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Abstract

The majority of industry credit portfolio risk models is based on various isolated
modules for default probabilities and recoveries in the event of default. However, em-
pirical evidence suggests a negative relation between both. This paper provides an
approach for estimating this relation in a simple Merton type credit model frame-
work with stochastic recoveries. An empirical analysis links bond recoveries with
credit ratings and subordination levels and provides evidence for the relationship
between credit quality, recovery rate and asset correlation. We find that the eco-
nomic and regulatory capital may be severely underestimated by common regression
models and deterministic recoveries.
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1 Introduction

The current US-subprime mortgage crisis highlights that during economic
downturns, likelihood and severity of multiple borrowers may deteriorate jointly.
This is a particular concern in today’s credit markets where via mechanisms
such as collateralized debt obligations, credit portfolios rather than single
name credits are exposed to losses within contractual boundaries. According
to a recent study by the British Bankers’ Association (2006), 54 percent of
the global $20 trillion credit derivatives market consists of portfolio products.
The evaluation of these requires the understanding of individual risk drivers as
well as their dependence structure. Simplifying assumptions in existing mod-
els often lead to an underestimation of risks, particularly during economic
downturns.

For instance, credit portfolio models aggregate parameters for the likelihood,
severity and dependence structure underlying a credit portfolio and forecast
the distribution of future credit losses. It is common practice to model these pa-
rameters independently and to introduce the dependence structure thereafter.
Different contributions try to incorporate the dependence structure between
the default events (compare e.g., Lucas 1995, Dietsch & Petey 2004, Hamerle
et al. 2006, Frey & McNeil 2002, 2003, Rösch & Scheule 2004, Rösch 2005,
McNeil & Wendin 2007) and between the default events and related recover-
ies (compare e.g., Frye 2000, Pykhtin 2003, Tasche 2004, Düllmann & Trapp
2005, Rösch & Scheule 2005).

Examples for well known credit portfolio models are CreditRisk+ (Credit Su-
isse Financial Products 1997), CreditMetrics (Gupton et al. 1997) and Cred-
itPortfolioManager (Gupton et al. 1997). Newer applications in relation to
collateralized debt obligations are VECTOR from Fitch rating agency (see
Fitch Ratings 2006), CDOROM from Moody’s rating agency (see Moody’s
2006) and CDO Evaluator from Standard and Poor’s rating agency (see Stan-
dard & Poor’s 2005).

The literature on the estimation of severity parameters such as recoveries or
losses given default includes a limited number of contributions (compare e.g.,
Carey 1998, Altman et al. 2006, Cantor & Varma 2005, Schuermann 2005,
Acharya et al. 2007). Unfortunately, these contributions rely on the estima-
tion of unconditional OLS regression models and do not take into account
that recoveries can only be observed when a default event occurs. Three ex-
ceptions are Altman et al. (2001), Pykhtin (2003), and Hamerle et al. (2007).
Altman et al. (2001) show the relation between default probability and ex-
pected recovery rate in a Merton model approach and the sensitivity w.r.t
asset volatility. Thereby their model accounts for the fact that recoveries are
only observable if a default occurs. Pykhtin (2003) also accounts for this mor-
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tality bias and derives closed-form expressions for the Expected Loss and the
Value-at-Risk. However, these papers do not provide empirical solutions for
parameter estimation. Pykhtin (2003) even acknowledges that ”[The average
LGD] is impossible to estimate”. Hamerle et al. (2007) show by simulation
that the estimates of isolated recovery models are biased but do not provide
an analytical justification for that. Furthermore, their model is based on two
systematic risk factors and thus does not allow a simple analytical solution
for the Value-at-Risk in an asymptotic portfolio as for instance in Basel II,
see Gordy (2003).

The present paper extends the previous literature, in particular work by Alt-
man et al. (2001) and Pykhtin (2003) by empirically parameterizing a PD-
recovery model. It includes observable idiosyncratic as well as unobservable
systematic information. The following contributions are made:

(1) In a first-in-kind model, credit portfolio risk is explained by observed
historic recovery rates. In contrast to market values for debt or equity,
recovery rates are generally observable for past borrower defaults which
is particularly useful for retail loans. The majority of commercial banks’
loan portfolios consist of mortgage loans for which rich recovery histories
are available.

(2) Contrary to most existing models multiple dimensions of credit portfolio
risk are simultaneously modeled. Common credit risk parameters such as
probabilities of default, expected losses given default or asset correlations
may be derived. Models which estimate the parameters with separate
models are subject to a mis-specification. This involves generally an un-
derestimation of credit portfolio risk, which results from the omission of
elements of the association structure (compare Altman et al. 2006). The
most prominent example is the recent proposals by the Basel Committee
on Banking Supervision (2006) which are also known as Basel II.

(3) While the mathematical model set-up builds upon Altman et al. (2001)
and Pykhtin (2003), additional perspectives of the model are offered. It is
shown how the model derived by Altman et al. (2001) can be embedded
into an empirical, econometric Tobit framework for which a parameter
estimation algorithm is developed. Due to the simplicity of the model,
the estimation involves a limited number of parameters and is therefore
subject to a low degree of model risk.

(4) Our approach extends the classical Tobit model to an econometric ap-
proach which also accounts correlations between the asset returns. Asset
return correlations are among the most crucial parameters in current
credit portfolio models.

(5) We provide a simple method for stressing credit risk parameters on eco-
nomic downturns. The Basel II proposal requires banks to build forecasts
for losses given default based on economic downturns without providing
suggestions for these scenarios. In our model the losses given default de-
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pend on a systematic factor which allows for analogous stress scenarios
for losses given default as for the default probabilities.

(6) The models are applied to a database provided by the rating agency
Moody’s. The dynamic behavior of recovery implied asset return volatil-
ities, correlations and their determinants are analyzed.

The rest of the paper proceeds as follows. Section 2 defines a structural default
process based on an obligor’s asset value and an empirical version of the model.
Section 3 describes the data and presents the empirical results. The model is
extended to asset return correlations in Section 4 and empirical results for this
model are provided. In Section 5, the resulting Basel II capital is compared
to commonly used regression models with deterministic recoveries. Closed-
end formulas for the Expected Loss, Value-at-Risk and Downturn Loss Given
Default are presented. Section 6 concludes with a summary and a discussion
of the model and the findings.

2 The Basic Models

2.1 Asset Value Dynamics and Likelihood of a Bond Default

We follow the model outline in Altman et al. (2001) and derive the default
probability and the recovery rate in an asset value model. Due to the early
work by Merton (1974), let V denote the value of a firm’s assets. V is assumed
to follow a stochastic process which can be described by

dV = δ · V · dt+ σ · V · dW, (1)

where δ ∈ < is an exogenous parameter and σ > 0 is an exogenous volatility
parameter. dt represents the passage of time and dW is a Brownian motion.
Then the change in the logarithmic firm value lnV between time 0 and T can
be written as

S(T ) = lnV (T )− ln v(0) = (δ − 0.5σ2)T + σ
√
T · ε (2)

where ε is a standard normally distributed random variable.

The firm is assumed to be financed by debt and equity. Debt consists of a zero
coupon bond with nominal k and maturity T . At maturity the bondholders
receive either a payment k or the value of the firm’s assets, whichever is lower.
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In the case V (T ) < k the bond issue defaults and bondholders receive a frac-
tion of the notional which is also known as recovery. The default indicator is
denoted by the random variable

D =

1 borrower defaults

0 otherwise
(3)

Hence, the probability of default is

λ = P (D = 1|v(0)) = P (V (T ) < k|v(0)) = P (S(T ) < ln k − ln v(0))

= P

R(T ) <
ln k

v(0)
− (δ − 0.5σ2) · T
σ ·
√
T


= Φ(−d(T )) (4)

where Φ(·) is the standard normal cumulative density function,R(T ) = S(T )−(δ−0.5σ2)·T
σ·
√
T

is the normalized asset return and d(T ) = −
ln k

v(0)
−(δ−0.5σ2)·T
σ·
√
T

is the normalized
default threshold which is also known as Distance-to-Default.

2.2 Severity of a Bond Default

In this setting, the repayment ratio RR is the minimum of the asset value to
debt ratio and one

RR = min{V (T )

k
, 1} (5)

Defining the default point c by

c = ln k − ln v0 (6)

gives the transformation

lnRR = min{lnV (T )− ln k, 0}
= min{lnV (T )− ln v(0)− (ln k − ln v(0)), 0}
= min{S(T )− c, 0} (7)
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Equation (7) shows that the natural logarithm (log) of the repayment ratio is
normally distributed but truncated by zero with non-zero values if a default
event occurs, see Altman et al. (2001).

2.3 The Empirical Factor Model

The subscript i is introduced for the respective borrower and the number of
borrowers is denoted by n. A time-horizon of one-year is considered. Thus, the
transformed log-repayment ratio can be written as

lnRRi = min{Si(1)− ci, 0} (8)

i = 1, ..., n. This representation is known as a Tobit model which assumes that
the observed variables Yi, i.e. the log-repayment ratios, satisfy

Yi = min{Y ∗i , 0} (9)

(compare Tobin 1958). Y ∗ is a latent variable generated by a classical regres-
sion model

Y ∗i = β′xi + σ · Ui (10)

where β represents a vector of parameters, xi a vector of covariates, which
may include an intercept, and Ui a random error. Note that yi < 0 implies an
obligor default event. The errors are assumed to be independent and identi-
cally standard normally distributed.

The conditional density of the log-repayment ratio, i.e. the density of the
log-recovery rate given default, is given by Bierens (2004):

h(yi|Yi < 0,xi) =
φ(−(yi − β′xi)/σ)

σ · (1− Φ(β′xi/σ))
(11)

for yi < 0, where φ(·) is the density function of the standard normal distri-
bution. Then a closed-form expression for the conditional expectation of the
log-recoveries Yi given xi and Yi < 0 can be derived as
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E(Yi|Yi < 0,xi) =
1

1− Φ(β′xi/σ)

∫ 0

−∞
zf(z)dz

= β′xi − σ
φ(β′xi/σ)

1− Φ(β′xi/σ)
(12)

where f(·) is the density of a normal distributed random variable with mean
β′xi and variance σ2. Note that the probability of default is

PDi = P (Di = 1|xi) = Φ(−β′xi/σ) (13)

which implies that the default probability and the expectation of the log-
recovery are negatively related and that the standardized linear predictor
β′xi/σ equals the Distance-to-Default. Please note that PDi relates to the
Tobit model while λ relates to the original asset value model.

Figure 1 shows a graphical interpretation of the relation between the linear
predictor β′xi, the probability of default (PD), and the volatility σ. Equation
(13) shows that the PD is a non-linear decreasing function of the linear pre-
dictor and a non-linear increasing (decreasing) function of the volatility for
low (high) linear predictors.

[Figure 1 about here]

The conditional expectation of Yi given xi is

E(Yi|xi) = (β′xi)(1− Φ(β′xi/σ))− σφ(β′xi/σ) (14)

Equations (12) and (14) have important consequences for the estimation of
determinants for the recoveries using regression models. In both instances, the
expectation of Yi does not equal the linear predictor β′xi. Thus, the estimates
for β are biased and inconsistent if they are i) estimated using non-zero obser-
vations of the Yi, or ii) by treating the values of Yi which are zero as regular
dependent variables as in common linear regression models. Note that this is
the case in most recent contributions which involve the empirical estimation
of recovery rates.

The variance of the conditional expectation of Yi is given by
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V(Yi|Yi < 0,xi) = σ2−σ2·
(
−β′xi/σ +

φ(β′xi/σ)

1− Φ(β′xi/σ)

)
· φ(β′xi/σ)

1− Φ(β′xi/σ)
(15)

Finally, the expectation of the recovery rate given the firm’s default is derived.
First, we define the recovery rate given default as

RGDi = exp[Y −i ] (16)

that is, it is defined only if the borrower defaults, and the loss (rate) given
default as LGDi = 1−RGDi. Then the expected recovery rate given default
is

ERGDi = E(RGDi) = E(RRi|Di = 1,xi) =
∫ 0

−∞
exp(yi) · h(yi|Yi < 0,xi)dyi

=
∫ 0

−∞
exp(yi) ·

φ(−(yi − β′xi)/σ)

σ · (1− Φ(β′xi/σ))
dyi

=
1

1− Φ(β′xi/σ)
· exp(β′xi + 0.5σ2) · Φ

(
−β

′xi + σ2

σ

)
(17)

The derivation of the third equation is given in the Appendix. Please note that
this result is analogous to Equation (12) in Pykhtin (2003). The expected loss
rate given default (ELGD) is then defined as

ELGDi = 1− E(RRi|Di = 1,xi) = 1− ERGDi (18)

Figure 2 shows the relation between PD, expected loss rate given default
(ELGD), and the volatility σ. The relationship between PD and ELGD is
monotone: ELGD increases with the PD. Moreover, the slope of the PD-
ELGD-curve depends on the volatility resulting in an approximately linear
relation for higher values of the volatility. In other words, the positive cor-
relation between the likelihood and severity of credit risk is driven by the
random asset value and therefore embedded in a causal model. Note that ac-
tual defaults and recoveries (or losses) given default are realizations of random
variables (3) and (16) and will take on values different from their expectations
shown in Figure 2. We will discuss their properties in more detail in section 5.
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[Figure 2 about here]

2.4 Model Estimation

The Tobit model parameters are estimated conditional on default using the
Maximum-Likelihood method. The likelihood that obligor i has not defaulted
conditional on xi is

1− PDi = Φ(β′xi/σ) (19)

The likelihood of the log-recovery is

h(yi|xi) · (1− Φ(β′xi/σ)) =
φ((yi − β′xi)/σ)

σ
(20)

and therefore the likelihood for an observed pattern of non-defaults and log-
recoveries is

L =
∏

i∈{yi=0}
(Φ(β′xi/σ)) ·

∏
i∈{yi<0}

(
φ((yi − β′xi)/σ)

σ

)
(21)

It may be more convenient to calculate the log-likelihood

` =
∑

i∈{yi=0}
ln(Φ(β′xi/σ) +

∑
i∈{yi<0}

ln

(
φ((yi − β′xi)/σ)

σ

)
(22)

which is then maximized with regard to the parameters β and σ. The estimates
exist asymptotically, are consistent and asymptotically normally distributed.
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3 Empirical Study

3.1 Data

The empirical analysis is based on recoveries provided by the rating agency
Moody’s. Moody’s measures the recovery of a bond issue upon occurrence of
a default event, i.e., if

• Interest and/or principal payments are missed or delayed,
• Chapter 11 or Chapter 7 bankruptcy is filed, or
• Distressed exchange such as a reduction of the financial obligation occurs.

In order to guarantee a homogeneous risk segment, the data set was restricted
to regular US bond issues. The observation period includes the years 1982 to
2007. Secured bond issues were excluded from the analysis as their default
and recovery characteristics may relate to the collateral value rather than the
asset value of a firm and PDs and LGDs. This data set includes 446,287 ob-
servations with 1,293 default and recovery events. Moody’s defines a recovery
rate as the ratio of the price of defaulted debt obligations after 30 days of the
occurrence of a default event and the par value.

Table 1 and Table 2 show the number of observations, default rate and mean
recovery per year, rating class, industry and seniority/security level. The rating
class IG comprises investment grade ratings (i.e., Aaa, Aa, A, Baa) and the
rating class C comprises the rating categories Caa, Ca and C.

[Table 1 about here]

[Table 2 about here]

Figure 3 shows that the ratio of non-investment grade issues to total issues co-
moves with the default rate which demonstrates the power of Moody’s ratings
to predict defaults.

[Figure 3 about here]

Generally speaking, default rates decrease and recoveries increase with im-
proving credit quality. Two recessions of the US economy can be identified:
the first one in 1991 during the First Gulf War and a second one in 2001
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during the downturn in the internet industry and the terrorist attack in the
US. This negative relationship between default and recovery rates has been
shown in previous studies (see Section 1) and is displayed in Figure 4.

[Figure 4 about here]

Figure 5 and Figure 6 show histograms for the recoveries and recoveries
which are transformed by the natural logarithm. The distribution of the log-
recoveries is truncated at zero which may confirm the assumption of a Tobit
model specification.

[Figure 5 about here]

[Figure 6 about here]

3.2 Market-wide Analysis

The base case model is estimated for all observations of the entire sample
period without covariates. Table 3 shows the results of the parameter estimates
in the first column which is labeled Model (1). From the first row it can be
inferred that the constant (or mean transformed asset return) is 11.4551 and
the volatility is 4.1525 as shown in the row labeled σ.

The standard errors are reported in parentheses in each row below the param-
eter estimates and both estimates are significantly different from zero. This
results in a distance to default of 2.7586 (i.e., 11.4551÷4.1525) and an average
probability of default of 0.29 per cent (i.e., Φ(−2.7586). This estimate equals
the average default rate of the observation period which is 0.29 per cent (i.e.,
1,293 default events divided by 446,287 observations). The expected recovery
from Equation (17) is 43.40 per cent. This estimate is also close to the average
realized recovery rate from the sample which is 39.9 per cent.

Model (2) to Model (4) extend the base case Model (1) by including covariates.
In Model (2), Moody’s rating grades which were assigned to each issue at the
beginning of a year are included as ex-ante measures for the credit quality of
a borrower. Each rating grade is modeled by a dummy variable
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xjit =

1 issue i has assigned rating grade j at the beginning of year t

0 otherwise

(23)

for grades j = BA,B,C.

The estimation results are reported in the second column of Table 3. Note
that owing to the dummy encoding of the rating grades, grade IG is used as
the reference category. Therefore, a borrower with grade IG at the beginning
of a year has an estimated constant of 10.2240 (compared to the average of
11.4551 over all observations). The inclusion of rating information into the
model reduces the volatility to 2.8097. This shows that credit ratings capture
valuable information regarding the idiosyncratic error in the process of the
asset returns.

Looking at the results for the other three rating grades it can be seen that all
three effects are significantly different from zero indicating significant differ-
ences for the three grades. For instance, the constant for a grade Ba borrower
is 10.2240− 2.8013 = 7.4227 yielding a lower distance to default, a higher PD
and a lower expected recovery compared to a grade IG borrower. Similarly,
the effects for the other grades can be interpreted where the highest default
probability and lowest recovery is assigned to the riskiest grade C.

While the assessment of credit quality made by the rating agency should be
an obvious indicator for the default probability and the expected recovery, an-
other indicator should be the seniority. The database allows the differentiation
between ’senior unsecured (SU)’ and ’subordinated (Sub)’ issues. Analogously,
the seniority status is coded by a dummy variable

xSubi =

1 issue i is subordinated

0 otherwise
(24)

as the reference category SU is used. The results of Model (3) which includes
the seniority status are also shown in Table 3. The constant for the reference
category SU is 11.4395 and therefore higher than that of the average model,
indicating a lower probability of default and a higher recovery rate for senior
secured bonds.

Model (4) shows that the subordination does not add statistically significant
explanatory power to the model after the credit quality is taken into account.
This is plausible as Moody’s rating categories reflect expected loss rates and
not the likelihood of default.
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[Table 3 about here]

3.3 Industry-specific Analysis

In a second step, the data set is split according to the Standard Industry
Classification (SIC) code into the industries Commerce (SIC code between
50 and 59), Financial Institutions (FI; SIC code between 60 and 64), Manu-
facturing (SIC code between 20 and 39), Public Utility (PU; SIC code equal
to 49), Services (SIC code between 40 and 48) and Others (SIC code below
19). Industries may constitute homogeneous risk segments in which compa-
nies are subject to the similar risk characteristics. Asset values and default
thresholds may be similar for the same industry. The descriptive statistics in
Table 2 show that in particular Financial Institutions and Public Utility firms
have low default rates and high mean recovery rates. Table 4 summarizes the
parameter estimates for Model (2) for the individual industries.

[Table 4 about here]

4 Extension of the Model to Asset Return Correlations

4.1 Factor Model

The framework which was presented so far incorporates the residual volatilities
but does not take into account that the firms’ asset returns may be cross-
sectionally correlated. Correlations are an important input into modern credit
portfolio risk models. Small changes of the correlation between asset returns
may have a high impact on the portfolio loss distribution and related measures
(compare Rösch & Scheule (2004) and Rösch & Scheule (2005) among others).

For the empirical estimation of asset correlations, several approaches exist.
As long as an obligor’s equity returns are observable one can use them as
proxies for asset returns subject to a set of assumptions and calculate histori-
cal correlations between borrowers’ return time series by a multi-factor model
(compare Zeng & Zhang 2001). Unfortunately, equity returns are generally
unavailable for borrowers. In this case ’implied’ asset returns correlations may
be estimated from historical default experiences. Here two alternatives exist:
Firstly, default correlations can be estimated by non-parametric approaches
and then transformed into asset correlations (compare Lucas 1995). Secondly,
implied asset correlations can be estimated directly within a class of general-
ized mixed models by using eg Maximum-Likelihood (compare Frey & McNeil
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2003, Rösch & Scheule 2005, McNeil & Wendin 2007).

The present paper basically follows the second way and decomposes the ran-
dom error Ui of Equation (10) into

Ui = ω · F + σ̃ · Vi (25)

where F is a systematic error component which simultaneously affects all
assets (which is also known as a systematic random effect), and Vi is an id-
iosyncratic error affecting only asset i, i = 1, ..., n. All errors are standard
normally distributed and independent from each other. ω and σ̃ are param-
eters which express the exposure to the systematic and idiosyncratic factors.
Note that the total variance is V(Ui) = σ2 = ω2 + σ̃2. Thus, the correlation
between two latent variables Y ∗i and Y ∗j of asset i and j is given by

ρ =
C(Y ∗i , Y

∗
j )

σ · σ
=
ω2

σ2
=

ω2

ω2 + σ̃2
(26)

where C(·) denotes the covariance. This parameter plays a crucial role in most
commercial credit risk models as well as Basel II which will be discussed in
Section 5.

The latent variable Y ∗i in the Tobit model then extends to

Y ∗i = β′xi + ω · F + σ̃ · Vi (27)

F is an annual realization and ω can be estimated using the econometric
specification

Y ∗it = β′xit + ω · Ft + σ̃ · Vit (28)

where i ∈ nt, t = 1, ...T . T is the number of time series observations available
(e.g., the number of years) and nt is the set of borrowers in period t. Given
this notation the parameters can be estimated by the Maximum-Likelihood
method as shown below.

4.2 Model Estimation

Consider a given realization of the systematic factor Ft = ft. Conditional on
ft the Likelihood for each period is
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Lt =
∏

i∈{yit=0}
(Φ((β′xit+ω·ft)/σ̃))·

∏
i∈{yit<0}

(
φ((yit − β′xit − ω · ft)/σ̃)

σ̃

)
(29)

Please note that ft is not observable and that the expectation is calculated
with respect to Ft

E(Lt) =
∫ ∞
−∞

∏
i∈{yit=0}

(Φ((β′xit + ω · ft)/σ̃)) (30)

·
∏

i∈{yit<0}

(
φ((yit − β′xit − ω · ft)/σ̃)

σ̃

)
φ(ft) dft (31)

Finally, using a time series of T observations, the Log-Likelihood is

` = ln L = ln

(
T∏
t=1

E(Lt)

)
=

T∑
t=1

ln E(Lt) (32)

which is then maximized with regard to the parameters β, ω and σ̃. This
operation can be solved numerically using adaptive Gauss-Hermite-quadrature
(compare Pinheiro & Bates 1995, Rabe-Hesketh et al. 2002). 2

4.3 Empirical Results

Table 5 shows the estimation results for the entire data base in the first column
and the industries in the remaining columns.

The model includes the rating factors which are comparable in relation to
the parameters and significance of the models without asset correlation. For
the overall database we can calculate the total volatility as

√
ω2 + σ̃2 =√

1.02422 + 2.62152 = 2.8145 which is very close to the volatility from the
model without a systematic risk component. The asset correlation given in
the last row is then calculated as ρ = ω2

ω2+σ̃2 = 1.02422

1.02422+2.62152 = 0.1324. For
the industry sectors we find large differences for volatilities and correlations.
Correlations in Commerce, Manufacturing, Services and Others are similar to
the overall correlation. The correlations for Financial Institutions and Public

2 A simulation study was conducted to ensure the performance of the estimators.
For space reasons the results are not reported here. Details are available upon
request from the authors.
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Utility are much larger. As a result, the overall industries model may reflect
diversification benefits across industries. The high correlation in the financial
institutions industry may be interpreted as a warning sign for the current
financial markets and banking crisis.

[Table 5 about here]

4.4 A Note on PD and LGD Correlations

In the proposed model a mathematical relationship between PD and expected
LGD is derived. Empirically, as evidence for association between these pa-
rameters sometimes the sample correlation between realized default rates and
realized LGD (or recoveries respectively) is calculated. For our database and
the whole sample the correlation between default rates and recovery rates is
−0.34, see also Figure 4 which shows an obvious negative association. How-
ever, the mathematical relationship from the model on the one hand and the
sample correlation on the other hand are different in nature as the latter refers
to a dependence measure between random variables and the first is the rela-
tion between two parameters. In other words, the realized default rate and
the recovery rate may or may not be correlated in the sample whatsoever the
relationship between the underlying parameters is. To see this, we conduct a
simple simulation exercise. We consider a simple artificial portfolio with 5,000
borrowers from which time series of defaults and recoveries are randomly sam-
pled by the proposed Tobit type model. The time series length is T = 20 years
and the parameters are set to β′xit = 11 and σ = 4, respectively. For each sam-
pled time series the sample correlation coefficient between default rates and
recovery rates is computed. The sampling is then repeated 1,000 times and
the empirical distribution of the correlation coefficients is calculated. Figure 7
shows the frequency distribution for 1,000 simulation trials. The distribution
centers near zero and is highly dispersed indicating that empirically positive
and negative correlations can occur in the underlying model even if the asset
correlation is zero. In Figure 8 the distribution is generated when the asset cor-
relation of the underlying process is 50%, i.e. ω = σ̃ =

√
8. The distribution is

shifted to the left and negative values of the correlation are much more likely.
This is because the systematic risk factor affects both the default rates and
the recovery rates. Hence, in a ’bad year’ the default rates are higher while the
recoveries are lower et vice versa in a ’good year’. The exercise shows that the
mathematical relation between the parameters and the statistical correlation
between the random variables should be differently interpreted.

[Figure 7 about here]
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[Figure 8 about here]

5 Implications for Portfolio Credit Risk

5.1 Measurement of Portfolio Credit Risk

Finally, we determine the economic and regulatory capital under the Basel II
rules. Due to a controversy in literature, the behavior of the loss distributions
for various ways of modeling the recovery rate is of particular interest. Please
note that general and specific provisions by the financial institutions should
be sufficient to cover the expected losses while the Tier I and Tier II capital
should be sufficient to cover the difference between the 99.9th percentile of the
future loss and the Expected Loss which is also known as the Credit-Value-
at-Risk, (see e.g., C. Bluhm 2002).

Thus, the probability distribution of the future loss of the whole credit portfo-
lio and risk figures derived thereof, such as the Expected Loss or the Value-at-
Risk are of a central concern to financial institutions. This generally requires
the forecast of the loss distribution for a future time period, e.g., one year.
In the following, the time subscript is dropped for efficiency of exposition.
We denote the exposure of loan i in the portfolio by ai which is assumed to
be known. Then, the total exposure of the portfolio is a =

∑n
i ai and the

proportion of loan exposure i in the entire portfolio is defined as ηi = ai

a
.

The random loss of borrower i, i = 1, ..., n as a fraction of its total exposure
is denoted by

Li = (1−RGDi) ·Di (33)

where RGDi is the recovery rate given default.

The expected loss of borrower i as a fraction of its total exposure can be
calculated as
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Li = E(Li) = E(Di|xi)− E(RGDi ·Di|xi)

= Φ(−β′xi/σ)− 1

1− Φ(β′xi/σ)
· exp(β′xi + 0.5σ2) · Φ

(
−β

′xi + σ2

σ

)
· Φ(−β′xi/σ)

= Φ(−β′xi/σ)− exp(β′xi + 0.5σ2) · Φ
(
−β

′xi + σ2

σ

)
= PDi − ERGDi · PDi

= PDi · ELGDi (34)

where the second line follows from the fact that the recovery is different from
zero only if the borrower defaults and PDi = P (Di = 1|xi) is the probability
of default from Equation (13).

The loss rate of a portfolio of loans is the weighted average of the individual
loan loss rates given by

L =
n∑
i

ηi(1−RRi) ·Di (35)

The expected portfolio loss is obtained as

L = E(
n∑
i=1

ηiLi) =
n∑
i=1

ηiE(Li) =

=
n∑
i=1

ηi · [PDi − ERGDi · PDi]

=
n∑
i=1

ηi · PDi · ELGDi (36)

For the probability distribution of the portfolio loss and risk measures such as
the Value-at-Risk the dependency structure of the loans is crucial. Generally
speaking, the density of (35) can not be expressed analytically but can be
obtained by Monte-Carlo simulation. Following Gordy (2003) and Pykhtin
(2003) an analytical solution for the percentiles of the distribution can be
given in the special case of an infinitely granular portfolio. First, the expected
loss rate for borrower i is expressed conditional on the systematic risk factor.
Analogously to (34) one obtains
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Li(F ) = E(Li|F ) = E(Di|xi, F )− E(RRi ·Di|xi, F )

= Φ(−(β′xi + ω · F )/σ̃)

− 1

1− Φ((β′xi + ω · F )/σ̃)
· exp(β′xi + ω · F + 0.5σ̃2)

· Φ
(
−β

′xi + ω · F + σ̃2

σ̃

)
· Φ(−(β′xi + ω · F )/σ̃)

= Φ(−(β′xi + ω · F )/σ̃)− exp(β′xi + ω · F + 0.5σ̃2) · Φ
(
−β

′xi + ω · F + σ̃2

σ̃

)
= CPDi(F )− CERGDi(F ) · CPDi(F )

= CPDi(F ) · CELGDi(F ) (37)

where

CPDi(F ) = Φ(−(β′xi + ω · F )/σ̃) (38)

is the conditional default probability, while

CERGDi(F ) =
1

1− Φ((β′xi + ω · F )/σ̃)
· exp(β′xi + ω · F + 0.5σ̃2)

· Φ
(
−β

′xi + ω · F + σ̃2

σ̃

)
(39)

and CELGDi(F ) = 1 − CERGDi(F ) are the conditional expected recovery
rate given default and expected loss given default given the systematic factor.
According to Gordy (2003) and Pykhtin (2003) the random loss of a granular
portfolio is given by

L∞ =
n∑
i

ηiLi(F ) (40)

and is therefore a monotonically increasing function of the systematic fac-
tor. Thus, the α-percentile of the future loss, referred to as Value-at-Risk, is
obtained as
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Lα =
n∑
i

ηiLi(F = Φ−1(1− α)) (41)

for 0 < α < 1. Note that this expression reduces to the core of IRB Basel
II formula after a simple reparameterization if the recovery is not modeled
via the asset value model and is assumed to be deterministic instead. In (26)
the asset correlation was defined as ρ = ω2

σ2 with σ2 = ω2 + σ̃2. Noting that

1− ρ = σ̃2

σ2 and rewriting the conditional probability of default results in

CPDi(F ) = Φ (−(β′xi + ω · F )/σ̃)

= Φ

(
−β

′xi · σ
σ̃ · σ

− ω · F · σ
σ̃ · σ

)

= Φ

(
−β

′xi
σ
· σ
σ̃
− ω · F

σ
· σ
σ̃

)

= Φ

(
−β

′xi
σ
· 1√

1− ρ
−√ρ · F · 1√

1− ρ

)

= Φ

(
Φ−1(PDi)−

√
ρ · F√

1− ρ

)
(42)

which is the conditional default probability in the Basel II IRB approach in
terms of asset correlation where the systematic factor is fixed to the 99.9th
percentile of a standard normally distributed variable and the asset correlation
is expressed as a function of the default probability.

Finally, the model allows for a straightforward definition of so-called ’Down-
turn Loss Given Default’ for the Basel II model. While a downturn probability
of default can be defined by the conditional default probability (42) a similar
interpretation is possible for the recovery (or the loss given default) and the
individual or portfolio loss rate. To see this, note that Equation (37), (39) and
(41) depend only on the systematic factor. Therefore a ’downturn recovery’
is defined as the conditional expected recovery given an adverse realization of
the systematic factor according to (39)
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CERGDi(F = Φ−1(1− α)) =
1

1− Φ((β′xi + ω · Φ−1(1− α))/σ̃)

· exp(β′xi + ω · Φ−1(1− α) + 0.5σ̃2)

· Φ
(
−β

′xi + ω · Φ−1(1− α) + σ̃2

σ̃

)
(43)

with a downturn loss given default given as CELGDi(F = Φ−1(1 − α)) =
1− CERGDi(F = Φ−1(1− α)).

In the granular portfolio the downturn loss is then given as in Equation (41)
where α can be set to 0.999 as proposed by Basel II.

In summary, given the estimation of a single credit risk model all common
credit risk measures may be calculated. This is shown exemplary for the ran-
dom effects model for all industries from Section 4.3. Table 6 shows in the first
panel the unstressed measures probability of default, loss given default and
Expected Loss for different credit ratings categories. The second panel shows
the stressed credit measures conditional probability of default, conditional ex-
pected loss given default and Value-at-Risk based on the 99.9th percentile of
the random systematic risk factor.

[Table 6 about here]

5.2 Application: Basel II regulatory capital

Table 7 shows the stressed Basel II credit measures conditional probability of
default, conditional expected loss given default and Value-at-Risk based on
the 99.9th percentile of the random systematic risk factor and pre-specified
asset correlations as proposed by Basel Committee on Banking Supervision
(2006).

[Table 7 about here]

The regulatory capital is derived from the Credit-Value-at-Risk and may be
based on a Constant LGD Model (i.e. ELGD) or a Stochastic LGD Model
(i.e. CELGD). It can be seen that the resulting regulatory capital may be
underestimated by as much as 23 per cent (rating category C) if the Constant
LGD Model is assumed.
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6 Discussion

The current US sub-prime mortgage crisis suggest that the likelihood and
severity of the risk in credit portfolios may have been underestimated. The
industry fundamentally changed its risk measurement and management ap-
proaches in recent years by a set of isolated modules often provided by various
external vendors resulting in independent and constant recovery rates. An
empirical study showed that regulatory capital based on a constant recovery
assumption may underestimated by as much as 23 per cent.

The contributions to literature and credit portfolio risk measurement and
management are that all relevant credit risk parameters are modeled in one
consistent and unbiased framework. This framework is regression based and
requires the observation of past recoveries or losses but no market prices. A
causal relationship between credit quality, recovery rate, volatility, and corre-
lation is established. In particular, the model accounts for i) stochastic recov-
eries ii) dependencies between the PDs and recoveries, and iii) the fact that
recoveries can only be observed after a default event which renders estimates
from common regression models biased.

An empirical analysis linked bond recoveries with credit ratings and subordi-
nation levels. This approach allows financial institutions to have a consistent
approach across different credit risk measures used to derive provisions, eco-
nomic and regulatory capital. Other applications may exist.

The presented model focuses on unsecured regular exposures. Credit prod-
ucts may occasionally be more complicated and future research may extend
the presented framework by including macroeconomic risk factors or an addi-
tional process for the collateral value. In addition, the empirical study may be
extended to retail loans such as mortgage, credit card and auto loans.
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Appendix: derivation of the Expected Recovery Rate Given Default

ERGDi = E(RRi|Di = 1,xi) =
1

1− Φ(β′xi/σ)
· exp(β′xi + 0.5σ2) · Φ

(
−β

′xi + σ2

σ

)

Substitute µi = β′xi and PDi = 1− Φ(µi/σ) and write

ERGDi =
∫ 0

−∞
exp(yi) · h(yi|Yi < 0,xi)dyi

=
∫ 0

−∞
exp(yi) ·

φ(−(yi − µi)/σ)

σ · (1− Φ(µi/σ))
dyi

=
1

σ · PDi

∫ 0

−∞
exp(yi) ·

1√
2π
· exp

(
−(−yi + µi)

2

2σ2

)
dyi

=
1

σ · PDi

· 1√
2π
·
∫ 0

−∞
exp

(
yi −

µ2
i − 2yiµi + y2

i

2σ2

)
dyi

=
1

σ · PDi

· 1√
2π
·
∫ 0

−∞
exp

(
2σ2yi − µ2

i + 2yiµi − y2
i

2σ2

)
dyi

=
1

σ · PDi

· 1√
2π
·
∫ 0

−∞
exp

(
−y2

i + 2yi(µi + σ2)− (µi + σ2)2 − µi + (µi + σ2)2

2σ2

)
dyi

=
1

σ · PDi

· 1√
2π
·
∫ 0

−∞
exp

(
−(yi − (µi + σ2))2 + 2µiσ

2 + σ4

2σ2

)
dyi

=
1

σ · PDi

· 1√
2π
·
∫ 0

−∞
exp

(
−(yi − (µi + σ2))2

2σ2

)
· exp(µi + 0.5σ2)dyi

=
1

PDi

· exp(µi + 0.5σ2) ·
∫ 0

−∞

1√
2πσ2

exp

(
−(yi − (µi + σ2))2

2σ2

)
dyi

=
1

PDi

· exp(µi + 0.5σ2) · Φ
(
−µi + σ2

σ

)
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Figures

Fig. 1. Relation between linear predictor β′x, volatility σ, and probability of default
(PD)

Notes: Probabilities of default are calculated based on σ and β′x according
to Equation (13). For high σ, the relationship between β′x and PD is linear
and for low σ, a firm defaults with a high likelihood (i.e., the PD is high) if
β′x < 0 and a firm does not default with a high likelihood (i.e., the PD is low)
if β′x > 0.
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Fig. 2. Relation between probability of default (PD), expected loss given default
(ELGD), and volatility σ

Notes: ELGD is calculated based on PD and σ according to Equation (17)
and Equation (18).
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Fig. 3. Default rate and non-investment grade rate

Notes: Default rate is the ratio between the number of defaulted issues and
the total number of issues. The non-investment grade rate is the number of
non-investment grade issues to the total number of issues.
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Fig. 4. Default rates for all issues and recovery rates for all issues

Notes: Default rate is the ratio between the number of defaulted issuers and
the total number of issuers. Recovery rate is the ratio of the price of defaulted
debt obligations after 30 days of the occurrence of a default event and the par
value.
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Fig. 5. Absolute frequencies for recoveries

Notes: Recovery rate is the ratio of the price of defaulted debt obligations
after 30 days of the occurrence of a default event and the par value.

Fig. 6. Absolute frequencies for log-recoveries

Notes: Recovery rate is the ratio of the price of defaulted debt obligations
after 30 days of the occurrence of a default event and the par value.
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Fig. 7. Simulated Correlations between default rates and recovery rates

Notes: Artificial portfolio consisting of 5,000 homogenous borrowers. Time
series of T = 20 years for defaults and recoveries are randomly sampled by
the Tobit type model and correlation coefficient between realized default rate
and recovery rate is computed. Sampling is repeated 5,000 times. Parameters
are β′xit = 11 and σ = 4.
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Fig. 8. Simulated Correlations between default rates and recovery rates

Notes: Artificial portfolio consisting of 5,000 homogenous borrowers. Time
series of T = 20 years for defaults and recoveries are randomly sampled by
the Tobit type model and correlation coefficient between realized default rate
and recovery rate is computed. Sampling is repeated 5,000 times. Parameters
are β′xit = 11 and ω = σ̃ =

√
8.

Tables
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Table 1
Number of observations, default rates and mean recoveries per year

Year Total observations Default rate Mean recovery

1982 2,491 0.6% 36.1%

1983 2,908 0.6% 54.7%

1984 3,079 0.3% 51.2%

1985 3,420 0.5% 44.5%

1986 4,183 1.1% 42.5%

1987 4,749 1.1% 63.5%

1988 4,996 0.7% 36.8%

1989 5,474 0.7% 38.6%

1990 5,865 1.4% 30.1%

1991 5,871 1.4% 43.2%

1992 5,880 0.7% 46.5%

1993 6,030 0.3% 40.7%

1994 6,645 0.2% 44.5%

1995 7,730 0.4% 56.2%

1996 9,694 0.1% 50.1%

1997 14,223 0.2% 48.3%

1998 19,650 0.1% 40.6%

1999 25,606 0.3% 34.7%

2000 29,405 0.3% 22.5%

2001 29,586 0.6% 35.1%

2002 27,113 0.7% 34.6%

2003 27,595 0.3% 38.7%

2004 37,622 0.1% 60.2%

2005 48,741 0.1% 57.0%

2006 55,246 0.1% 61.5%

2007 52,485 0.0% 66.5%

Sum/ Average 446,287 0.3% 39.9%
Notes: Default rate is the ratio between the number of defaulted issuers and the
total number of issuers. Recovery rate is the ratio of the price of defaulted debt
obligations after 30 days of the occurrence of a default event and the par value.
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Table 2
Number of observations, default rates and mean recoveries per rating class, industry
and seniority/security level

Total observations Default rate Mean recovery

Rating class

IG 406,497 0.0% 55.8%

Ba 16,672 0.4% 54.8%

B 18,753 2.4% 37.5%

Caa-C 4,365 16.5% 38.7%

Industry

Commerce 10,288 1.1% 33.5%

FI 301,942 0.0% 60.5%

Manufacturing 37,749 0.7% 34.6%

PU 19,107 0.2% 64.8%

Services 45,925 0.8% 35.6%

Others 31,276 1.3% 40.0%

Seniority/Security class

Senior unsecured 412,928 0.2% 44.0%

Subordinated 33,359 1.6% 34.0%
Notes: Default rate is the ratio between the number of defaulted issuers and the
total number of issuers. Recovery rate is the ratio of the price of defaulted debt
obligations after 30 days of the occurrence of a default event and the par value.
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Table 3
Parameter estimates for the Tobit models

Model (1) Model (2) Model (3) Model (4)

const 11.4551*** 10.2240*** 11.4395*** 10.2239***

(0.3036) (0.2706) (0.3015) (0.2705)

Rating BA -2.8013*** -2.8016***

(0.1642) (0.1645)

Rating B -4.7005*** -4.7017***

(0.1575) (0.1611)

Rating C -7.4386*** -7.4398***

(0.2074) (0.2098)

Sub -2.9703*** 0.0029

(0.1096) (0.0783)

σ 4.1525*** 2.8097*** 3.9423*** 2.8097***

(0.1079) (0.0691) (0.1018) (0.0691)
Notes : Table shows the results of Tobit models for the logarithm of the recovery
rate with rating grades and seniority status as explanatory variables; standard
deviations are in parentheses; ***indicates significance at the 1%-level, **indicates
significance at the 5%-level, *indicates significance at the 10%-level.
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Table 6
Summary of credit risk measures derived from Random Effects Model (6)

Rating IG Rating BA Rating B Rating C

PD 0.0003 0.0060 0.0336 0.1942

ELGD 0.4246 0.4858 0.5419 0.6396

Expected Loss 0.0001 0.0029 0.0182 0.1242

Empirical asset correlation 0.1397 0.1397 0.1397 0.1397

CPD 0.0070 0.0713 0.2334 0.6238

CELGD 0.4709 0.5567 0.6365 0.7700

Value-at-Risk (α=0.999) 0.0033 0.0397 0.1486 0.4803
Notes : PD is calculated according to Equation (13), ELGD is calculated according
to Equation (18), Expected Loss is calculated according to Equation (34), CPD
is calculated according to Equation (38), CELGD is calculated one minus ERGD
which is calculated according to Equation (39), Value-at-Risk is calculated according
to Equation (37).
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Table 7
Summary of Basel II credit risk measures derived from Random Effects Model

Rating IG Rating BA Rating B Rating C

Basel asset correlation 0.2382 0.2091 0.1423 0.1200

CPD 0.0137 0.1077 0.2366 0.5877

Credit Value-at-Risk (ELGD) 0.0057 0.0494 0.1100 0.2517

Credit Value-at-Risk (CELGD) 0.0063 0.0571 0.1324 0.3284

Underestimation 0.1003 0.1338 0.1691 0.2335
Notes : The Basel CPD is calculated according to Equation (42), the regulatory
capital, i.e., Credit Value-at-Risk is equals to the difference between the Value-at-
Risk (i.e. the product of Basel CPD and loss given default) and the Expected Loss
(i.e. the product of PD and ELGD).

40


