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1. Introduction

Standardized event study tests by Patell (1976) and Boehmer, Musumeci,

and Poulsen (BMP) (1991) have gained popularity over conventional non-

standardized tests in testing abnormal security price performance due to

their better power properties. Harrington and Shrider (2007) find that in

short-horizon tests on mean abnormal returns one should always use tests

that are robust against cross-sectional variation in the true abnormal re-

turn [see Harrington and Shrider (2007)]. They find that that the BMP

t-statistic is a good candidate for a robust, parametric test in conventional

event studies.2 Corrado (1989) [and Corrado and Zivney (1992)] introduced

a nonparametric rank test based on standardized returns, which has proven

to have very competitive, often superior, (empirical) power properties over

parametric tests when testing for one-day abnormal returns [e.g. Corrado

(1989), Corrado and Zivney (1992), Cowan (1992), Campbell and Wasley

(1993), Kolari and Pynnonen (2008)]. Furthermore, the rank test of Corrado

2We define conventional event studies as those focusing only on mean stock price effects.

Other types of event studies include (for example) the examination of return variance ef-

fects [Beaver (1968) and Patell (1976)], trading volume [Beaver (1968) and Campbell and

Wasley (1996)], accounting performance [Barber and Lyon (1996)], and earnings manage-

ment procedures [Dechow, Sloan, and Sweeney (1995) and Kothari, Leone, and Wasley

(2005)].
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and Zivney (1992) based on event day re-standardized returns has proven

to be both robust against event-induced volatility [Campbell and Wasley

(1992)] and cross-correlation due to event day clustering [Kolari and Pyn-

nonen (2008)].

The Patell and BMP parametric tests can be rapidly applied to testing cu-

mulative abnormal returns (CARs) over multiple day windows.3 However,

application of the rank test for testing CARs is not straightforward due to

the fact that the ranks of the (standardized) abnormal returns over different

days are dependent by construction. Thus, as shown in Luoma and Pynnonen

(2008), although over short windows the dependence might be negligible, in

longer windows the dependence accumulates and will bias downwards the

rejection rates of the simple CAR rank t-test. Luoma and Pynnonen (2008)

derived exact standard errors of the cumulative ranks and proposed easy-

to-apply corrections to the existing cumulative rank t-statistic. The current

paper contributes to existing literature by suggesting a generalized rank test

procedure which can be used for testing both CARs as well as one-day ab-

normal returns. The Corrado and Zivney (1991) test, which is developed for

testing one-day abnormal returns, is a special case of the procedure proposed

3With the correction suggested in Kolari and Pynnonen (2008), these tests are useful

also in the case of clustered event days.
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in this paper. The proposed procedure is shown to have several advantages

over existing tests. First, it is robust to the event-induced volatility. Sec-

ond, it is robust to cross-correlation due to event day clustering. Third,

it proves to have competitive, often superior (empirical) power properties

compared to popular parametric tests. Fourth it avoids the under-rejection

symptom of the Corrado-Zivney rank test and some parametric tests as the

CAR period increases. Fifth, and last, it is fairly robust to autocorrelation

of abnormal returns.4 Robustness with respect to event-induced volatility

and power properties of the generalized rank test are demonstrated with

simulation studies based on real returns on CRSP stock returns.

The rest of the paper is organized as follows. Section 2 introduces the gener-

alized rank test. Section 3 describes the simulation design and summarizes

the most popular test statistics used in event studies against which the gen-

eralized rank test is compared with. The results are presented in Section 4.

Section 5 concludes.

4As will be shown later, the robustness stems from the re-standardization of the ab-

normal returns, which implies that the BMP-procedure should share the autocorrelation

robustness as well. This will be documented formally elsewhere.
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2. Generalized rank test

Corrado (1989) and Corrado and Zivney (1992) introduce the rank test for

testing an one-day event abnormal return. Cowan (1992) and Campbell and

Wasley (1993) use Corrado’s rank test for testing cumulative abnormal re-

turns by accumulating the respective ranks. However, this approach has

some potential shortcomings. An obvious one is the case where the cumu-

lative abnormal return is clustered on a random single day within the event

window as described in the simulation study by Brown and Warner (1985,

Section 4.3.2). This situation occurs in practice when the event day is not

exactly known, in which case returns are cumulated over an interval to cover

the actual event day. In these circumstances cumulative abnormal return

tests based on ranks may face problems in detection of the abnormal behav-

ior, especially for longer event windows. The reason is simply that, when all

the returns are transformed to rank numbers, they do not account for the

magnitudes of returns exceptvia the relative rank. Thus, if one large return

is randomly assigned to one day within the event window independently for

each stock, there is only one potentially outstanding rank for each stock that

is randomly scattered across the window. This is likely to average largely out

in the cumulative rank sum, and consequently, result in poor power proper-

ties of the test. This problem has been addressed in Cowan (1992), which our
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simulations confirm.It is notable, that parametric tests, such as the Patell

and BMP tests, do not suffer from this shortcoming, as they are based on

the accumulated returns over the event window, or sums, such that it does

not matter how large abnormal returns are scattered across the window.

In order to develop a non-parametric test that can be used both for testing

one-day and cumulative abnormal returns, we next introduce some necessary

notations and concepts[see Campbell, Lo, and MacKinlay (1997, Chapter

4) for an excellent discussion of event study methodology]. In forthcoming

theoretical derivations we make the following explicit assumption:

Assumption 1 Stock returns rit are weak white noise continuous random

variables with

E[rit] = µi for all t

var[rit] = σ2
i for all t

cov[rit, riu] = 0 for all t 6= u.

(1)

i = 1, . . . , n, t = 1, . . . , T .

Let day t = 0 indicate the event day, days T0 + 1, T0 + 2 . . . , T1 are the

estimation period days relative to the event day, T1+1, T1+2, . . . , T2 are event

window days, again relative to the event day (= 0). We define L1 = T1−T0 as
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the estimation period length, L2 = T2−T1 as the event period length, and the

combined estimation period and event period length as T = L1 + L2. Given

that ARit denotes the excess return of security i on day t after extracting

the market factors used in the abnormal return model in the event study,

standardized abnormal returns are defined as

SARit =
ARit

SARi

, (2)

where SARi
is the standard deviation of the residuals from the factor model

adjusted for the forecast error. The cumulative abnormal return of security

i over τ event days is defined as

CARiτ =

t1+τ∑
t=t1+1

ARit, (3)

with T1 ≤ t1 ≤ T2 − τ , 1 ≤ τ ≤ L2. The corresponding standardized

cumulative abnormal return (SCAR) is defined as

SCARiτ =
CARiτ

SCARiτ

, (4)

where SCARiτ
is the standard deviation of the cumulative abnormal returns

adjusted for forecast error [see Cambell, Lo, and MacKinlay (1977), Section

4.4.3].

Under the null hypothesis of no event effect both SARit and SCARiτ are

distributed with mean zero and (approximately) unit variance. We can utilize

this fact in defining our generalized rank test.
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In order to account for the possible event-induced volatility Boehmer, Muc-

umeci, and Poulsen (1991) re-standardize the SCARs with the cross-sectional

standard deviation to get re-standardized SCAR

SCAR∗
iτ =

SCARiτ

SSCAR

(5)

where

SSCAR =

√√√√ 1

n− 1

n∑
i=1

(
SCARiτ − SCARτ

)2
. (6)

is the cross-sectional standard deviation of SCARiτ s
5 and

SCARτ =
1

n

n∑
i=1

SCARiτ . (7)

Again, SCAR∗
iτ is a zero mean and unit variance random variable like other

abnormal returns. Thus, we use SCAR∗
iτ as an abnormal return and define

Generalized Standardized Abnormal Returns (GSAR) as follows:

Definition 1 The generalized standardized abnormal returns (GSAR) is de-

fined as

GSARit =





SCAR∗
iτ , for t1 + 1 ≤ t ≤ t1 + τ,

SARit, for t = T0 + 1, . . . , t1, t1 + τ + 1, . . . , T2

(8)

where SCAR∗
iτ is defined in equation (5) and SARit defined in equation (2).

5If the event days are clustered, equation (6) should be further adjusted for cross-

sectional correlation as Kolari and Pynnonen (2008)
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That is, the cumulated period is considered as one time point in which the

generalized standardized abnormal return, GSAR, equals the re-standardized

cumulative abnormal return defined in equation (5) and for other time points

GSAR equals the usual standardized abnormal returns defined in equation

(2).

In the next step we redefine the time indexing such that the cumulative

abnormal return period (CAR-period of length τ) as a whole is squeezed into

one observation with time index t = 0, called the cumulative event day. In

this new indexing approach the day index for the first observation before

the cumulative period becomes t = −1 and the day after (if any) becomes

t = +1, and so forth. However, in order to simplify notations we continue

to use T0 + 1 and T2, respectively, as generic symbols for the first and last

observations relative to the cumulative event day t = 0. The total number of

the combined event and estimation period observations reduces in the ranking

to T ′ = T − τ + 1, which we call the adjusted number of observations.

With these conventions, the standardized ranks are defined as:

Definition 2 The standardzed ranks of the generalized standardized abnor-
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mal returns are defined as

Kit = Rank(GSARit)/(T
′ + 1), (9)

i = 1, . . . , n, t = T0 + 1, . . . , T2, where T0 + 1 and T2 are the first and

last observation relative to the cumulative event day t = 0, T ′ = T2 − T0

(= T − τ + 1) is the adjusted number of observations equal to the number of

generalized standardized abnormal returns defined in equation (8), and τ is

the CAR-period length.

Given that Ki0 indicates the standardized rank related to the cumulative

abnormal return, under the null hypothesis of no mean event effect

E [Ki0] =
1

2
. (10)

With these results, we can define a single t-ratio that can be used for testing

either cumulative abnormal returns or a single day abnormal returns.

Definition 3 Given the null hypothesis of no mean event effect

H0 : µτ = 0, (11)

where µτ = E [CARτ ] is the expected value of the cumulative abnormal re-

turns over the period of length τ , the generalized rank (GRANK) t-statistic
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is defined as

tgrank =
K̄0 − 1/2

SK

, (12)

where

SK =

√√√√ 1

T ′

T2∑
t=T0+1

nt

n

(
K̄t − 1

2

)2

, (13)

K̄t =
1

nt

nt∑
i=1

Kit (14)

with nt the number of valid generalized standardized abnormal returns, GSARit

available at time point t, t = T0 +1, . . . , T2, T ′ = T2−T0 is the adjusted num-

ber of observations in the combined estimation and event period, and K̄0 is

the mean K̄t for t = 0, the CAR-period standardized rank.

Due to the Central Limit Theorem, the t-statistic in equation (12) is asymp-

totically N(0, 1) distributed under the null hypothesis of (11).

The ranking procedure based on the GSAR-returns, defined in equation (8),

with the rank t-ratio in equation (12) gives a novel non-parametric testing

procedure for cumulative abnormal returns with several desirable properties.

First, as noted above, the procedure captures simultaneously testing for sin-

gle abnormal returns and cumulative abnormal returns. Second, because the

test is based on an equally weighted portfolio of standardized ranks, it is

robust against cross-sectional correlation, which is an issue with clustered
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event days [e.g. Kolari and Pynnonen (2008) and references therein]. Third,

the test procedure is robust against event-induced volatility due to the re-

standardization of the GSARs by the cross-sectional variance on the event

days. Fourth, the procedure takes into account the random event day within

the event window, which is an obvious problem with the existing rank tests.

Fifth, the rank statistic is less sensitive to single outliers which may badly

obscure parametric t-tests. Sixth, and last, the rank test is robust to auto-

correlation.6

Remark 1 The generalized cumulative abnormal returns (GSAR) can be

used to extend the sign test in Corrado and Zivney (1992) for testing cu-

mulative abnormal returns. This can be simply achieved by defining

Git = sign [GSARit −median(GSARit)] (15)

where sign(x) is equal to +1, 0, −1 as x is > 0, = 0, or < 0, and then using

these signed values to define the Corrado-Zivney sign test statistic T4.

We next comparatively examine the the empirical behavior of our generalized

rank test procedure relative to the most popular parametric tests of Patell

6Assuming that all return series have equally many observations, it is straightforward

to verify that E[S2
K ] = var[K̄0]. Thus, there is no autocorrelation bias in the standard

error estimate SK of of K̄0 (see also Remark 2 below).
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(1987) and BMP (1991), as well as the non-parametric rank test of Corrado-

Zivney (1992) with which our test coincides in the case of testing single

abnormal returns.
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3. Simulation Design

In this section we employ a simulation methods using actual return data to

investigate the empirical behavior of the generalized rank test introduced in

Section 2 for testing cumulative abnormal return and compare the results

with the the most popular parametric tests, including the ordinary t-test,

Patell (1987) t-test, BMP (1991) t-test, and the Corrado-Zivney (1992) rank

test.

3.1 Abnormal Return Model

The abnormal behavior of security returns can be estimated via the market

rit = αi + βirmt + εit, (16)

where ri is the return of stock i, rm is the index return of value-weighted

CRSP stocks, and εi is is a white noise random component, uncorrelated

with rm.

The resulting abnormal returns are obtained as differences of realized and

predicted returns on day t in the event period,

ARit = rit −
(
α̂i + β̂irmt

)
(17)

where the parameters are estimated from the estimation period with ordinary
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least squares.

3.2 Test Statistics

The ordinary t-test (ORDIN) is defined as

tordin =
CARτ

s.e(CARτ )
, (18)

where

CARτ =
1

n

n∑
i=1

CARiτ , (19)

and s.e(CARτ ) is the standard error of the average cumulative abnormal

return CARτ , which is adjusted with the prediction error [see e.g. Campbell,

Lo and MacKinlay (1997), Sec 4.4.3].

The Patell (1987) test statistic (PATELL) is

tpatell =

√
n× (L1 − p− 3)

L1 − p− 1
SCARτ , (20)

where n is the number of cross-section observations, L1 is the length of the

estimation period, p is the number of explanatory variables in the abnor-

mal return regression, and SCARτ is the average standardized cumulative

abnormal return defined in equation (7).
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The Boehmer, Mucumesi, and Poulsen (1992) test statistic (BMP) is

tbmp =
SCARτ

√
n

SSCAR

, (21)

where SSCAR is the cross-sectional standard deviation of SCARs defined in

equation (6).

The Corrado-Zivney (1992) test statistic is based on the standardized ranks

Uit = rank(SAR∗
it)/(Ti + 1), (22)

in which Ti is the length of the time series of return series i and

SAR∗
it =





SARit, for t 6= 0

SARit

SSAR

, for t = 0,

(23)

with

SSAR =

√√√√ 1

n− 1

n∑
i=1

(
SARi0 − SAR

)2
(24)

the standard deviation of the event day standardized abnormal returns, and

SAR is the average standardized abnormal return on the event day.

The Corrado and Zivney (1992) test statistic (CZ) test is

tcz =
Ū0 − 1/2

SŪ

, (25)

where

Ūt =
1

nt

nt∑
i=1

Uit, (26)
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Ū0 is the event day average (t = 0), and

SŪ =

√√√√ 1

T

T2∑
t=T0+1

nt

n

(
Ūt − 1

2

)2

(27)

is the standard error of Ū0, and nt number of valid returns on day t. It is

notable that in the CZ test the standard deviation uses both the estimation

period and event period observations.

Corrado and Zivney (1992) introduce their statistic only for testing a single

event day return. In order to test mean return on event windows longer than

one day Cowan (1992) and Campbell and Wasley (1993) suggest simply to

aggregate the ranks over the window and use the t-ratio (CUM RANK)

tcumrank,τ =

(
Ūτ − τ/2

)
√

τSŪ

, (28)

where

Ūτ =

t1+τ∑
t=t1+1

Ūt (29)

is the sum of average ranks over the CAR-period T1 + 1 ≤ t1 ≤ t1 + τ ≤ T2

with the indexing conventions of Section 2. As discussed above, the major

shortcoming of this test is poor power properties when the abnormal return

is randomly assigned to one day within the event event window [see also

Cowan (1992), pp. 14–15].7

7Campbell and Wasley (1993) use the Corrado’s (1989) non-standardized ranks.
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Remark 2 Unlike GRANK defined in equation (12), CUM RANK is biased

by autocorrelation, part of which comes from the technical negative autocor-

relation due to ranking. The biasedness can be seen as follows. Assuming

again that the returns are cross-sectionally uncorrelated and that there are

equally many observation in each return series (nt = n for all t), then using

straightforward algebra

var[Ūτ ] =
σ2

U

n
ι′τΩτ ιτ , (30)

where σ2
U = var[Uit],

8 ιτ is a τ -vector of ones, and Ωτ is the τ × τ average

autocorrelation matrix of the individual ranks Ui,t1+1, Ui,t1+2, . . . , Ui,t1+τ over

the CAR-period, i = 1, . . . , n. On the other hand, again using straightforward

algebra, the expected value of the variance estimator τS2
Ū

of var[Ūτ ] derived

from equation (27) and utilized in the CUM RANK t-statistic (28) becomes

τE[S2
Ū ] =

σ2
U

n
τ, (31)

which coincides with equation (30) if Ωτ is an identity matrix, i.e., when there

is no autocorrelation. Thus, τS2
Ū

is a biased estimator of var[Ūτ ]. In partic-

ular, negative autocorrelation implies under-estimation of the true variance

and hence under-rejection of the null hypothesis and loss of power.

8Under the null hypothesis of no event effect, the (standardized) ranks are discrete

uniform distributed. The variance of the non-standardized ranks is (T 2 − 1)/12, and

hence, the variance of the standardized ranks becomes σ2
U = (T − 1)/[12(T + 1)] ≈ 1/12.

The crucial point here is that they are the same for all series.
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3.3 Sample constructions

We follow the simulation design introduced in Brown and Warner (1985).

From the CRSP database we select 1,000 samples of n = 50 return series

with replacement. A random event day is assigned for each sample. The

database includes 17,878 daily return series in the sample period January 2,

1990 to December 31, 2005.

The event day is denoted as day ”0”, and the event window consists ±10

days around the day ”0”. We report the results for event day t = 0 ab-

normal return AR(0) and for cumulative abnormal returns CAR(−1, +1),

CAR(−5, +5), and CAR(−10, +10).

The estimation period is comprised of 239 days prior to the event period (i.e.,

days −249 to −11). In order for a return series to be included, no missing

returns are allowed in the last 30 days from −19 to +10.

We also investigate event-induced volatility effects on the test statistics.

Charest (1978), Mikkelson (1981), Penman (1982), and Rosenstein and Wy-

att (1990) have found that the event period standard deviation is about 1.2

to 1.5 times the estimation period standard deviation (i.e., 20 to 50 per-
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cent increased volatility). Accordingly, we indroduce increased volatility by

multiplying the cumulated event period returns by a factor
√

c, with values

c = 1 for no event induced volatility, c = 1.5 for an approximate 20 percent

increased volatility (i.e.,
√

1.5 ≈ 1.2), c = 2.0 for an approximate 40 per-

cent increased volatility (i.e.,
√

2.0 ≈ 1.4), and c = 3.0 for an approximate

70 percent increased volatility (i.e.,
√

3 ≈ 1.7) due to the event effect. To

add more realism we generate the volatility factors c for each stock based on

the following uniform distributions U [1, 2], U [1.5, 2.5], or U [2.5, 3.5], respec-

tively, yielding on average the variance effects of 1.5, 2.0, and 3.0. For the

no volatility effect experiment we fix c = 1.0

The power properties of the tests are investigated empirically by using a

single random event day and assigning a fixed abnormal return to the event

window return. Depending on the length of the accumulation period in the

CAR, we generate fixed abnormal returns as follows. In the case of a single

abnormal return, we generate abnormal returns for the event day t = 0 of

sizes µ1 = 0.5, µ2 = 1.0, µ3 = 1.5, and µ4 = 2.0 percents, which we refer to as

the base abnormal returns. For the cumulative abnormal periods we use these

base abnormal returns and generate the cumulative event effects according

to the length of the period, such that the cumulative abnormal return is

(1 + log τ)µi, i = 1, . . . , 4, where τ is the number of days over which the
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appropriate cumulative return is calculated and log is the natural logarithm.

Thus, for CAR(−1, +1) we have τ = 3 and 1 + log 3 ≈ 2, whereas for

CAR(−5, +5) we have τ = 11 and 1 + log 11 ≈ 3.4, and for CAR(−10, +10)

we have τ = 21 and 1 + log 21 ≈ 4.

4. Results

4.1 Rejection rates under the null hypothesis

This section discusses the rejection rates (Type I errors) of the null hypothesis

when there is no event effect. The rejection rates indicate the fractions by

which the test statistics exceed in 1,000 simulations the nominal cutoffs ±1.96

at the 5 percent level in two-sided tests.

Sample Statistics

[Table 1]

Table 1 reports sample statistics for the test statistics under the null hypoth-

esis of no event effect. Under the null hypothesis all the test statistics should

be approximately N(0, 1)-distributed. For the single abnormal return AR(0)

the means of all t-statistics are statistically close to zero. For example, the
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BMP statistic has a sample mean of -0.044, which is the largest in absolute

value, is only 1.43 standard errors below zero. However, all the CARs are

slightly negative and statistically significant, which implies that all the test

statistics are slightly negative also. The distributions of the test statistics are

generally symmetric for the most part and do not exhibit fat tails. Standard

deviations are close to their theoretical values of unity.

Rejection rates

Table 2 reports the two-sided rejection rates (Type I errors) at the 5 per-

cent level under the null hypothesis of no event mean effect. The second

column shows the results with no event induced volatility. All rejection rates

are close to the nominal rate of 0.05 for short CAR-windows of AR(0) and

CAR(−1, +1). The PATELL, BMP, and CUM RANK statistics also re-

ject close to the nominal rate for the longer CAR-windows of CAR(−5, +5)

and CAR(−10, +10), where all rates are within the approximate 99 percent

confidence interval of [0.032, 0.068]. The ORDIN and CUM RANK statisitcs

under-reject the null hypothesis for these longer CAR- windows. The general

tendency for these test statistics is that under-rejection worsens as the length

of the CAR-window increases. For the CUM RANK statistics a partial expla-

nation is that it does not account for the technical negative autocorrelation
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implied by the rank transformation.

[Table 2]

Columns 3, 4, and 5 report the rejection rates under the null hypothesis when

there is event- induced variance present. The ORDIN and PATEL statistics

over-reject as the variance increases, which is a well known outcome. At

the highest variance factor of c = 3, which corresponds to an increase in

volatility by a factor of 1.7, the Type I error rate for the ORDIN statistics is

over 0.20 and for the PATELL statisitic over 0.25. The BMP, CUM RANK,

and GRANK statistics are robust to the volatililty increase.

4.2 Power of the tests

Power results of the tests are shown in Panels A to D of Table 3 and graphi-

cally depicted in corresponding panels of Figure 1. The zero abnormal return

line (bold face) in each panel indicates the Type I error rates and replicate

the second column of Table 2 (i.e., no event-induced volatility). The remain-

der of Table 3 indicates the rejection rates for the respective (cumulative)

abnormal return in the first column.

There are two outstanding results. First, at all magnitudes of abnormal
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returns (positive or negative), test statistics based on standardized abnor-

mal returns generally have superior power over the ordinary test statistic

ORDIN, which is based on the non-standardized returns. The only excep-

tion is the CUM RANK statistic for longer CAR-windows, especially for

CAR(−10, +10) . This result is consistent with the discussion in Section 2.

That is, when the cumulative abnormal return is randomly assigned to single

days within the cumulative window, they do not show up as high in the sum-

mation. The conservative rejection rate of the CUM RANK statistic under

the null hypothesis tends to increase this effect. It should be noted, however,

that in unreported simulations we also distributed the cumulative abnormal

return evenly across the CAR-window. In this case the CUM RANK statistic

has power equal to the PATELL, BMP, and GRANK statistics.

Second, like the PATELL and BMP statistics, the generalized rank test

statistic GRANK is immune to the way the cumulative abnormal return

is distributed across the (cumulated) event window, as the ranking proce-

dure relies on the cumulative standardized abnormal returns. In addition, as

shown in Table 3 and Figure 1, the power of the GRANK statistic tends to

be consistently higher than any of the parametric test statistics.

In sum, consistent with earlier studies, the CUM RANK statistics is very

25



competitive and robust relative to the parametric tests for single event days

[Corrado (1989), Corrado and Zivney (1992), Cowan (1992), Campbell and

Wasley (1993), Kolari and Pynnonen (2008)]. However, as the above sim-

ulations and the results in Cowan (1992) indicate, its usefulness for testing

cumulative abnormal returns can be problematic. Our suggested GRANK

statistic fills this gap and extends the usage of robust non-parametric rank

tests to testing cumulative abnormal returns.

26



5. Conclusions

This paper has introduced a generalized rank test based on generalized stan-

dardized abnormal returns. This procedure can be used to test both single

abnormal returns as well as cumulative abnormal returns. The test is robust

to abnormal return serial correlation and event-induced volatility. Also, it

implicitly accounts the possible cross-correlation of abnormal returns, which

is an issue if event days are clustered. Simulation results show that the test

has good and often superior (empirical) power relative to popular parametric

tests at all event window lengths.

Earlier studies have shown the rank test of Corrado (1989) and Corrado and

Ziwney (1993) is very competitive and robust relative to the parametric tests

for single event days [Corrado (1989), Corrado and Zivney (1992), Cowan

(1992), Cambell and Wasley (1993), Kolari and Pynnonen (2008)]. However,

its usefulness for testing cumulative abnormal returns is questionable when

the abnormal return is randomly assigned within the event window. Our

suggested GRANK test avoids these problems and provides a robust non-

parametric rank test that can be used for testing cumulative abnormal returns

with equally high power as single abnormal returns.
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Table 1. Sample statistics in event tests for 1,000 random portfolios of n = 50
securities from CRSP data base.

Test statistics Fama-French 3-factor adjusted abnormal returns.

Excess

Panel A: AR(0) Mean Median Std Skewness Kurtosis Min Max

Abnormal Return −0.020 −0.012 0.579 −0.472c 3.754c −4.265 1.926

ORDIN tordin [Eq. (18)] −0.033 −0.020 0.997 −0.475c 3.361c −7.068 3.447

PATELL tpatell [Eq. (20)] −0.030 −0.030 1.026 −0.103 0.532 −4.368 3.808

BMP tbmp [Eq. (21)] −0.044 −0.030 0.985 −0.065 0.156 −3.486 4.252

CUM RANK tcumrank [Eq. (28)] −0.009 0.014 0.977 −0.016 0.256 −3.265 3.953

GRANK tgrank [Eq. (12)] −0.009 0.014 0.977 −0.016 0.256 −3.265 3.953

Excess

Panel B: CAR(−1, +1) Mean Median Std Skewness Kurtosis Min Max

CAR(−1, +1) −0.042 −0.051 0.943 −0.171b 1.458c −4.784 3.517

ORDIN tordin [Eq. (18)] −0.043 −0.050 0.949 −0.207 1.664c −5.606 3.367

PATELL tpatell [Eq. (20)] −0.104c −0.101c 1.033 0.088 0.582c −3.595 4.056

BMP tbmp [Eq. (21)] −0.110c −0.104c 1.026 0.015 0.147 −3.416 3.570

CUM RANK tcumrank [Eq. (28)] −0.056 −0.038 0.957 −0.011 0.211 −3.261 3.895

GRANK tgcar [Eq. (12)] −0.053 −0.010 0.996 −0.027 0.196 −3.612 3.590

Excess

Panel C: CAR(−5, +5) Mean Median Std Skewness Kurtosis Min Max

CAR(−5, +5) −0.211c −0.220c 1.697 0.060 0.262 −6.201 6.231

ORDIN tordin [Eq. (18)] −0.115c −0.110c 0.871 −0.008 0.107 −2.993 3.072

PATELL tpatell [Eq. (20)] −0.172c −0.146c 0.984 −0.106 0.166 −3.392 3.403

BMP tbmp [Eq. (21)] −0.168c −0.144c 1.043 −0.017 0.229 −4.270 3.927

CUM RANK tcumrank [Eq. (28)] −0.077c −0.053 0.887 −0.044 0.040 −2.713 3.037

GRANK tgrank [Eq. (12)] −0.063 0.006 1.038 −0.091 0.206 −3.792 3.592

Excess

Panel D: CAR(−10, +10) Mean Median Std Skewness Kurtosis Min Max

CAR(−10, +10) −0.390c −0.485c 2.426 0.138 −0.027 −7.146 8.234

ORDIN tordin [Eq. (18)] −0.151c −0.167c 0.876 0.057 −0.233 −2.636 2.462

PATELL tpatell [Eq. (20)] −0.227c −0.186c 0.936 0.067 −0.127 −2.649 3.134

BMP tbmp [Eq. (21)] −0.236c −0.194c 1.014 0.114 −0.010 −2.852 3.750

CUM RANK tcumrank [Eq. (28)] −0.150c −0.154c 0.860 0.149a 0.032 −2.663 2.944

GRANK tgrank [Eq. (12)] −0.098c −0.091b 1.047 0.046 −0.058 −3.034 3.654

Rejection rates based on 1,000 simulations for portfolios of size 50 securities with estimation period of 239 days and event

period 21 days. The event day is the day 250 denoted as t = 0. Cumulative abnormal returns, CAR(−d, +d), with

d = 0, 1, 5, and 10 are cumulated around the event day. Securities from CRSP and event dates from period 1990 2005

are randomly selected with replacement. Ordinary t-test, tpatell, and tbmp are parametric tests, tcumrankr, and tgrank are

nonparametric tests. a = 10%, b = 5%, and c = 1% significant. GRANK and CUM RANK coincide for the single event

day abnormal return AR(0).
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Table 2. Rejection rates in two-tailed test at the 5 % level of the null hypoth-
esis of no mean event effects with different event windows and with different
levels of event induced volatility.

Market model abnormal returns.

Event induced volatility,
√

c σ

Test statistics c = 1.0 c = 1.5 c = 2.0 c = 3.0

Panel A: AR(0)

ORDIN tordin [Eq. (18)] 0.043 0.094 0.145 0.220

PATELL tpatell [Eq. (20)] 0.051 0.116 0.178 0.268

BMP tbmp [Eq. (21)] 0.045 0.042 0.043 0.043

CUM RANK tcumrank [Eq. (28)] 0.045 0.047 0.051 0.042

GRANK tgrank [Eq. (12)] 0.045 0.047 0.051 0.042

Panel B: CAR(−1, +1)

ORDIN tordin [Eq. (18)] 0.037 0.084 0.128 0.208

PATELL tpatell [Eq. (20)] 0.069 0.115 0.161 0.261

BMP tbmp [Eq. (21)] 0.054 0.051 0.056 0.056

CUM RANK tcumrank [Eq. (25)] 0.037 0.038 0.036 0.038

GRANK tgrank [Eq. (12)] 0.048 0.047 0.046 0.049

Panel C: CAR(−5, +5)

ORDIN tordin [Eq. (18)] 0.029 0.063 0.105 0.195

PATELL tpatell [Eq. (20)] 0.057 0.105 0.154 0.250

BMP tbmp [Eq. (21)] 0.057 0.061 0.059 0.062

CUM RANK tcumrank [Eq. (28)] 0.028 0.027 0.028 0.028

GRANK tgrank [Eq. (12)] 0.059 0.058 0.055 0.056

Panel D: CAR(−10, +10)

ORDIN tordin [Eq. (18)] 0.026 0.076 0.121 0.212

PATELL tpatell [Eq. (20)] 0.045 0.103 0.151 0.246

BMP tbmp [Eq. (21)] 0.066 0.071 0.064 0.063

CUM RANK tcumrank [Eq. (28)] 0.022 0.023 0.022 0.022

GRANK tgrank [Eq. (12)] 0.067 0.066 0.066 0.069

Rejection rates based on 1,000 simulations for portfolios of size 50 securities with estimation period of 239 days and

event period 21 days. The event day is day 250 denoted as t = 0. Cumulative abnormal returns, CAR(−d, +d), with

d = 0, 1, 5, and 10 are cumulated around the event day. Securities from CRSP and event dates from period 1990 to

2005 are randomly selected with replacement. The ordinary t-test tordin, the PATELL test tpatell, and the BMP test tbmp

are parametric tests, the CUM RANK test, tcumrank, and the GRANK test tgrank are nonparametric tests. GRANK and

CUM RANK coincide for the single event day abnormal return AR(0). The 95 percent confidence interval around the 0.05

rejection rate is [0.036, 0.064] and the respective 99 percent confidence interval is [0.032, 0.068]
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Table 3. Two-tailed average rejection rates at the 0.05 significance level
for selected test statistics sampled from 1,000 random portfolios of n = 50
securities with randomly assigned (cumulative) abnormal return on one event
day within the cumulated window.

Test statistic

Panel A: AR(0) ORDIN PATELL BMP CUM RANK GRANK

−3.0 0.998 1.000 0.999 1.000 1.000

−2.0 0.939 1.000 0.995 0.999 0.999

−1.0 0.433 0.855 0.822 0.876 0.876

−0.5 0.129 0.324 0.348 0.378 0.378

0.0 0.043 0.051 0.045 0.045 0.045

0.5 0.120 0.324 0.314 0.384 0.384

1.0 0.405 0.852 0.824 0.900 0.900

2.0 0.935 0.997 0.992 0.998 0.998

3.0 0.995 1.000 0.999 1.000 1.000

Panel B: CAR(−1, +1) ORDIN PATELL BMP CUM RANK GRANK

−4.2 0.989 1.000 0.998 0.998 0.999

−2.1 0.599 0.956 0.936 0.909 0.967

−1.0 0.173 0.498 0.514 0.475 0.544

0.0 0.037 0.069 0.054 0.037 0.048

1.0 0.161 0.405 0.439 0.471 0.506

2.1 0.552 0.935 0.910 0.929 0.968

4.2 0.986 1.000 0.996 1.000 1.000

Panel C: CAR(−5, +5) ORDIN PATELL BMP CUM RANK GRANK

−8.5 0.993 1.000 1.000 0.846 1.000

−5.1 0.793 0.996 0.995 0.742 0.995

−2.5 0.266 0.684 0.699 0.463 0.716

−0.8 0.056 0.155 0.182 0.119 0.169

0.0 0.029 0.057 0.057 0.028 0.059

0.8 0.030 0.078 0.105 0.083 0.138

2.5 0.206 0.566 0.605 0.457 0.686

5.1 0.731 0.990 0.970 0.833 0.994

8.5 0.992 1.000 0.998 0.967 0.999

Panel D: CAR(−10, +10) ORDIN PATELL BMP CUM RANK GRANK

−10.1 0.967 1.000 0.999 0.505 0.999

−6.1 0.659 0.980 0.982 0.482 0.976

−4.0 0.362 0.795 0.819 0.390 0.811

−2.0 0.114 0.329 0.376 0.205 0.347

−1.0 0.058 0.132 0.163 0.094 0.146

0.0 0.026 0.045 0.066 0.022 0.067

1.0 0.024 0.047 0.070 0.040 0.096

2.0 0.059 0.172 0.213 0.133 0.291

4.0 0.247 0.647 0.667 0.352 0.759

6.1 0.527 0.953 0.946 0.524 0.977

10.1 0.958 1.000 1.000 0.728 1.000

GRANK and CUM RANK coincide for the single event day abnormal return AR(0).
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Figure 1. Estimated power functions with different CAR-windows for

ORDIN, PATELL, BMP, CUM RANK, and GEN RANK tests based on 1,000

samples of n = 50 security portfolios from the CRSP database: Significance

level is 0.05, two-sided tests, and no event-induced variance.

GRANK and CUM RANK coincide for the single event day abnormal return AR(0).
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