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Abstract. Modeling defaults is critical to pricing debt portfolio deriva-
tives such as credit default options, collateralized debt obligation tranches
and credit default swaps written on those tranches. However, corre-
lated defaults have proven difficult to model. Improper or non-existent
modeling of default correlations has caused multi-billion-dollar losses at
numerous financial firms. I propose statistical approximations to model
correlated defaults. The approximations are consistent and follow from
a structural risk factor approach. This approach can price credit default
options, such as those currently trading on exchanges, and swaps with
an assumption of loss given default. It also yields metrics characteriz-
ing portfolio default risk and improving upon a currently-used metric of
loan portfolio diversification.
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1. Introduction

Many financial phenomena involve waiting for one or more random events.
One such phenomenon is default on a loan. To reallocate default risk, many
loans might be pooled and the pool tranched — as done with collateralized
debt obligations (CDOs). The default risk of a bond or tranche might be
hedged with a credit default swap (CDS).

Alternately, one could hedge the default risk on such portfolios by purchasing
a credit default option (CDOpt). CDOpts are digital options which pay $N
when a default event occurs and $0 otherwise. CDOpts are currently traded
by the Chicago Board Options Exchange; and, a portfolio of CDOpts at
various maturities traded versus a CDS would imply a bet on the term
structure of loss given default.

I use an approach based on risk factors to approximate the distribution
of correlated default times. This approximation can then be used to price
credit default options. Further, if we could model the loss given default as
a function of default time, this distribution would allow us to price credit
default swaps and collateralized debt obligations.

I assume defaults occur at the expiry of “timers.” The idiosyncratic parts
of default times are exponentially-distributed. These idiosyncratic timers
may be accelerated by the expiry of systematic exponential timers. The
interaction of idiosyncratic and systematic timers yields correlated default
timers for individual loans.

For example, homeowners default at the expiry of their individual timers;
however, their individual timers may be accelerated if the “US recession”
timer expires (and a recession ensues).

Mathematically, this structural approach can be recast so that the average
default distribution (and preceding metrics) involve sums of exponential ran-
dom variables. Equally-weighted sums of iid exponential random variables
are gamma-distributed. Sums of non-iid exponential random variables may
not be gamma-distributed.

For large numbers of independent loans, we could use the Central Limit
Theorem. However, some CDS and CDOpt underliers are large portfo-
lios of related loans and CDO tranches. Exposure to common risk factors
can induce correlations in individual loan defaults. Correlated defaults and
tranching make these underliers behave like portfolios of fewer loans.

I propose that the average underlier default time — a sum of non-identically-
distributed, possibly correlated summands — is often nearly gamma-distributed.

Approximating these sums with a gamma distribution involves finding a
similarly-behaving sum of (often fewer) iid exponential random variables.
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These iid default times allow us to easily model underlier default times via
an iid-equivalent loan portfolio.

The number of loans (summands) in the iid-equivalent loan portfolio yields
an iid-equivalent loan count (ILC). The ILC measures the minimal number
of identical but unrelated loans needed to create a similarly (default) risky
portfolio. Thus the ILC is a measure of loan portfolio diversification.

Approximating correlated defaults has two benefits. First, it improves mod-
els of default times for loan portfolios and CDO tranches. This allows us to
price CDOpts and might help us price CDSs. Second, it allows us to better
assess the default-relative diversification of loan portfolios.

2. Thinking About Default Times

Current thinking on delays can be traced to Erlang’s (1909) pioneering pa-
per: Erlang models the answering delay of busy operators as exponentially
distributed.

Jarrow and Turnbull (1995) first suggested modeling bond default times as
exponentially-distributed. Jarrow, Lando and Turnbull (1997) model the
default time of each credit rating with bonds changing credit ratings via a
Markov chain.

Banasik, Crook and Thomas (1999) briefly consider default times that are
exponentially- or Weibull-distributed. Collin-Dufresne, Goldstein and Hugo-
nnier (2004) model default times as exponentially-distributed with a random
intensity and discuss modeling a two-loan CDO. However, they do not gen-
eralize their result.

Correlated defaults have received less attention. Jarrow and Yu (2001) use
the Jarrow-Turnbull model to study default by issuers with bond cross-
holdings. However, they only consider two bonds since for more firms “work-
ing out these distributions is more difficult.”

Since those distributions are difficult to work out, approximation would
seem to be in order. My approach is similar in spirit to what Duffie, et
al. (2009) call “frailty-correlated” default1; however, I allow for asymptotic
approximation.

Approximating the distribution of a random variable was first addressed
by the small-sample asymptotic work of Thiele (1871), Gram (1883), and
Edgeworth (1883) (the Edgeworth and Gram-Charlier series).

1Neither Duffie et al. (2009) nor I use true frailty-based defaults. Frailty, as in sur-
vival analysis, is theoretically troublesome: such models assign finite probability to the
simultaneous default of all loans.
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De Forest (1883), Romanovsky (1924), and Wishart (1926) found results
increasingly close to those here. Yet none of these use cumulant differences,
discuss the order of error, nor mention earlier work on small-sample asymp-
totics.

Patnaik (1949), Cox and Reid (1987), and McCullagh (1987) discuss similar
approximations. Cox and Barndorff-Nielsen (1989) approximates a weighted
sum of Exp(1) variables with a gamma base density and hints at expanding
upon this2. Surprisingly, none of these use approximations of the form here.

3. Approximation Consistency

We might assume that the time to default3 for one loan is exponentially- or
nearly gamma-distributed (if random sub-events alter the default rate). An
increase in defaults might follow a rise in interest rates, a tightening of credit
standards, or an economic downturn. Thus we might expect default times
for multipl loans to be positively correlated. This means that portfolios of
a large number of loans might behave like portfolios of fewer loans.

Finding the average default time for a portfolio involves adding multiple
exponential random variables. Note that averages can be composed as sums
of rate-changed exponentials.

One or more summands (aka constituents) model a borrower repaying a
loan. I assume one constituent is idiosyncratic to the borrower; the other
constituents are related to risk factors. Loans which share risk factors have
correlated defaults. For a loan portfolio, if we can find a default-equivalent
portfolio of independent loans, we can then model the distribution of port-
folio defaults.

I consider three cases, in increasing generality:

1) known number of constituents, homogeneous rates;
2) known number of constituents, heterogeneous rates; and,
3) unknown number of constituents, rates.

3.1. Notation and Assumptions. We begin by letting:

k = the number of risk factors;
m = the number of loans and risk factors (i.e. constituents);
Xi = default time of loan i ∈ {1, . . . ,m};
λi = the rate parameter characterizing default time Xi; and,
Y = the time to complete portfolio default.

2See example 4.4.
3Default may be censored: borrowers might be in good-standing at observation time; or,
borrowers might pay back a loan at maturity. These difficulties do not challenge the
validity of a delay-based model.
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I also assume that: (i) sum constituents are exponentially-distributed; and,
(ii) all observations of complete portfolio defaults are independent.

3.2. Known Number of Independent Constituents, Homogeneous
Rates. This case assumes that borrowers default at a common exponential
rate λi = λ but that their defaults are independent.

For constituents of equal importance, the distribution of the sum Y is a
Gamma(m,λ) random variable. For constituents of unequal importance,
let wi > 0 be the weight assigned to Xi. We then rewrite the moment
generating function (mgf) using λ∗i = λi/wi.

If larger loans are more likely to default, importance-based weighting may
counter the λi variation and drive these sums closer to being gamma-distributed.

Theorem 1. (When Default Rates Scale with Loan Size)
If ∀ i ∈ {1, . . . ,m > 1}:

1) Xi
indep∼ Exp(λi); and,

2) there exists a weight 0 < wi <∞ such that λi = wiλ
∗
i = wiλ,

then Y =
∑m

i=1wiXi ∼ Gamma(m,λ).

Proof. The mgf exists in a neighborhood about t = 0, identifying the dis-
tribution. MY (t) =

∏m
i=1

λi
λi−wit

=
∏m
i=1

λ
λ−t , which is the mgf for a

Gamma(m,λ) random variable. �

If the λ∗i ’s are not equal, we have a known number of heterogeneous rates.

3.3. Known Number of Constituents, Heterogeneous Rates. Since
the mgf for a sum of independent random variables is the product of the
individual mgf’s, we get the moment and cumulant generating function (cgf)
for this case:

MY (t) =
m∏
i=1

λi
λi − t

,(1)

KY (t) =
m∑
i=1

(log λi − log(λi − t)) ,(2)

as well as the first four cumulants of the sum Y :
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κ1 =
m∑
i=1

1
λi
, κ3 =

m∑
i=1

2
λ3
i

,

κ2 =
m∑
i=1

1
λ2
i

, κ4 =
m∑
i=1

6
λ4
i

.

Since the mgf and cgf depend on the individual rates, we must find the
density explicitly for each problem instance. This can be cumbersome for
many rates but may be handled by the following case.

3.4. Unknown Number of Constituents, Rates. Most flexible is to as-
sume nothing about the λi’s, m nor independence. Instead, we approximate
the average default density. Edgeworth’s (1883, 1905, 1906) work suggests
expanding about a base density to get an approximate density.

Since correlation is an important aspect of what we are studying, we should
ensure that Edgeworth expansions are consistent for correlated exponentials.
The following proof shows consistency for certain (structural) constructions
of correlated exponentials:

Theorem 2. (Consistency for Exponentials Correlated by Risk Factors)
Assume the following hold:

1) Y =
∑m

i=1Xi; Xi ∼ Exp(λi) ∀ i ∈ {1, . . . ,m};
2) Xi’s are partitioned by an independent (idiosyncratic risk factors; S̄)

and singular (systematic risk factors; S1, . . . ,Sk) index sets;
3) at least two of these index sets are non-empty4;
4) Xi’s in the independent index set (Xi∈S̄ ’s) are independent; and,
5) Xi’s belonging to different index sets are independent. (Thus all risk

factors and idiosyncratic risks are independent.)

Then Edgeworth expansions are consistent for estimating the density of Y .

Proof. By assumption 2, we may put XS`
:= Xi∈S`

with rate λS`
for all

` ∈ {1, . . . , k}. We then rewrite Y as Y =
∑

i∈S̄ Xi+ |S1|XS1 + . . .+ |Sp|XSp .

Since XS1 , . . . , XSp are exponentially-distributed, we can rewrite |Si|XSi as
an exponential random variable X∗Si

with rate λ∗Si
= λSi/|Si|. Thus we get

Y =
∑

i∈S̄ Xi +
∑k

i=1X
∗
Si

.

This is a sum of independent, non-identically distributed constituents. This
meets the regularity conditions in Feller (1971) since Y has finite higher
moments and the characteristic function φY (t) is integrable for m > 1. �

4Were this not true, a risk factor switching on could cause all loans to immediately default.
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4. Approximation Forms

With the preceding consistency result, we may investigate asymptotic ap-
proximations. I examine three possibilities:

1) Normal-correction Edgeworth Density Approximation;
2) Gamma-correction Edgeworth Density Approximation; and,
3) Mélange Edgeworth Density Approximation.

4.0.1. Normal-Correction Edgeworth Density Approximation. For an Edge-
worth approach, we might consider a distribution with support over all of
R. This can be done via an expansion about the normal distribution. We
choose a normal-based expansion and match the first two cumulants:

fY (y) =
φ(z)
√
κ2

[
1 +

κ3(z3 − 3z)
6
√
κ3

2

+
κ4(z4 − 6z2 + 3)

24κ2
2

+
κ2

3(z6 − 15z4 + 45z2 − 15)
72κ3

2

]
+O(n−3/2)

(3)

where z = (y − κ1)/
√
κ2.

4.0.2. Gamma-correction Edgeworth Density Approximation. As noted pre-
viously: most Edgeworth expansions use the normal distribution. However,
the preceding sections suggest we expand about the gamma distribution.

To clarify the results, I introduce two more pieces of notation:

γm,λ(y) = the Gamma(m,λ) pdf if m > 0, 0 otherwise; and,
Γm,λ(y) = the Gamma(m,λ) cdf if m > 0, 0 otherwise.

Next I define γ(k)
m,λ(y) as a bounded differentiation of γm,λ(y):

γ
(k)
m,λ(y) = λk

k∑
j=0

(−1)k−j
(
k

j

)
γm−j,λ(y)Im−k>0.

Thus γ(k)
m,λ(y) = 0 for all negative m − k. This upholds the regularity con-

dition of a bounded k-th derivative; details are in Feller’s (1971) second
volume on page 538.

We recall the Gamma(m,λ) cumulants and match the first two, implying

m̂ =
κ2

1

κ2
, λ̂ =

κ2

κ1
(4)
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for estimates of m and λ. This and the preceding derivatives yield:

fY (y) = γm̂,λ̂(y) +
κ3λ̂

3 − 2m̂
6

3∑
j=0

(−1)3−j
(

3
j

)
γm̂−j,λ̂(y)

+
κ4λ̂

4 − 6m̂
24

4∑
j=0

(−1)4−j
(

4
j

)
γm̂−j,λ̂(y)

+
(κ3λ̂

3 − 2m̂)2

72

6∑
j=0

(−1)6−j
(

6
j

)
γm̂−j,λ̂(y)

+O(n−3/2),

(5)

assuming that m̂ ≥ 7 to meet the aforementioned regularity condition.

Note that the expansion has a pleasingly simple form: binomial sums of
other gamma densities. These approximations are elegant and, so far as I
can tell, a new result.

4.0.3. Mélange Edgeworth Density Approximation. We might consider a mélange
of the preceding approaches5: a base distribution close to the true distri-
bution coupled with simple correction terms. While unusual, the idea is
recommended by Cox and Barndorff-Nielsen (1989).

A sensible mélange here is to use a Gamma(m,λ) base density and add
normal-correction terms. This eliminates concerns about correction terms
not existing due to m̂ being too small.

fY (y) = γm̂,λ̂(y) +
φ(z)
√
κ2

[C3(z, κ) + C4(z, κ)] +O(n−3/2)(6)

where, as before, z = (y − κ1)/
√
κ2 with

C3(z, κ) =
κ3 − 2m̂/λ̂3

6
√
κ3

2

(z3 − 3z); and,

C4(z, κ) =
κ4 − 6m̂/λ̂4

24κ2
2

(z4 − 6z2 + 3)

+
(κ3 − 2m̂/λ̂3)2

72κ3
2

(z6 − 15z4 + 45z2 − 15).

5The term “mélange” is used to avoid confusion with mixture distributions.
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5. Evaluating the Approximations

To examine how these approximations perform, I examine the following
(tractable) forms for approximating the default time density:

1) Normal base and normal Edgeworth terms;
2) Gamma base density;
3) Mélange: Gamma base and normal Edgeworth terms; and,
4) Gamma base and gamma Edgeworth terms.

These approximations are compared to densities for default times of large
CDO tranches. The CDO setup is consistent with information in Lucas
(2001) and Fender and Kiff (2004):

1) underlying portfolio of 200 equal-sized loans;
2) each loan has a different rate of default;
3) four tranches, with defaults allocated to the lowest still-extant tranche:

Tranche # Loans Percent
A 150 75%
Mezzanine 40 20%
Equity 10 5%.

The equity tranche for this CDO is likely the most difficult tranche to model.
Therefore, I focus on approximating the equity tranche under the possibility
of a major shock. This shock induces correlations via large (500%) default
acceleration.

200,000 simulated loan portfolios were created using the algorithm in Appen-
dix A. These simulations yielded cumulants which implied parameters for
the Edgeworth approximations. The target density was then plotted along
with the approximations. (((TO DO: CALCULATE GOODNESS-OF-FIT
METRICS!)))

5.1. CDO Equity Tranche with Major Shock. The average default
time of a CDO equity tranche can be modeled as a mean of correlated
exponential random variables. Correlations are induced by a shock (e.g. a
precipitate economic downturn). In particular, suppose the following event
setup:

1) the correlation-inducing systematic component is a rare one-time eco-
nomic shock;

2) each loan i not in default ignores the shock with probability pi; and,
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κ̂1 κ̂2 κ̂3 κ̂4

0.142 2.583× 10−3 1.018× 10−4 6.458× 10−6

Table 1. Simulated cumulants for weighted average default
time of a CDO equity tranche modeled as the mean of the
smallest ten of 200 correlated non-identically-distributed ex-
ponential random variables with five-fold acceleration of de-
fault after an exogenous shock.

3) shock-affected loans have their remaining time to default accelerated
by a factor6 δ.

Finally, we make some modeling assumptions:

1) default rates are chosen to cover a range of average (idiosyncratic,
ex-shock) default times of 5–20 years:

{λ}i =

{
10i/200

20
: i ∈ 1, . . . , 200

}
;

2) the systematic shock has rate λs = 0.05 (mean time-to-shock of 20
years) which induces theoretical pre-reaction correlations7 from 0.048
(λi’s near 0.5) to 0.330 (λi’s near 0.05);

3) the probability of ignoring a shock is pi = 0;
4) the default time acceleration factor δ = 5.

For example, suppose in simulation that loan A defaults in 21 years and
loan B in 3 years. If the shock happens in year 10, loan A would default in
year 10 + (21− 10)/5 = 12.2 and loan B would still default in year 3.

We compute the average default time as the sample mean (Ȳ ) of the ten
smallest random variables. Simulated Ȳ ’s yielded the sample cumulants in
Table 5.1 and implied gamma parameters of λ̂ = 55.12 and m̂ = 7.849.

The average simulated default time is about two months; and, the iid-
equivalent loan count is 7.8 — a reduction in default-relative diversification
of nearly one-quarter. These are stark indicators of the default risk taken
on by equity tranche holders.

Plots of the normal-correction approximations (Figure 1) to the equity tranche
average default time density show a few key details:

• the standard (normal) approximation performs very well with minor
negativity for ȳ < 0.04;

6By the memoryless property of the exponential distribution, each shock-affected loan
defaults at Xs + X ′i where Xs ∼ Exp(λs) and Xi ∼ Exp(δλi). Thus Theorem 2 still
applies.
7cum-reaction correlations are lower
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• the mélange expansion has almost no negativity and is indistinguish-
able from the actual density more often than the standard Edgeworth
approximation.
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WAD for Equity Tranche of CDO with Shock and Reaction
Normal−correction Approximations

Y

D
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Normal Edgeworth O(m−−3 2)
Normal Log− Edge. O(m−−3 2)
Melange Edgeworth O(m−−3 2)

Figure 1. CDO equity tranche weighted average default
time (WAD) density (solid line) versus approximations.
O(m−3/2) normal approximation (dotted line); O(m−3/2)
normal-correction log-density approximation (dash-dot-
dotted line); and, the O(m−3/2) mélange approximation
(dash-dotted line). The equity tranche is modeled by the
smallest ten of 200 correlated exponential random variables
with five-fold default acceleration after an exogenous shock.

Plots of the gamma-correction approximations (Figure 2) to the equity
tranche average default time density show that:

• the gamma base is almost identical to the actual density; and,
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• the gamma-correction approximation is positive for 0 < ȳ < 0.05).
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Figure 2. CDO equity tranche weighted average default
time (WAD) density (solid line) versus approximations.
O(m−1/2) gamma base (– –); O(m−3/2) gamma-correction
approximation (— - -); and, the O(m−3/2) gamma-correction
log-density approximation (– ···). The equity tranche is mod-
eled by the smallest ten of 200 correlated exponential random
variables with five-fold default acceleration after an exoge-
nous shock.

5.2. Other CDO Tranches with Major Shock. These plots naturally
raise some questions:

1) What do average default time densities look like for other tranches?
2) What if pi = 0.5 (or some other number)?
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3) What if pi is inversely-proportional to λi? (i.e. What if issuers with
better credit are less likely to face default acceleration?)

For pi = 0, the other tranche average default time densities exhibit left-
skew which increases with tranche seniority. The A tranche average default
time, in particular, is sharply left-skewed with a minor mode on the left, a
non-zero plateau in the middle, and a major mode on the right.

If the probability of ignoring the shock increases to pi = 0.5 or pi = 0.8, the A
tranche average default time looks normally-distributed while the mezzanine
tranche exhibits barely-discernible right-skew. The equity tranche average
default time has slightly less right-skew than for pi = 0; but, even a casual
observer would probably doubt normality.

Finally, if the probability of ignoring the shock is proportional to credit qual-
ity, the A and mezzaanine tranche average default times appear normally-
distributed; the equity tranche average default time density is right-skewed
(as for pi = 0).

6. Conclusion and Future Research

As the examples make clear, the average default time for a loan portfolio
may be nearly-gamma-distributed. In many cases the distribution is ap-
proximated well by a gamma-based Edgeworth approximation.

The gamma base alone is attractive for its parsimony and other nice behav-
ior: guaranteed positivity, unimodality, and computational ease. In some
cases, the gamma base plus gamma-correction terms nicely approximate the
distribution in question.

The gamma base and gamma-correction Edgeworth expansions also have
another advantage: their tail decay is on the order of e−y instead of e−y

2
.

While not detectable from the plots, this is an important difference for
analyses involving extreme events: the standard Edgeworth approximations
would predict far fewer extreme events.

In some situations, the mélange approximation may be useful because it
offers quickly-decaying correction terms while still offering tail decay on the
order of e−y.

The greatest need for further work is to investigate if distributions of average
default times help in modeling distributions of portfolio default times. One
simple possibility would be to use the average default time distribution along
with the ILC. The portfolio would then be modeled as experiencing total
default after all m̂ iid-equivalent loans had defaulted.
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One disappointing feature of gamma-correction Edgeworth expansions not
shown here is their poor performance at approximating distributions which
are left-skewed.

An effective way to handle this might be to choose a value M and model
the left-skewed distribution with y-reversed gamma base or correction terms
originating from y = M . The reversed gamma densities used would be of
the form γm,λ(M−y). A mixture of standard and reversed gamma densities
could be even be used, dictated by the signs of the cumulant differences.

Another area for further work is to study when the implied gamma base
parameter m̂ is close to violating regularity conditions. In these cases, it
might be fruitful to bias m̂ upward so that gamma-correction terms may be
used. How this would affect overall performance is unclear.

While standard Edgeworth procedure is to match the first two moments,
this may not be optimal. One could investigate the performance of Edge-
worth expansions where the pseudocumulants are determined by maximum
likelihood or by minimizing some measure of the distance between the ap-
proximate and actual densities.

The performance of such maximum-likelihood “Edgeworth expansions” is
surely better than using pseudocumulants; however, the approximation or-
der is then a model selection question. Such an approach would probably
incorporate higher-order cumulant effects via the optimization — and thus
might be between the Edgeworth and saddlepoint expansions in spirit.

Appendix A. Generating Positively Correlated Defaults

This method uses the memoryless property of the exponential distribution
to efficiently reuse idiosyncratic random variates.

Algorithm 1. Positively-correlated (nearly-gamma) default times

1) Generate idiosyncratic components X̃i
indep∼ Exp(βi).

2) Generate systematic components X̃s,k ∼ Exp(βs,k).
3) Sort the systematic shocks to find which occur first:

Xs,(1) < · · · < Xs,(K).
4) Reorder the acceleration coefficients δk’s similarly.
5) For k = 1 to K

(a) Find affected loans:
Jk = {i :loan i exposed to risk k} ∩ {i : X̃i > X̃s,(k)}.

(b) Accelerate defaults in affected loans:
X̃i∈Jk

= Xs,(k) + (X̃i∈Jk
−Xs,(k))/δ(k).
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