (-2.86) (0.31) (-2.00) 

η1 1.0152 0.9979 0.9623 0.9023 0.9496 

t-stat (η1=0) (72.97) (121.56) (120.68) (40.81) (159.71) 

t-stat (η1=1) (1.09) (-0.26) (-4.72) (-4.42) (-8.48) 

η2 6.6113 0.9552 0.6889 1.0664 0.8197 

t-stat (η2=0) (7.76) (17.92) (24.20) (12.02) (34.71) 

t-stat (η2=1) (6.59) (-0.84) (-10.93) (0.75) (-7.64) 

Adj. R2 0.91 0.87 0.81 0.71 0.79 

corr(Rm-Rf, ∆σimp) -0.01 -0.10 -0.09 -0.23 -0.11 

Panel B: Puts 

η0 -0.0298 -0.0160 -0.0120 -0.0112 -0.0194 

t-stat (η0=0) (-5.20) (-5.42) (-5.14) (-4.34) (-9.28) 

η1 0.8661 0.9798 0.9920 0.9907 0.9175 

t-stat (η1=0) (70.57) (99.53) (97.17) (73.71) (147.32) 

t-stat (η1=1) (-10.91) (-2.05) (-0.78) (-0.69) (-13.24) 

η2 0.0865 0.0990 0.2007 0.3056 0.0924 

t-stat (η2=0) (7.34) (7.44) (6.62) (2.88) (13.15) 

t-stat (η2=1) (-77.56) (-67.72) (-26.36) (-6.54) (-129.09) 

Adj. R2 0.73 0.81 0.85 0.90 0.77 

corr(Rm-Rf, ∆σimp) 0.03 -0.04 -0.01 -0.01 -0.08 

This Table tabulates the results from estimating the extended CAPM on the daily returns of options written on the 
FTSE/ASE-20 index. The estimated coefficients for calls and for puts are presented in Panels A and B, respectively. 
The last row of each Panel tabulates the correlation between the two dependant variables, namely between the excess 
return of the market and the daily change in implied volatility.  
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Table 6: Straddles 

Moneyness Group m < -0.03 -0.03 < m < 0 0 < m < 0.03 0.03 < m 

Panel A: Summary Statistics for Delta Neutral Straddles 

Average -0.0003 0.0013 0.0017 0.0038 

St. Error 0.01 0.01 0.01 0.01 

t-stat (-0.03) (0.13) (0.18) (0.44) 

Median 0.0002 0.0014 0.0019 0.0040 

Skewness -0.17 -0.22 -0.18 -0.12 

Kurtosis 1.22 1.11 1.09 0.14 

No of Obs. 2,347 1,852 1,341 1,022 

Panel B: Summary Statistics for Delta and Vega Neutral Straddles 

Average -0.0009 0.0006 0.0009 0.0035 

St. Error 0.02 0.01 0.01 0.02 

t-stat (-0.06) (0.04) (0.06) (0.22) 

Median -0.0003 0.0010 0.0010 0.0038 

Skewness 0.19 0.07 0.40 0.04 

Kurtosis 2.85 1.70 2.00 0.60 

No of Obs. 2,347 1,852 1,341 1,022 

Panel C: Estimated Regression Coefficients 

E[Rs] = η0 + η1E[Rm] + η2∆σimp + ε  

η0 -0.003 -0.002 -0.004 -0.006 

t-stat (-2.17) (-1.22) (-1.64) (-2.03) 

η1 0.050 -0.053 -0.005 -0.021 

t-stat (1.71) (-1.58) (-0.11) (-0.39) 

η2 0.012 0.014 0.023 0.047 

t-stat (1.62) (1.63) (2.07) (3.23) 

Panels A and B present summary statistics of the daily returns of delta and delta/vega neutral straddles, respectively. 
Risk-neutral portfolios are constructed by combining same-moneyness calls and puts, and they are assigned into 
separate moneyness bins. Panel C tabulates the results of local sensitivity regressions that examine whether delta/vega 
neutral straddles retain risk-neutrality with respect to changes in the underlying’s spot level and to changes in the 
underlying’s implied volatility.  

 


