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Abstract 
 

This paper draws attention to the fact that under standard assumptions the time 
varying betas model cannot capture the dynamics in beta. Using the multivariate 
normal as a model for the joint distribution of returns on the market portfolio and 
predetermined information variables, it is shown how to capture skewness and 
kurtosis in the unconditional distributions of asset returns. It is also shown that the 
predetermined information variables have the potential to account for the time 
series properties of returns, including heterogeneity of variance. The model may 
be extended empirically by using different distributions for the residual returns. It 
may be extended theoretically by considering other members of the elliptically 
symmetric class of distributions. An empirical study applies the model to returns 
on European bond funds. An analysis of the residuals from fitting several versions 
of the time varying betas models shows that such models are able both to capture 
the dynamics of alpha and beta and account for other features of the time series of 
returns for a significant number of European bond funds.  
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1.   Introduction 
 
The aim of this paper is to present some new theoretical and empirical insights 
into a model that is widely used in financial economics for modelling the returns 
on risky financial assets. Specifically, the paper is concerned with extensions to 
the market model in which, in the usual notation, the parameters α and β are time 
varying. In the case under consideration, the dynamics of α and β are modelled by 
positing linear regression models in which the unobserved values of these two 
parameters are related to economic conditions by incorporating predetermined 
information variables. This model, which is described in detail in section 2 of this 
paper, is both well known and widely used. Indeed, it may be regarded as a 
standard technique in asset pricing and portfolio theory as it is described in 
standard textbooks such as Elton et al. (2003, p. 150). The method itself is 
attributed to Beaver et al. (1970) and was popularised by Barr Rosenberg and his 
co-workers, for example Rosenberg and McKibben (1973) or Rosenberg and 
James (1976). This paper is motivated by the increasing application of this model 
to asset pricing studies (for example Jagannathan and Wang, 1996) and 
specifically to mutual fund performance studies (for example Ferson and Schadt, 
1996, Christopherson et al., 1998, Silva et al., 2003). 
  
The theoretical contribution of this paper is twofold. First, for the case when 
standard econometric assumptions hold, it is shown that the model is unable to 
describe the dynamics in β. Secondly, the paper describes the implications for 
modelling time varying α and β when the standard econometric assumptions do 
not hold. The first theoretical contribution therefore offers an explanation for 
those applications where the model has not provided evidence of time variation in 
α or β. More interestingly, for those applications which have been successful, the 
other contribution provides new insights into the unconditional distribution of 
asset returns. As is shown in section 4, these distributions may include both 
skewness and kurtosis and therefore offer new possibilities for portfolio selection 
as well as for modelling returns. It is also shown in section 4 that the time varying 
betas model offers the possibility of capturing both serial-correlation and 
heterogeneity in the variance of asset returns. A correctly specified time-varying 
betas model therefore offers the possibility of accounting for the empirical 
properties that are often observed in the time series of returns on financial assets, 
even though the model is estimated using OLS or similar methods. 
 
The structure of this paper is as follows. Section 2 describes the model under 
consideration and presents a short review of relevant literature. Section 3 explains 
why the model fails under multivariate normality and related elliptically 
symmetric distributions. Section 4 presents a new model. This is based on the 
assumption that the joint probability distribution of returns on the market portfolio 
and the information variables is multivariate normal. As is shown, this leads to a 
model for the unconditional distribution of returns on an asset which can exhibit 
both skewness and kurtosis. It is also shown how the model may account for 
heterogeneity in variance and for other time series effects. Section 5 describes a 
short empirical study of returns on European bond funds. As the results of the 
study show, a time varying betas model is often able to account for the time series 
behaviour of a majority of fund returns, leaving estimated residuals that satisfy the 
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usual OLS assumptions. Section 6 concludes. There are two appendices with 
technical results. Notation is that in standard use. In keeping with increasingly 
common practice, only the main results are presented. Further detail is available 
from the authors on request.  
 
2.   The Model and its Properties 
 
The model for time varying betas in this paper has two components. The first is 
the market model in which returns on individual assets are related to returns on a 
proxy to the market portfolio. In the second component, linear models, in which 
the unobserved parameters are related to predetermined information variables, 
represent the dynamics in the two parameters of the market model. The first 
component of the model is: 
  

tmtttt RR ωβα ++= . (1.) 
 
The notations Rt and Rmt are used indifferently to denote either total returns or 
excess returns on an asset and the market proxy respectively for the time period 
ending at time t. Excess return is defined in the usual way as total return minus the 
risk free return over the period. To avoid unnecessary notation, the subscript i to 
denote asset i is omitted except in cases where it is explicitly required. The time 
series of unobserved residual returns {ωt} are assumed to be IID with zero mean 
and constant variance. In the remainder of the paper, the model defined by 
equation (1.) is referred to as the single index or SI model. 
 
The second component of the model describes the dynamics of α and β using two 
linear models: 
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In this pair of equations, Xt is a vector of lagged information variables (that is, it 
contains variables which are known at the start of period t), φ1 γ1 are the 
corresponding vectors of parameters, φ0 and γ0 are scalars. The residuals ηt and ζt 
are unobserved. It is assumed that values of the 2-vector (ηt, ζt) are IID and that it 
is distributed independently of ωt. 
 
Substitution of equation (2.) into equation (1.) gives the model: 
 
 tmtt

T
1mt0t

T
10t RXRXR ε+γ+γ+φ+φ= ; (3.) 

 
where, by definition, the residual return εt is given by: 
 
 tmtttt R ς+η+ω=ε .  (4.) 



    
 

- 3 - 

 

 
This model is used by Jagannathan and Wang (1996) in asset pricing and by 
Ferson and Schadt (1996) in a conditional performance evaluation framework. 
Both papers focus on the dynamics in beta. The dynamics of alpha are considered 
by Christopherson et al. (1998) and by Bernhardt and Jung (1979), who are 
concerned with statistical desirability of the inclusion of the intercept term. Ferson 
and Schadt (1996) further extend the model by incorporating a quadratic term in 
Rmt thus obtaining a conditional version of the Treynor and Mazuy (1966) timing 
model: 
 
 t

2
mt2mtt

T
1mt0t

T
10t RRXRXR ε+γ+γ+γ+φ+φ= ; (5.) 

 
where γ2 is a scalar. Given the specification above, the error terms {εt} have zero 
mean but a variance that is time varying through its dependence on Rmt. Denoting 
the variance of the term (ωt + ηt) by 2

ωσ , the variance of εt is: 
 
 22

mt
2

t R][V ςω σ+σ=ε . (6.) 
  
Generally, this complication is ignored and the models defined at equations (3.) or 
(5.) are estimated using OLS.  
 
A special case arises if all the elements of the parameter vector φ1 are equal to 
zero. In this case, the alpha coefficient in equation (2.) is constant and only the 
beta is time varying. In the remainder of the paper the model defined by (3.) or 
(5.) together with the restriction that alpha is constant is referred to as the 
conditional single index or CSI model. The more general case, in which alpha 
may be time varying is referred to as the ACSI model. 
 
The non-linearity that arises because of the presence of the vector XtRmt is ignored 
since, by specification, these terms are given.  The model defined at equations 
(3.), (5.) and, if used, (6.) is applied to individual assets. If the vector Xt contains 
common factors, for example the change in interest rates, then it also applies to a 
portfolio of the assets. In this case the parameters φ0, γ0, φ1, γ1 and, if used, γ2 will 
in general vary with each asset; giving parameters φ0i and so on. Furthermore, if 
wi denotes the weight of asset i in the market proxy, the model parameters must 
satisfy the following restrictions: 
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  (7.) 

 
where in the second pair of equations 0 is a vector of zeros. It is also the case the 
error terms {εt} must satisfy a linear restriction of the form: 
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The implication of this is that the errors are not cross-sectionally independent and 
that their variance-covariance matrix (henceforth VC matrix) has rank at most n-
1. Adcock and Clark (1999) argue that this may be ignored when the market 
portfolio is well diversified. This is indeed common practice. However, it may be 
noted that this assumption may result in some loss of estimation efficiency in 
markets for which the index has only a small number of assets.  
 
The SI model at equation (1.) may be replaced by a model in which there is more 
than one factor or explanatory variable. This may be motivated by Ross’ arbitrage 
pricing theory, Ross (1976), or by empirical considerations. In such models, the 
scalar coefficient βt is replaced by a vector, βt say. Such models are referred to as 
multi-index or MI models. Time variation in the elements of βt may be captured 
by positing linear models which are similar to the second component of equation 
of (2.). This results in models that are similar in structure to equations (3.) and 
(5.); containing linear, cross-product and quadratic terms. Such models are 
referred to as CMI models, when alpha is constant, and ACMI models, when 
alpha is time varying.  
 
In the interests of brevity, the detailed equations for (A)CMI models are omitted. 
To simplify exposition, the technical results described in section 4 are based on 
the (A)CSI model. Extension to the multi-index case is straightforward, although 
the notation required for the theoretical results is cumbersome. However, 
empirical work is straightforward and the study described in section 5 covers both 
SI and MI models. 
 
3.  Elliptically Symmetric Distributions 
 
The variables Rmt and the elements Xjt of the vector Xt are also random variables. 
The justification for the use of OLS is that conditional on values of Rmt and Xt the 
probability distribution of Rt is normal and that the expected value of the right 
hand side of equation (3.) exactly describes the conditional mean of Rt. If it may 
be assumed that the variables Rt, Rmt and Xt have a joint multivariate normal 
distribution, then the model at equation (3.) or (5.) are mis-specified. This is 
because the conditional distribution of Rt given Rmt and Xt has a mean that is 
strictly linear in Rmt and Xt. The details of this are in appendix A. This is a 
standard result in the theory of the multivariate normal distribution. See, for 
example, Anderson (1958, p. 29) for further details. 
  
In the case of multivariate normality, using OLS to estimate the parameters of (3.) 
must give estimated values of the elements of the vector γ1 that are not 
significantly different from zero. If such a model is estimated and the null 
hypothesis H0: γ1 = 0 is not rejected (against any suitable alternative), the 
implication is that the dynamics of β, although not necessarily those of α, must be 
captured another way. It may also be conjectured that failure to reject H0 is also a 
test of the joint multivariate normality of Rt, Rmt and Xt, although this idea 
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requires development which is beyond the scope of this paper. The same 
comments apply to the model at (5.); the additional null hypothesis H0: γ2 = 0 
would not be rejected either. 
 
These comments apply, with relatively minor modifications, if the joint 
multivariate probability distribution of Rt, Rmt and Xt comes from any member of 
the elliptically symmetric class. This includes the multivariate Student 
distribution, which is well established in finance (for example Chamberlain, 1983, 
Ingersoll, 1987, or Zhou, 1993), and the multivariate Laplace distribution (see 
Fang et al., 1990, p. 92). Under these distributions, the conditional mean of Rt 
given values of Rmt and Xt is unchanged. The residual variance, however, will in 
general be a function of Rmt and Xt, depending on the joint distribution of these 
variables. Thus, it is possible to accommodate kurtosis in asset returns but to 
remain in the position where time variation in β cannot be captured by a model of 
the type defined at equations (3.), (4.) and (5.). Further technical details of the 
results for the multivariate Student distribution are available on request.  
 
4.   Model for Non-normal Asset Returns 
 
This section presents a model for the case when the unconditional distribution of 
asset returns is non-normal. The development described is based on the model at 
equation (3.). As will be shown, the extended model of Ferson and Schadt (1996), 
which has a quadratic term in Rmt, is easily incorporated in this framework. As 
noted above, the results below may be extended to the case where the SI model at 
(2.) is replaced by a MI model, albeit at the price of some notational complexity. 
 
When the null hypothesis H0: γ1 = 0 is rejected (against any suitable alternative), 
the implication is that the unconditional distribution of Rt will not be normal (or 
from an appropriate elliptically symmetric distribution). Depending on the joint 
probability distribution of Rmt and Xt, the unconditional distribution of Rt will 
exhibit both skewness and kurtosis. As noted in the introduction, the recent study 
in Silva et al. (2003) applies the time varying betas model to returns on European 
bond funds. As their results demonstrate, there are some funds for which there is 
no time variation in the estimated betas and which therefore leads to the inference 
that the returns on such funds are normally distributed. There are other funds, 
however, which show statistically significant time variation, thus leading to the 
inference that the unconditional distribution of their returns is not normal.  
 
Given the above, the conditional distribution of Rt however is normal. In the usual 
notation: 
 

)r,rxrx(N~x,r|R 22
mt

2
mtt

T
1mt0t

T
10tmtt ςω σ+σγ+γ+φ+φ   (8.) 

 
In the rest of this paper it is assumed that the joint distribution of Rmt and Xt is 
multivariate normal. In this case the market model, which is taken to be the 
conditional distribution of Rt given Rmt, is normal but with mean and variance that 
are functions of Rmt. For this case, the unconditional moments of Rt will, 
depending on the values of the parameters in the model defined at equation (8.), 
exhibit skewness and kurtosis. This approach, namely to make an exogenous 
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assumption about the distribution of Rmt and Xt, is similar to that adopted in 
Pedersen and Satchell (2000).  
 
The result is derived as follows using the result in appendix A. When Rmt and Xt 
have a joint multivariate normal distribution, the conditional distribution of Xt 
given Rmt is also multivariate normal. If the mean vector and VC matrix of Rmt 
and Xt are denoted by: 
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respectively, the conditional mean vector and VC matrix of Xt given that  Rmt = 
rmt are: 
 
 T

mm
2
mXXr|XmmtmXr|X mm

),r( λλσ−Σ=Σµ−λ+µ=µ ,  (9.) 
 
where the vector λm is defined as: 
 

 2
m

mX
m σ

σ
=λ . (10.) 

 
Since only the mean of the conditional distributions defined at equations (8.) and 
(9.) depends on rmt, the conditional distribution of the return on an asset Rt  given 
market return rmt is also normal. It is convenient to define mtr~ as: 
 

mmtmt rr~ µ−= . 
 
It is shown in appendix B that conditional expected value and conditional 
variance are in general quadratic functions of mtr~ : 
 
 [ ] 2

mt2mt10mtt r~r~r|RE ψ+ψ+ψ= ,     (11.) 
 
and: 
 
 [ ] 2

mt2mt10mtt r~r~2r|RV Λ+Λ+Λ= , (12.) 
 
respectively. The constants ψj and Λj, j = 0,1,2 are also defined in appendix B. 
The equation for the conditional mean is essentially the market-timing model of 
Treynor and Mazuy (1966) or the model proposed in Harvey and Siddique (2000) 
to capture skewness. Comparison of (11.) with (5.) shows that it is straightforward 
to include the quadratic term in Rmt. This only requires modification of the model 
parameters ψ0 and ψ2  in (11.).  
 
Using exactly the same approach, it is straightforward to derive the conditional 
expected value and variance of Rt for the case when the conditioning variable is 
the vector Xt. The equations are omitted in the interests of brevity. Recalling that, 



    
 

- 7 - 

 

by specification, the elements of Xt are known at the start of the time period, this 
representation is able to account for heterogeneity in both the conditional mean 
and variance of returns and thus has the capability of playing a role similar to that 
of a member of the ARCH family of models. Depending on the properties of Xt, it 
also offers the possibility of accounting for serial correlation. 
 
Using the above notation, the unconditional mean and variance of Rt are, 
respectively: 
 
 [ ] [ ] ( ) 4

m
2
2

2
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2
120t

2
m20t 2RV,RE σψ+σψ+Λ+Λ=σψ+ψ=  

 
To compute higher moments, it is simpler to use the moment generating function 
(MGF) of Rt. The conditional moment generating function (MGF) of Rt given rmt 
is: 
 

 ( ) ( )
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Integrating over the distribution of rmt gives the unconditional MGF of Rt. Taking 
logs gives the cumulant generating function of Rt. This is: 
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The Skewness of Rt is: 
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The equation for kurtosis is a more complex function of the parameters and so is 
omitted. 
 
It is clear from equations (11.) and (12.) that, even for the case where it is 
assumed that Rmt and Xt have a joint multivariate normal distribution, the exact 
closed form expression for the unconditional distribution of Rt is complicated1. 
Estimation of the parameters of the model at (11.) and (12.) is however 
straightforward. If the terms involving Λ1,2 are ignored, the other model 
parameters may be estimated by OLS. Otherwise they may be estimated using 
weighted least squares iteratively.  
 
To summarise: the time varying betas model may be used in conjunction with 
standard assumptions about the distribution of the return on the market portfolio 
and explanatory factors to generate a model which will capture skewness and 
kurtosis in returns, as well as time series properties of returns. The model, which 
is defined at equations (3.) or (5.), may nonetheless be estimated using standard 

                                                           
1 Under the assumptions made in this section, the unconditional distribution of Rt is that of a non-
central quadratic form in normal variables, see for example Johnson and Kotz (1970, Ch. 29). 
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methods. As shown at equations (11.) and (12.), the market-timing model of 
Treynor and Mazuy (1966) arises as a by-product. From an empirical perspective 
it is easy to generalise the models described in this section, for example by 
assuming that the residuals follow a different distribution from the normal, or by 
specifying a different functional form, for the joint distribution of Rmt and Xt.  
 
5.   Empirical Study 
 
As described in the introduction, this paper is motivated by the increasing 
application of models with time varying alphas and betas to fund performance 
evaluation. The implication of the results reported in section 4 is that a correctly 
specified model will result in estimated residuals that satisfy the standard 
diagnostic tests used in time series regression. Similarly, a model that is 
incorrectly specified will result in estimated residuals that fail to satisfy the 
standard assumptions. As also noted in the introduction, a set of estimated 
residuals that satisfies the OLS assumptions implies that the predetermined 
information variables and precise functional form of the time varying betas model 
has the ability to capture the properties of the variation in returns. The overall aim 
of the empirical study that follows is therefore to examine the residuals from the 
models for bond fund performance reported in Silva et al. (2003) and to establish 
to what extent these models are able to capture non-normality in the unconditional 
distributions of bond fund returns.  
 
5.1 The data 
 
The same database is used as in Silva et al. (2003). This consists of 638 bond 
funds from Italy (58), Spain (157), France (266), Germany (90), UK (45) and 
Portugal (22). These markets represented around 76.5% of the European bond 
fund market (excluding Luxembourg), as of December 2000. 
 
Monthly data, in local currency, was obtained from Datastream, Micropal and 
APFIN2 for bond funds investing mainly in the domestic market and/or in the 
European market over the period February 1994 to December 20003.  
 
All fund returns are monthly continuously compounded returns, with income 
distributions reinvested, and in local currency. These returns are net of 
management expenses but not of load charges. In order to obtain excess returns, 
the risk free rate, proxied by the 3-month Interbank offered rate, is subtracted 
from this return. The analysis reported in Silva et al. (2003) is based on 
consideration of the 638 individual bond funds and on equally weighted portfolios 
formed from the individual funds for each country. 
 
Table 1 presents the summary statistics and main characteristics of the European 
bond fund sample, based on the equally weighted portfolios described above. The 
average size and management fees as well as the average of monthly excess 
returns, its standard deviation, skewness, kurtosis, and the probability of the Bera 
                                                           
2 APFIN is the Portuguese association of mutual fund companies. 
3 For Portugal a shorter period (January 1995-December 2000) is considered due to the 
availability of the index used as benchmark 
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Jarque test are shown. The average bond fund size is highest in Italy and much 
lower in the other countries. Management fees range from approximately 0.5% 
annually (Portugal and Germany) to approximately 1.4% (Spain). For most 
countries, bond funds present negative mean excess returns. The few cases 
presenting positive mean excess returns (Germany and France) did not turn out to 
be statistically significant. Volatility of monthly excess returns is highest for UK 
bond funds. According to the Bera Jarque test statistic, the hypothesis of a normal 
distribution is rejected (at the 5% level) for the equally weighted portfolio of bond 
funds for UK, Spain and Italy.  

 
Insert Table 1 here 

 
Although not reported in this paper, the summary statistics for each individual 
fund were also computed. Relatively to the distribution of returns, the results have 
shown that for a large number of funds we do not reject (at the 5% level) the 
hypothesis of a normal distribution (372 funds, which represent 58% of our 
sample). This is particularly evident for German and French bond funds, while in 
the other countries the rejection of this hypothesis is more frequent. This is 
consistent with the results obtained for the equally weighted portfolio of funds. It 
is commonly advocated that, given the dynamics of the term structure of interest 
rates and their finite life, bonds often exhibit non-normal and auto-correlated 
returns. However, this does not seem to be an obvious problem for the sample 
used in the study. 
 
Both unconditional and conditional models (as described in equations 1., 3. and 
5.) are used as the return generating process. For both cases, SI and MI versions 
are considered. The Salomon Smith Barney WGBI all maturities for each country 
is used as the benchmark for the SI model. For the MI model, in addition to this 
market index, the excess return on a stock market index (the MSCI stock index for 
each country)4 and a default spread (calculated as the difference between the 
MSCI Euro Credit Index BBB rated and the MSCI Euro Credit Index AAA 
rated)5 are included. The correlations between these indices in each country are 
low, suggesting that multicollinearity should not be a problem. Table 2 presents 
the summary statistics on these market indices. 

 
Insert Table 2 here 

 
For the series corresponding to the Default spread (Def), the hypothesis of a 
normal distribution is rejected. In the case of UK and Spain, normality is also 
rejected for the other two market indices. Furthermore, the first-order auto-
correlation coefficients are relatively small. 
 

                                                           
4 The excess return on the stock index is included as it can be viewed as a measure of expectations 
about general economic conditions (see Elton et al., 1995, Cornell and Green, 1991) and also 
because some of the funds can hold a small percentage of stocks. 
5 The default spread is a measure of the default risk that may affect corporate bond returns. As we 
do not have information on local spreads (for most European countries the corporate bond market 
is still a market with a low degree of liquidity) we used a spread for the aggregate Euro zone.  
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The variables used as conditioning information were the term spread, inverse 
relative wealth (IRW) and a dummy variable for the month of January (jd). 
Previous research has motivated the choice of these variables (Ilmanen, 1995, 
Silva et al., 2003). The term spread is the difference between the yield on a long-
term government bond and a short-term bond rate (or the 3-month Interbank 
offered rate). The yield on a 10-year Government bond (or approximately), 
obtained from the Central Banks6, is used as the long-term bond yield. IRW is the 
ratio between the exponentially weighted average of past real wealth and current 
wealth. The MSCI stock indices for each country (obtained from Datastream) 
deflated by the Consumer Price Index (obtained from the International Monetary 
Fund) were used to measure real wealth. All these variables are stochastically 
detrended (by subtracting a 12-month moving average)7 and mean zero variables. 
The summary statistics on these variables are presented in table 3. 
 

Insert Table 3 here 
 

Similarly to what were observed for the market indices excess returns, there is 
evidence that the predetermined information variables do not always follow a 
normal distribution. Furthermore, although the series have been stochastically 
detrended in order to reduce the problem of persistent series, they still exhibit 
quite high first-order auto-correlation coefficients (although slightly lower than 
the ones obtained considering the original series of the variables). 
 
The two conditional models are estimated with the alpha restricted to be constant 
and with alpha allowed to be time varying. 
 

 
5.2 Results 
 
The models are estimated both in aggregate terms, considering the equally 
weighted portfolio of funds for each country, and for each individual fund. Table 
4 summarises the results of bond fund performance on the basis of unconditional 
models (both SI and MI benchmarks). The analysis of this table shows that, when 
the unconditional SI model is used, the equally weighted portfolios of funds, in 
general, present negative alphas, being more significant in Italy, Spain and 
Portugal. For the UK and Germany, several funds have positive alphas, although 
not statistically significant. In the case of Germany only 8 out of 90 funds present 
statistically significant negative alphas, at the 5% level.  

 
Insert Table 4 here 

 
                                                           
6 This is the most commonly used maturity for representing a long-term bond yield. For Portugal 
we used the yield on Treasury bonds with remaining maturity between 108 and 126 months; for 
Spain, the yield on a 10-year government bond; for Italy, the yield on the 10-year BTP (Buoni 
Poliennali del Tesoro); for France, the ”taux de l`emprunt phare a 10 ans”; for Germany, the yield 
on listed Federal securities with a residual maturity of 9-10 years (only bonds eligible as 
underlying instruments for futures contracts are included) and for UK, the yield on a 10-year 
Government bond. 
7 This procedure was used in order to reduce the problem of spurious regression, a problem that 
may be found when persistent regressors are used (see Ferson et al., 2003a, 2003b). 
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It can also be observed that the index used, the Salomon Smith Barney WGBI for 
all maturities for each country, in general explains a large percentage of bond 
fund excess returns.8  
 
In relation to the unconditional MI model, the inclusion of the two additional 
factors adds some explanatory power. The stock index is an important factor, 
mainly for Germany and UK. The default spread is also significant, particularly 
for Germany and France. For a large number of funds (at the 5% level) the null 
hypothesis that the coefficients of the two factors are equal to zero is rejected. 
Furthermore, the alphas of the funds, in general, decrease comparatively to those 
of the unconditional SI model. This outcome is consistent with the findings of 
Elton et al. (1993) in relation to the Ippolito (1989) study and with other studies 
on stock fund performance and reinforces the argument that SI models might 
overestimate fund performance.  
 
Estimated values of the conditional models (as described in equation 3.) are 
computed both for the case where alpha is restricted to be constant (CSI and CMI) 
and for the case where alpha is time-varying (ACSI and ACMI).  
 
Table 5 presents the estimates for the CSI and CMI models. In general, the sign of 
the estimated alphas does not change much when time-varying betas are allowed. 
The inclusion of the predetermined information variables seems to add 
explanatory power to the model. Although the R2 (adj.) of the portfolios of funds 
remain similar, or even decreases slightly, at the individual fund level and for both 
models (SI and MI), the hypothesis that the additional coefficients are jointly 
equal to zero (at the 5% level) is rejected for a large number of funds. For the 
CMI model this is observed for 446 bond funds, representing approximately 70% 
of the funds (39 German funds, 177 French funds, 35 UK funds, 133 Spanish 
funds, 47 Italian funds and 15 Portuguese funds). In the case of the CSI model, the 
null hypothesis is rejected for 260 funds (41% of the funds). 
 
 

Insert table 5 here 
 
Estimates of ACSI and ACMI, presented in Table 6, show that when alphas are 
not restricted to be constant, estimates of fund performance are similar. The 
hypothesis that the additional coefficients of time-varying betas and time-varying 
alphas are jointly equal to zero (at the 5% level) is rejected for a large number of 
funds. For the ACMI this is observed for 529 bond funds, representing 
approximately 83% of the funds. In the case of the ACSI, the null hypothesis is 
rejected for 338 funds (53% of the funds).  

 
Insert table 6 here 

 

                                                           
8 This is particularly the case of categories of funds that include mainly Government bonds. 
Although not reported in this paper, the bond funds in each country are grouped into different 
categories according to the type of bonds held by the funds (for more detail see Silva et al., 2003).  
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These results can be interpreted as evidence of time-varying betas and alphas, 
which seem to be stronger for the ACMI model. Table 7 shows, in more detail, the 
estimates for the slope coefficients of the conditional beta function.  
 

Insert Table 7 here 
 
The analysis of the sign of the estimates for the conditional alpha function, 
resulting from equation (3.) provides insights relatively to the issue of time-
varying alphas. The results (not reported in this paper) show that there is a 
relationship between the predetermined information variables and bond fund 
performance for both the ACSI and ACMI models. In the latter case, for 348 
funds (representing approximately 55% of the sample) the null hypothesis that the 
coefficients on the lagged information variables are jointly equal to zero is 
rejected. 
 
5.4 The Treynor and Mazuy Model 
 
Previous studies that have applied the Treynor and Mazuy (1966) model in an 
unconditional framework have found more evidence of negative than positive 
timing ability. Considering the analysis of naïve strategies, Ferson and Schadt 
(1996) concluded that this model is not well-specified and that its conditional 
version can control for this misspecification. Their results show that the evidence 
of negative timing disappears when a conditional timing model is used. Other 
studies (e.g.: Becker et al., 1999, Sawicki and Ong, 2000, Gallagher and Jarnecic, 
2002) also document this phenomenon. 
 
This issue is explored by applying three versions of the Treynor and Mazuy 
model: the original model (TM), the Ferson and Schadt conditional timing model 
(CTM) and the extended timing model considering time-varying alphas (ACTM). 
The results are presented in table 8.    
 

Insert Table 8 here 
 
As can be observed, the results are very similar whatever timing model is used. 
Unlike Ferson and Schadt (1996), introducing the conditioning information 
variables does not impact estimates of timing. Timing coefficients for the equally 
weighted portfolios of funds are, in general, negative for all European countries. 
The exception is for Portuguese and Spanish bond funds (in the latter case this is 
only observed in the context of the extended conditional timing model). 
Considering the individual fund estimates, only a very small number of bond 
funds present statistically significant timing coefficients. It should be noted, 
however, that the number of statistically negative coefficients is higher for Italy 
and to a less extent for Germany and UK. For Spanish and French bond funds the 
number of statistically significant positive and negative timing coefficients is 
balanced. The only market in which there is more evidence of positive than 
negative timing is Portugal. 
 
5.4 Analysis of the Residuals 
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The implication of the results summarised above, is that there is evidence of time 
variation in both alpha and beta for many bond funds. The unconditional 
distribution of returns of such funds may therefore be expected to exhibit 
skewness or kurtosis or both. As noted in section 4, if the models defined at (3.) 
and (5.) accurately describe the dynamics in alpha and beta, then it may be 
expected that the estimated residuals will satisfy the standard diagnostic tests.  
 
This section therefore reports an analysis of the fitted residuals for all the 638 
funds as shown in table 9. For each fund, the 9 models (SI, MI, CSI, CMI, ACSI, 
ACMI and the three versions of the Treynor and Mazuy model) are considered. 
For each of the time series of fitted residuals, two standard diagnostic test 
statistics are computed. These are the Bera Jarque test of normality and the Ljung-
Box test for auto-correlation. The Bera-Jarque test is disaggregated into its two 
components, each of which has a Chi-squared distribution with one degree of 
freedom under the null hypothesis that the residuals are IID normal.  
 
In order to test the heterogeneity of variance, a GARCH(1,1) model is fitted to the 
residuals. In this paper, the GARCH(1,1) model is fitted subject to the restriction 
that all parameters in the conditional variance equation are non-negative. The null 
hypothesis that the residuals are IID normal with constant variance is then tested 
using a likelihood ratio test with two degrees of freedom.  
 

Insert Table 9 here 
 
The first panel of table 9 shows the percentage of funds in each country for which 
the skewness component of the Bera Jarque test is significant at the 1% level. The 
first column reports the results for the SI model, with corresponding results for the 
other eight models being shown in the subsequent columns. As the results for the 
SI column indicate, skewness is not a very common phenomenon in the estimated 
residuals. Furthermore, as the results corresponding to all six conditional models 
show, the predetermined information variables that are used to model time 
variation in alpha and beta also account for much for the residual skewness in the 
SI model. In particular, the conditional models with time varying alphas account 
for skewness in better than two out of three funds in five out of six countries. The 
first panel of the tables also shows that the percentages recorded for the three 
versions of Treynor-Mazuy market timing model are similar to the corresponding 
models from which the quadratic term in Rmt is omitted. Indeed, this applies to 
each panel in table 9, leading to the conclusion that, for this data set at least, the 
inclusion of a quadratic term does not improve a model’s explanatory power. 
 
Panel (ii) of table 9 shows the same results for the kurtosis component of the Bera 
Jarque test. The results in panel (ii) indicate that the conditional models are less 
successful at removing the effects of fat tails. The implication is that the 
parameter estimates for some funds are unbiased but may not be BLUE 
estimators. Reconsideration of some of the conditional models using a different 
probability distribution for the residuals is a topic for future work. Panel (iii) 
reports the percentage of funds for which the overall Bera Jarque test is 
significant. This panel confirms the findings reported in section 5.1, namely that 
there is a significant number of funds for which non-normality is not an issue. 
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Panel (iv) shows the results for the Ljung-box test of auto-correlation. It is clear 
from this panel that auto-correlated residuals only affect a minority of funds, 
regardless of the model that is used.  
 
Panel (v) shows the percentages for the likelihood ratio test for a GARCH(1,1) 
model. The SI column shows that there are two countries, Italy and Spain, for 
which the SI model leaves time varying residual variances in a majority of funds. 
The ACSI and ACMI models in particular substantially reduce the incidence of 
GARCH(1,1) effects in the other four markets. Indeed, it is only in Italy that 
GARCH effects persist for a substantial number of funds after fitting the ACMI 
model. For a small number of funds, the estimated parameters of the GARCH(1,1) 
model indicated that the unconditional variance does not exist. The details of this 
analysis are omitted, but investigation of the effects of this is also a topic for 
further research. 
 
6.   Conclusions 
 
This paper draws attention to the fact that under standard assumptions the time 
varying betas model cannot capture the dynamics in beta. Using the multivariate 
normal as a model for the joint distribution of returns on the market portfolio and 
the predetermined information variables, it is shown how to capture skewness and 
kurtosis in the unconditional distributions of asset returns. It is also shown that the 
predetermined information variables have the potential to account for the time 
series properties of returns, including heterogeneity of variance. The model may 
be extended empirically by using different distributions for the residual returns. It 
may be extended theoretically by considering other members of the elliptically 
symmetric class of distributions. 
 
The empirical study applies the model to returns on European bond funds. An 
analysis of the residuals from fitting several versions of the time varying betas 
models shows that such models are able both to capture the dynamics of alpha and 
beta and account for other features of the time series of returns for a significant 
number of European bond funds. There are, however, a number of funds for 
which further refinements of the model specifications are required.  
 
Appendix A - The multivariate normal distribution 
 
Consider an (n+p+1) vector Y which is partitioned as: 
 

 







=

X~
R

Y , 

 
where R is an n vector which denotes the return on all assets and X~ is a vector of 
length p+1 defined as: 
 

 







=

X
R

X~ m . 
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The time subscript is omitted. The vector of expected values and the variance-
covariance matrix are similarly partitioned as: 
 

 







µ
µ

=µ
X~

R
Y , 

 
and 
 

 







ΣΣ
ΣΣ

=Σ
X~X~

T
X~R

X~RRR . 

 
It is assumed that Σ , RRΣ and X~X~Σ are all of full rank. If the vector Y has a 
multivariate normal distribution, the conditional distribution of R given that 

x~X~ = is also multivariate normal with expected value: 
 
 ( ) ( )X~RX~

1
X~X~X~RRX~|R x~x~ µ−Β+µ=µ−ΣΣ+µ=µ − , say,  

  
and variance-covariance matrix: 
 
 T

X~X~RR
T

X~R
1
X~X~X~RRRX~|R BΒΣ−Σ=ΣΣΣ−Σ=Σ −   

 
For further details, see Anderson (1958, p. 29).   
 
Appendix B – conditional distribution of Rt given rmt 
 
On applying the results in appendix A and using the notation of section 4, the 
conditional expected value of Rt given rmt is: 
 
 [ ] ( )

mr|Xmt
T
1

T
1mt00mtt rrr|RE µγ+φ+γ+φ= . 

 
This may be written as: 
 
 [ ] 2

mt2mt10mtt r~r~r|RE ψ+ψ+ψ= , 
 
where the constants ψ0,1,2 are defined as: 
 

 

( )

( )

m
T
12

m
T
1m

T
1X

T
101

X
T
1m

T
1m000

λγ=ψ

λγµ+φ+µγ+γ=ψ

µγµ+φ+µγ+φ=ψ

. 

  
The conditional variance is 
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 [ ] ( ) ( )1mt1r|X

T
1mt1

22
mt

2
mtt rrrr|RV

m
γ+φΣγ+φ+σ+σ= ςω  

 
This may be written as: 
 
 [ ] 2

mt2
2

mt10mtt r~r~2r|RV Λ+Λ+Λ= ς ,  

 
where the constants Λ0,1,2 are defined as: 
 
 

 

( ) ( )

( )
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1

2
2

1r|X
T

1m11
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1m1
2

0

m

m
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Table 1 – Summary statistics for equally weighted portfolios of bond funds 
Summary statistics based on equally weighted portfolios of all bond funds are presented for each 
country. Average size in million Euros and management fees in annual percentage of assets 
invested as of 31/12/00. Mean excess returns (considering monthly continuously compounded 
returns), standard deviation, skewness, kurtosis and the probability of the Bera Jarque test are 
reported for the period February 1994 to December 2000 (January 2005 to December 2000 in the 
case of Portugal). 

Nº. of Average Size Management Mean Excess Standard Skewness Kurtosis JB prob.
Funds (Millions Euro) Fees (annual %) Return (Monthly %) Deviation

Germany 90 284 0.46 0.115 0.831 -0.506 2.540 0.118

France (1) 266 128 1.01 0.030 0.783 -0.375 2.452 0.224

UK 45 236 0.95 -0.019 1.437 -0.738 3.977 0.004

Spain 157 96 1.39 -0.101 ** 0.454 -0.421 4.059 0.042

Italy (2) 58 990 0.98 -0.129 ** 0.586 -0.916 4.749 0.000

Portugal 22 159 0.53 -0.074 *** 0.194 -0.214 2.301 0.365
All Sample 638  

*** Statistically significant at 1%  ** Statistically significant at 5%   * Statistically 
significant at 10% 

(1) The average size for France includes mainly French SICAVs as we could not obtain the information on the majority of 
the French FCPs that compose our sample. 
(2) The management fees are average fees for the categories of Italian funds as reported by Assogestioni, the Italian 
association of mutual fund companies.  
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Table 2 – Summary statistics on the market indices  
Summary statistics on the market indices for the period February 1994 to December 2000 (January 2005 to 
December 2000 in the case of Portugal) are reported. Bindex refers to the Salomon Smith Barney WGBI for 
all maturities, Sindex refers to the MSCI stock index and Def correspond to the default spread (measured by 
the difference between the monthly continuously compounded excess return on the MSCI Euro Credit Index 
BBB rated and the monthly continuously compounded excess return on the MSCI Euro Credit Index AAA 
rated). The reported statistics are mean excess returns (considering monthly continuously compounded 
returns), standard deviation, skewness, kurtosis, the probability of the Bera Jarque test and the first-order 
auto-correlation coefficient (AC1). 

Mean Standard 
Deviation  Skewness  Kurtosis BJ prob. AC1

Germany
    Bindex 0.176 0.930 -0.497 2.779 0.167 0.119
    Sindex 0.943 5.800 -0.507 4.157 0.017 -0.077
    Def 0.071 0.495 -0.546 5.071 0.000 0.131
UK
    Bindex 0.122 1.504 -0.697 3.649 0.017 0.080
    Sindex 0.360 3.781 -0.728 3.602 0.014 -0.034
    Def 0.071 0.495 -0.546 5.071 0.000 0.131
France
    Bindex 0.162 1.155 -0.377 2.426 0.211 0.149
    Sindex 0.963 5.482 -0.407 2.851 0.306 0.014
    Def 0.071 0.495 -0.546 5.071 0.000 0.131
Spain
    Bindex 0.203 1.224 -0.469 3.922 0.050 0.179
    Sindex 0.967 6.364 -0.755 5.551 0.000 0.093
    Def 0.071 0.495 -0.546 5.071 0.000 0.131
Italy
    Bindex 0.192 1.191 -0.084 2.991 0.952 0.183
    Sindex 0.753 6.804 0.322 2.713 0.423 -0.117
    Def 0.071 0.495 -0.546 5.071 0.000 0.131
Portugal
    Bindex 0.368 0.910 -0.370 3.378 0.356 0.282
    Sindex 0.982 6.093 -0.133 3.409 0.700 0.063
    Def 0.066 0.481 -0.918 5.551 0.000 0.131  
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Table 3 – Summary statistics on the predetermined information variables  
Summary statistics on the predetermined information variables for the period January 1994 to November 
2000 (December 1994 to November 2000 in the case of Portugal) are reported. Term Spread is the difference 
between the yield on a long-term government bond and a short-term bond rate (or the 3-month Interbank 
offered rate). IRW is the ratio between the exponentially weighted average of past real wealth and current 
wealth. These variables are stochastically detrended (by subtracting a 12-month moving average) and mean 
zero variables. The reported statistics are mean, standard deviation, skewness, kurtosis, the probability of the 
Bera Jarque test and the first-order auto-correlation coefficient (AC1). 

Mean Standard 
Deviation  Skewness  Kurtosis BJ prob. AC1

Germany
    Term Spread 0.000 0.801 0.414 2.417 0.170 0.937
    IRW 0.000 0.079 0.154 2.976 0.847 0.724
UK
    Term Spread 0.000 0.926 0.585 2.504 0.061 0.929
    IRW 0.000 0.053 0.739 3.379 0.018 0.711
France
    Term Spread 0.000 1.019 0.094 2.450 0.557 0.915
    IRW 0.000 0.074 0.649 2.973 0.054 0.720
Spain
    Term Spread 0.000 1.082 0.739 3.111 0.022 0.933
    IRW 0.000 0.093 0.478 2.883 0.201 0.759
Italy
    Term Spread 0.000 0.905 0.451 2.215 0.084 0.910
    IRW 0.000 0.090 0.057 2.596 0.739 0.752
Portugal
    Term Spread 0.000 0.723 0.595 2.957 0.065 0.873
    IRW 0.000 0.653 0.537 3.101 0.174 0.838   
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Table 4 – Estimates for the unconditional single (SI) and multiple index (MI) models 
For each country, an equally-weighted portfolio of all bond funds is formed. This table shows the results for both the SI, with the Salomon Smith Barney WGBI for all maturities as the benchmark 
index, and the MI model. In addition to the monthly continuously compounded excess return on the WGBI for all maturities (Bindex), we consider two more factors: the monthly continuously 
compounded excess return on the MSCI stock index (Sindex) and the difference between the monthly continuously compounded excess return on the MSCI Euro Credit Index BBB rated and the 
monthly continuously compounded excess return on the MSCI Euro Credit Index AAA rated (Def). The estimates for the alphas (in percentage) and the regression coefficients with their significance 
based on heteroscedasticity and auto-correlation adjusted errors (following Newey and West, 1987), and also the R2 (adj.) for each of the equally-weighted portfolios of funds are presented. The number 
of individual funds presenting statistically significant positive, not different from zero and negative alphas, at the 5% level, is also reported (N +/0/-). The W(p-val) is the probability value for the Chi-
square statistic of the Wald test for the restriction that the coefficients for the additional factors are jointly equal to zero. The number of funds for which we reject that hypothesis, at the 5% level, are 
reported in brackets.  

Nº of
Funds α β R2(adj.) α Bindex Sindex Def R2(adj.)

Germany 90 -0.026 0.799 *** 79.7% -0.073 ** 0.809 *** 0.033 *** 0.202 *** 87.4% 0.000 [70]
N +/0/- 0/82/8 0/65/25

France 266 -0.077 *** 0.660 *** 94.6% -0.088 *** 0.657 *** 0.004 0.110 *** 95.1% 0.000 [126]
N +/0/- 0/124/142 0/96/170

UK 45 -0.127 ** 0.886 *** 85.9% -0.159 *** 0.836 *** 0.076 *** 0.151 89.9% 0.000 [12]
N +/0/- 0/23/22 0/22/23

Spain 157 -0.173 *** 0.356 *** 92.2% -0.179 *** 0.348 *** 0.004 ** 0.051 ** 92.8% 0.000 [47]
N +/0/- 0/17/140 0/10/147

Italy 58 -0.218 *** 0.465 *** 89.0% -0.217 *** 0.453 *** 0.006 -0.036 89.2% 0.113 [12]
N +/0/- 0/4/54 0/3/55

Portugal 22 -0.143 *** 0.186 *** 75.9% -0.144 *** 0.187 *** 0.002 -0.014 75.6% 0.429 [  5]
N +/0/- 0/0/22 0/0/22

All Sample 638 [272]

N +/0/- 0/250/388 0/196/442

Unconditional SI Unconditional MI
W(p-val)

 
*** Statistically significant at the 1% level ** Statistically significant at the 5% level * Statistically significant at the 10% level. 
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Table 5 – Estimates for the conditional single (CSI) and multiple index (CMI) models when alpha is constant 
For each country, an equally-weighted portfolio of all bond funds is formed. This table shows the results for both the CSI and CMI models. The predetermined information variables are the term spread 
(term), the IRW and a dummy variable for the month of January (jd). Term is the difference between the yield on a long-term government bond and a short-term bond rate (or the 3-month Interbank 
offered rate). IRW is the ratio between the exponentially weighted average of past real wealth and current wealth. These variables are stochastically detrended (by subtracting a 12-month moving 
average) and mean zero variables. The estimates for alpha (in percentage) and for the average conditional beta(s) γ0 (for the CSI model) and γ0b, γ0s, γ0Def (for the CMI model) and also the R2(adj.) 
for each of the equally-weighted portfolios of funds are presented. The statistical significance of the estimates is based on heteroscedasticity and auto-correlation adjusted errors (following Newey and 
West, 1987). The number of individual funds presenting statistically significant positive, not different from zero and negative alphas, at the 5% level, is also reported (N +/0/-). The W(p-val) is the 
probability value for the Chi-square statistic of the Wald test for the restriction that the coefficients on the additional variables (the cross products between the factors and the predetermined information 
variables) are jointly equal to zero. The number of funds for which we reject that hypothesis, at the 5% level, are reported in brackets. 

.

Nº of
Funds α β0 R2(adj.) α BIndex SIndex Def R2(adj.)

Germany 90 -0.008 0.781 *** 79.3% 0.324 [17] -0.065 0.812 *** 0.033 *** 0.200 ** 86.3% 0.263 [39]
N +/0/- alphas 2/82/6 0/76/14

France 266 -0.080 *** 0.659 *** 95.2% 0.002 [122] -0.086 *** 0.662 *** 0.003 0.098 *** 95.6% 0.087 [177]
N +/0/- alphas 0/121/145 0/113/153

UK 45 -0.081 0.869 *** 88.9% 0.000 [32] -0.120 ** 0.820 *** 0.069 *** 0.147 91.2% 0.000 [35]
N +/0/- alphas 0/26/19 0/28/17

Spain 157 -0.175 *** 0.352 *** 92.6% 0.016 [64] -0.182 *** 0.352 *** 0.003 0.055 ** 92.9% 0.000 [133]
N +/0/- alphas 0/9/148 0/7/150

Italy 58 -0.210 *** 0.465 *** 89.1% 0.419 [12] -0.204 *** 0.445 *** 0.005 0.015 89.5% 0.000 [47]
N +/0/- alphas 0/3/55 0/2/56

Portugal 22 -0.144 *** 0.181 *** 78.7% 0.000 [13] -0.143 *** 0.185 *** 0.001 -0.005 76.8% 0.001 [15]
N +/0/- alphas 0/1/21 0/1/21

All Sample 638 [260] [446]

N +/0/- alphas 2/242/394 0/227/411

CSI CMI
W(p-val) W(p-val)

 
*** Statistically significant at the 1% level ** Statistically significant at the 5% level * Statistically significant at the 10% level. 
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Table 6 – Estimates for the conditional single (ACSI) and multiple index (ACMI) models  
For each country, an equally-weighted portfolio of all bond funds is formed. This table shows the results for both the ACSI and ACMI models. The predetermined information variables are the term 
spread (term), the IRW and a dummy variable for the month of January (jd). Term is the difference between the yield on a long-term government bond and a short-term bond rate (or the 3-month 
Interbank offered rate). IRW is the ratio between the exponentially weighted average of past real wealth and current wealth. All these variables are stochastically detrended (by subtracting a 12-month 
moving average) and mean zero variables. The estimates for the average conditional alpha φ0 (in percentage) and for the average conditional beta(s) γ0 (for the conditional single-index model) and 
γ0b, γ0s, γ0Def (for the conditional multi-index model) and also the R2(adj.) for each of the equally-weighted portfolios of funds are presented. The statistical significance of the estimates is based on 
heteroscedasticity and auto-correlation adjusted errors (following Newey and West, 1987). The number of individual funds presenting statistically significant positive, not different from zero and 
negative alphas, at the 5% level, is also reported (N +/0/-). The W(p-val) is the probability value for the Chi-square statistic of the Wald test for the restriction that the coefficients on the additional 
variables (the cross products between the factors and the predetermined information variables) are jointly equal to zero. The number of funds for which we reject that hypothesis, at the 5% level, are 
reported in brackets. 

 

Nº of
Funds Φ0 γ0 R2(adj.) Φ0 γ0b γ0s γ0Def R2(adj.)

Germany 90 0.003 0.756 *** 80.0% 0.397 [23] -0.057 0.789 *** 0.033 *** 0.223 *** 88.1% 0.000 [72]
N +/0/- alphas 3/82/5 0/76/14

France 266 -0.074 *** 0.647 *** 95.4% 0.000 184] -0.078 *** 0.642 *** 0.003 0.115 *** 96.0% 0.000 [223]
N +/0/- alphas 0/134/132 0/132/134

UK 45 -0.069 0.868 *** 89.3% 0.000 [33] -0.135 ** 0.824 *** 0.080 *** 0.157 92.1% 0.000 [41]
N +/0/- alphas 0/27/18 0/27/18

Spain 157 -0.172 *** 0.332 *** 93.9% 0.000 [75] -0.178 *** 0.331 *** 0.003 0.056 ** 94.1% 0.000 [131]
N +/0/- alphas 0/8/149 0/6/151

Italy 58 -0.207 *** 0.466 *** 88.8% 0.130 [14] -0.203 *** 0.447 *** 0.005 0.014 89.1% 0.000 [46]
N +/0/- alphas 0/3/55 0/2/56

Portugal 22 -0.139 *** 0.176 *** 77.5% 0.003 [  9] -0.143 *** 0.185 *** 0.001 -0.005 76.8% 0.001 [16]
N +/0/- alphas 0/1/21 0/1/21

All Sample 638 [338] [529]
N +/0/- alphas 3/255/380 0/244/394

ACSI ACMI
W(p-val) W(p-val)

 
*** Statistically significant at the 1% level ** Statistically significant at the 5% level * Statistically significant at the 10% level. 
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Table 7 – Estimates of conditional betas 
This table presents the coefficients’ estimates for the conditional beta function for the equally-weighted portfolios of funds and for both the SI and MI models. The predetermined variables Term, IRW 
and Jd are as defined in table 5. The conditional beta for the Bindex is designated by γ1b, γ1s identifies the conditional beta for Sindex and γ 1Def the conditional beta for the Def. Bindex, Sindex and Def 
as defined in table 2. The number of funds with positive (N+) or negative (N-) coefficients with respect to the lagged information variables are also reported, with the number of those which are 
statistically significant, at the 5% level, reported in brackets. 

Nº of
Funds γ1, term γ1,irw γ1,jd γ1b, term γ1b,irw γ1b,jd γ1s, term γ1s,irw γ1s,jd γ1def, term γ1def,irw γ1def,jd

Germany 90 0.077 -0.269 0.101 0.040 -0.187 0.058 -0.003 0.011 0.003 0.102 -0.384 0.557 ***

N+ 63 50 64 57 51 58 35 38 46 78 24 71
[15] [3] [9] [14] [4] [26] [1] [3] [7] [1] [0] [51]

N- 27 40 26 33 39 32 55 52 44 12 66 19
[1] [4] [6] [3] [3] [9] [0] [1] [2] [0] [0] [4]

France 266 0.000 -0.735 ** 0.161 *** 0.014 -0.636 * 0.127 ** -0.004 -0.099 * -0.003 0.028 -0.057 0.110
N+ 125 40 230 154 43 206 85 64 114 198 109 173

[26] [0] [124] [33] [1] [60] [4] [7] [14] [21] [4] [35]
N- 141 226 36 112 223 60 181 202 152 68 157 93

[22] [79] [5] [10] [62] [11] [9] [52] [33] [2] [4] [17]
UK 45 0.027 -3.047 *** 0.203 -0.033 -1.830 *** 0.073 0.022 * -0.113 -0.023 0.167 0.976 0.629 ***

N+ 21 2 31 18 7 28 34 14 16 32 27 37
[3] [0] [8] [2] [0] [5] [9] [4] [1] [3] [1] [10]

N- 24 43 14 27 38 17 11 31 29 13 18 8
[6] [34] [1] [6] [19] [3] [1] [8] [3] [1] [1] [0]

Spain 157 0.002 -0.373 *** 0.029 0.005 -0.347 ** -0.171 -0.001 0.009 0.027 *** 0.035 * -0.228 0.196 *

N+ 84 57 89 82 56 57 57 88 105 116 67 113
[21] [5] [26] [31] [6] [9] [1] [25] [38] [22] [6] [38]

N- 73 100 68 75 101 100 100 69 52 41 90 44
[28] [32] [10] [21] [40] [36] [8] [22] [9] [2] [13] [9]

Italy 58 0.029 -0.459 0.047 0.022 -0.542 0.090 * 0.006 0.019 -0.007 0.085 1.356 ** -0.043
N+ 42 11 40 41 7 47 48 42 16 47 52 29

[8] [0] [8] [6] [0] [12] [4] [3] [4] [3] [6] [6]
N- 16 47 18 17 51 11 10 16 42 11 6 29

[1] [5] [1] [2] [7] [1] [1] [0] [13] [0] [0] [3]
Portugal 22 -0.002 -0.191 0.092 *** 0.009 0.137 0.079 ** -0.001 -0.022 ** -0.001 -0.020 0.237 0.008

N+ 13 7 14 15 8 10 7 2 14 10 16 16
[2] [4] [4] [2] [2] [4] [1] [0] [5] [1] [1] [5]

N- 9 15 8 7 14 12 15 20 8 12 6 6
[0] [5] [0] [0] [7] [2] [1] [3] [2] [1] [0] [2]

All Sample 638
N+ 348 167 468 367 172 406 266 248 311 481 295 439

[75] [12] [179] [88] [13] [116] [20] [42] [69] [51] [18] [145]
N- 290 471 170 271 466 232 372 390 327 157 343 199

[58] [159] [23] [42] [138] [62] [20] [86] [29] [6] [18] [35]

ACSI ACMI

 
*** Statistically significant at the 1% level ** Statistically significant at the 5% level * Statistically significant at the 10% level. 
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Table 8 - Estimates of Timing 

For each country, an equally-weighted portfolio of all bond funds is formed. This table shows estimates of the Treynor and Mazuy (1966) timing model, its conditional version as in Ferson and Schadt 
(1996) and the extended timing model considering time-varying alphas. The predetermined information variables are the term spread (term), the IRW and a dummy variable for the month of January 
(jd). Term is the difference between the yield on a long-term government bond and a short-term bond rate (or the 3-month Interbank offered rate). IRW is the ratio between the exponentially weighted 
average of past real wealth and current wealth. All these variables are stochastically detrended (by subtracting a 12-month moving average) and mean zero variables. The estimates for alphas (α and 
Φ0), for betas (β and γ0) and for timing coefficients (γ2) as well as the R2(adj.) for each of the equally-weighted portfolios of funds are presented. The statistical significance of the estimates is based on 
heteroscedasticity and auto-correlation adjusted errors (following Newey and West, 1987). The number of funds presenting statistically significant positive or negative timing coefficients (γ2) is 
reported in brackets (at the 5% level). The number of individual funds presenting statistically significant positive, not different from zero and negative alphas, at the 5% level, is also reported (N +/0/-).  

Nº of
Funds α β R2(adj.) α β0 R2(adj.) Φ0 γ0 R2(adj.)

Germany 90 0.006 0.795 *** -0.035 [0/3] 79.6% 0.012 0.780 *** -0.025 [1/2] 79.2% 0.012 0.756 *** -0.011 [1/1] 79.7%
N +/0/- 0/87/3 0/87/3 0/88/2

France 266 -0.072 *** 0.659 *** -0.004 [12/12] 94.5% -0.069 *** 0.659 *** -0.009 [6/14] 95.2% -0.070 *** 0.647 *** -0.003 [6/7] 95.3%
N +/0/- 0/143/123 0/150/116 0/158/108

UK 45 -0.065 0.865 *** -0.026 [1/6] 86.1% -0.070 0.865 *** -0.006 [4/9] 88.8% -0.048 0.860 *** -0.012 [3/10] 89.2%
N +/0/- 0/30/15 0/30/15 0/32/13

Spain 157 -0.172 *** 0.356 *** -0.001 [27/26] 92.1% -0.174 *** 0.352 *** -0.001 [9/30] 92.5% -0.177 *** 0.328 *** 0.006 [26/24] 93.9%
N +/0/- 0/8/149 0/8/149 0/8/149

Italy 58 -0.161 *** 0.476 *** -0.041 *** [0/29] 90.9% -0.163 *** 0.475 *** -0.040 *** [2/28] 90.7% -0.157 *** 0.479 *** -0.042 *** [1/30] 90.5%
N +/0/- 1/3/54 1/3/54 1/3/54

Portugal 22 -0.143 *** 0.186 *** 0.000 [4/1] 75.6% -0.148 *** 0.178 *** 0.005 [3/0] 78.5% -0.143 *** 0.173 *** 0.006 [4/0] 79.2%
N +/0/- 0/1/21 0/1/21 0/1/21

All Sample 638
N +/0/- 44/517/77 25/530/83 41/525/72

Conditional Treynor&Mazuy (time-varying alphas)Treynor & Mazuy Model Conditional Treynor & Mazuy
γ2 γ2γ2

 
*** Statistically significant at the 1% level ** Statistically significant at the 5% level * Statistically significant at the 10% level. 
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Table 9 - Analysis of the Estimated Residuals for 638 European Bond Funds 
The table entries are the percentage of bond funds for which the diagnostic tests in each of panels (i) through (v) are significant at the 1% level. This 
is done for each of the six European Countries covered and for each of the nine models. The abbreviations used to denote the models (SI etc.) are as 
defined in section 2. In panel (i) the numbers in parentheses for each country indicate the number of bond funds in the study for that country. The 
table entries are shown correct to the nearest whole percentage.  

 Model         
Country SI MI CSI CMI ACSI ACMI TM CTM ACTM 
          
          
(i)  Skewness component of Bera Jarque Test      
France(266) 29 33 21 22 18 17 28 20 16 
Germany(90) 47 39 39 36 30 26 40 38 27 
Italy(58) 48 50 40 40 45 38 31 24 24 
Portugal(22) 27 27 27 23 32 32 27 27 32 
Spain(157) 48 45 37 41 31 27 43 33 27 
UK(45) 20 18 18 18 18 18 13 16 16 
          
(ii)  Kurtosis component of Bera Jarque Test      
France 52 55 38 29 35 27 53 37 35 
Germany 41 40 37 40 31 29 39 34 30 
Italy 79 76 69 67 81 74 74 72 72 
Portugal 55 55 55 50 59 50 59 50 45 
Spain 66 64 62 61 55 44 62 59 52 
UK 44 44 42 29 44 29 42 36 38 
          
(iii) Bera Jarque Test         
France 52 55 38 33 32 30 54 38 33 
Germany 51 50 48 47 37 36 44 44 37 
Italy 76 74 72 67 79 74 74 71 72 
Portugal 55 55 55 55 59 50 64 50 50 
Spain 69 66 64 64 56 45 63 62 53 
UK 49 42 42 33 44 33 42 33 36 
          
(iv) Ljung Box test for serial correlation       
France 3 6 4 10 3 10 3 3 3 
Germany 10 12 9 11 8 7 10 9 6 
Italy 3 2 2 5 0 3 2 3 0 
Portugal 18 18 18 18 14 14 18 23 14 
Spain 9 8 9 9 8 6 10 11 9 
UK 7 7 16 13 13 9 9 13 16 
          
(v) Likelihood ratio test for GARCH effects       
France 40 36 29 20 27 20 39 28 26 
Germany 20 18 17 17 12 10 17 11 9 
Italy 71 71 60 50 53 50 64 57 50 
Portugal 45 45 36 18 23 9 45 41 27 
Spain 61 58 47 41 38 32 54 44 38 
UK 16 11 20 9 18 11 18 20 20 
                    
 


