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Abstract 
 

In this paper we combine parametric option pricing (Black and Scholes, 

1973, Corrado and Su, 1997, and the Dumas et al., 1998 Deterministic 

Volatility Functions) models with a nonparametric methodology. Our 

approach can be seen as a generalization of Dumas et al. and retains the 

intuition in Christoffersen and Jacobs (2004) that, in deriving implied 

parameters, optimization should be in terms of the pricing function. The 

resulting enhanced structure is compared to parametric models with both 

standard implied parameters and parameters derived via Deterministic 

Volatility Functions. Empirical results using three years of S&P 500 index 

call option prices strongly support that our approach significantly improves 

the performance of parametric option pricing models (Black and Scholes and 

Corrado and Su).     
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1. Introduction 

 

We propose a new approach in the pricing of options by combining 

nonparametric methodology with several parametric option pricing models 

(POPMs). This proposed method provides a nonparametric enhancement of 

the implied parameter values to be used in the POPMs, and the resulting 

models we call Enhanced Parametric Option Pricing Models (EPOPMs).  

 The Black and Scholes model (BS) is an options pricing formula (Black 

and Scholes, 1973, see also Merton, 1973) that is built on a set of unrealistic 

assumptions and exhibits systematic biases like the volatility smile (i.e. Black 

and Scholes, 1975, Rubinstein, 1985, Bakshi et al., 1997, Andresen, 2002). 

BS has shown severe time endurance and is still widely used by practitioners 

since it generates quite accurate prices for a wide spectrum of European 

financial options. The post-BS financial engineering research came up with a 

variety of POPMs that relax several of the BS fundamental assumptions. 

Recent POPMs that incorporate stochastic volatility and jump risk factors (e.g. 

Bakshi et al., 1997, Bates, 1991 and 1996), mitigate much of the bias 

associated with the original BS. A similar effect is achieved indirectly with the 

semi-parametric Corrado and Su (1996) model (CS), an important alternative 

due to its ease of use1. Nevertheless, none of these models has managed to 

generalize all of the BS assumptions, and provide results consistent with the 

observed market data. Important empirical option pricing studies include 

Bakshi et al. (1997), that examine the cross sectional pricing performance of 

alternative option pricing models. See also Eraker (2004), Bates (1996 and 

2000), Corrado and Su (1996 and 1997), Whaley (1982), Lehar et al. (2002) 

etc. Our EPOPMs can be considered as a generalization of studies that first 

employ some kind of methodology to estimate versions of time varying 

volatility that is subsequently used with a parametric (like the BS) model to 

price options. For instance, Dumas et al. (1998) estimate arbitrary 

Deterministic Volatility Functions of quadratic forms and examine how well 

they predict option prices. Our approach extends Dumas et al. (1998) by 

retaining the intuition in Christoffersen and Jacobs (2004) that while 

calculating implied volatilities optimizing should be in respect to the option 

pricing function. Besides the fact that many complex parametric models seem 
                                                 
1 Backus et al. (1997) conjecture that the CS formula exhibits good performance for pricing 
options when the underlying asset follows a jump-diffusion process (see also Jurczenko et al., 
1997). 
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to perform better than BS2 they are often too complex to implement, have poor 

out-of-sample pricing and hedging performance and have implausible and 

sometimes inconsistent implied parameters (i.e. Bakshi et al., 1997).  

 Researchers have also addressed attention to the use of market-data 

driven models such as ANNs that can be used for nonlinear regression. The 

key power provided by ANNs compared to other statistical techniques (like 

projection pursuit, generalized additive models, multivariate adaptive 

regression splines) is that they rely on fairly simple algorithms and the 

underlying form of the nonlinearity can be learned from training data. The 

models are very powerful, have nice theoretical properties (with respect to 

convergence), and apply well to a vast array of real-world applications (see 

Duda et al., 2001, for further details). Attempts in pricing options with ANNs 

have shown that these models are promising alternatives in respect to robust 

pricing accuracy. Contrary to the parametric option pricing models that rely 

on specific assumptions about the dynamic evolution of some state variables 

(like the underlying asset, the volatility, the interest rate, etc), ANNs involve no 

financial theory since option prices are estimated inductively by using options 

transactions data. ANNs are used to estimate directly the empirical options 

pricing function (thereinafter termed as the standard ANN approach). 

Evidence concerning the out-of-sample pricing performance is mixed. 

Hutchison et al. (1994) apply ANNs on market transactions of the S&P 500 

futures call options from 1987 to 1991 to conclude that although the learning 

networks do not constitute a substitute for the more traditional BS formulas, 

they are more accurate and computationally more efficient alternatives when 

the underlying asset’s price dynamics are unknown. Anders et al. (1998) as 

well as Garcia and Gencay (2000), find that the BS with historical volatility 

underperforms significantly the standard ANNs. Of course, the application of 

ANNs for pricing of options has also its limitations. First of all, Anders and 

Korn (1999) indicate that neural networks are usually applied in cases where 

there is lack of knowledge about an adequate functional form; so they are 

commonly interpreted as “black boxes” since they learn the empirical 

functions inductively from transactions data without embedding any 

                                                 
2 Although the post-BS option-pricing models have managed to eliminate some of the BS 
biases in practice are very difficult to be implemented due to their complexity. According to 
Andersen et al., (2002), “the option pricing formula associated with the Black and Scholes 
diffusion is routinely used to price European options, although it is known to produce systematic 
biases”. 
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information related to the problem under scrutiny. Second, in the absence of 

any kind of prior information about the problem, ANNs need relative large 

amounts of training data to ensure an adequate accuracy. As supported by 

Lajbcygier (2004), the standard ANNs are very sensitive to the nonstationarity 

of input variables and this problem is exaggerated with the use of large 

training-validation-testing datasets. Finally, the use of standard ANNs can 

deliver options prices that violate fundamental financial principles; for 

instance they can return negative option values or irrational Greek letters 

(these are the partial derivatives of the option with respect to a parametric 

model’s structural parameters). Herrmann and Narr (1997) also show that 

standard ANNs return negative implied state price densities in state regions 

that available training options data do not contain any information about 

these regions. 

 The above discussion demonstrates that we should explore structures 

that are theoretically consistent with the POPMs. The scope of this paper is to 

provide a nonparametric enhancement of the implied parameter values used 

in the POPMs. We thus generalize Dumas et al. (1998) (see also Christoffersen 

and Jacobs, 2004) Deterministic Volatility Functions (DVF) by using 

Neuromodeling (ANN) techniques. The DVF approach and our Generalized 

approach makes an imperfect (parametric) model fit a better one (in this case 

the market). This methodological framework is conceptually similar to the one 

developed in Electrical Engineering (see Bandler et al., 1999; and the Space 

Mapping techniques in Bandler et al., 1994) where the parameter values to an 

imperfect model are adjusted so as to make the imperfect model approximate 

the performance of a finer but more expensive one to use. In our case, the 

nonparametric parameter enhancement will provide the volatility to the BS 

model, and the parameters to the CS model. 

A significant feature of the methodology is that it allows a set of the 

input variables to the parametric model to be jointly determined by a neural 

network. Such structures in conjunction with the Black and Scholes model 

are desirable for a variety of reasons. First, they always return arbitrage-free 

and nonnegative option values and we thus expect them to exhibit satisfactory 

pricing performance at the boundary of option pricing areas, in both dense 

and sparse input areas. Similarly, it is also certain that EPOPMs will deliver 

theory consistent Greek letters. Second, the proposed approach assures 

nonnegative implied state price densities in all cases. Third, as conjectured by 
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Wang and Zhang (1997), knowledge enhanced ANN structures should not 

need large amount of training samples to exhibit a satisfactory performance in 

out of sample testing as opposed to the case of standard ANNs. In the case the 

Corrado and Su (or any other) model is used, the first two reasons are true to 

the extent the theoretical model possesses the relevant properties. 

The data for this research come from two dominant world markets, the 

New York Stock Exchange (NYSE) for S&P 500 and the Chicago Board of 

Options Exchange (CBOE) for call option contracts, spanning a period from 

January 2002 to August 2004. Compared to previous literature in empirical 

options pricing, we examine more explanatory variables including historical 

and implied ones. Also, instead of constant maturity risk-free interest rate, we 

use nonlinear interpolation for extracting a continuous risk-free interest rate 

according to each option’s time to maturity.   

In this study we build EPOPMs for the BS and the CS model. We 

compare them with their parametric alternatives using the overall average 

implied parameters and their DVF versions (which we also extend to the CS 

model). Moreover, as a benchmark model we include the stochastic volatility 

and jump model of Bates (1996) since it is an effective remedy to the BS 

biases (see Bakshi et al., 1997, and Bates, 1996). In the following section we 

review the parametric models and in the next we explain the implementation 

of the EPOPM structure. We then discuss the data, filtering and the 

alternative versions of the models that are compared. Finally we discuss the 

results and we conclude. It can be seen that the proposed methodology 

improves significantly pricing performance of parametric option pricing 

models.    

 

 

2. The Parametric Models Used 

 

Below we briefly discuss the different POPMs we employ in this study. 

The first model examined is the Black and Scholes (1973) since is a 

benchmark and widely referenced model. The Black Scholes formula for 

European call options modified for dividend-paying underlying asset is: 

 

)()( TdNXedNSec rTTydBS σ−−= −        (1) 
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where, 

Τ

++
=

σ

σ 2/)()()/ln( 2TTdrXS
d y-

  (1.a) 

 

≡BSc premium paid for the European call option; ≡S spot price of the underlying 

asset; ≡X exercise price of the option; ≡r continuously compounded risk free 

interest rate; ≡yd continuous dividend yield paid by the underlying asset; 

≡Τ time left until the option expiration date; ≡2σ yearly variance rate of return 

for the underlying asset; ≡(.)N the standard normal cumulative  distribution . 

 The need to include in the analysis another POPM is necessitated by 

the smile behavior of the BS implied volatility for various moneyness (the ratio 

of the underlying asset to strike price) and time to maturity levels. (see Bakshi 

et al., 1997). So, we use in addition the Corrado and Su (1996) model, and we 

include as a benchmark the Stochastic Volatility and Jump model of Bates 

(1996). 

 The Corrado and Su model (CS) constitutes an extension of the BS 

model that accounts for additional skewness and kurtosis in stock returns in 

a heuristic manner. Corrado and Su, based their extension on a methodology 

employed earlier in 1982 by Jarrow and Rudd. Using a Gram-Charlier series 

expansion of a normal density function they defined their model as (see also 

the correction in Brown and Robinson, 2002):  

 

4433 )3( QQcc BSCS −++= µµ   (2) 

 

where cBS is the BS value for the European call option adjusted for dividends 

and, 

))()()2((
!3

1 2
3 dTdndTTSeQ Tyd

Ν+−=
− σσσ  (2.a) 

))()())(31((
!4

1 2/332
4 dNTdnTdTdTSeQ Tyd σσσσ +−−−=

−   (2.b) 

 

Q3 and Q4 represent the marginal effect of non-normal skewness and kurtosis, 

respectively in the option price whereas 3µ  and 4µ  correspond to coefficients 

of skewness and kurtosis. In the above expressions,  
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)/zexp()z(n 2
2
1 2−=
π

 (2.c) 

 

refers to the standard normal probability density function.  

 

 Bakshi et al. (1997) found that the Stochastic Volatility and Jump 

model (SVJ) exhibited satisfactory out of sample performance for the S&P 

500 index options when compared to other parametric option pricing models 

since it offers a quite flexible distributional structure to mitigate the “smile” 

anomaly. Specifically the correlation between the volatility and the returns of 

the underlying asset controls the level of skewness whilst the variability of 

volatility allows for non-normal kurtosis. Moreover, the addition of a jump 

component enhances the distributional flexibility and allows for more 

accurate pricing performance of the short term options. In this model the 

underlying asset follows geometric jump diffusion with the instantaneous 

conditional variance, Vt, to follow a mean-reverting root process: 

 

dqdZVdt
S

dS κκλµ ++−= )(   

vv dZVdtVdV σβα +−= )(  

with 

dtdZdZ v ρ=),cov( ,  

),5.0)1(ln(~)1ln( 22 θθκκ −++ N ,  

dtdqprob λ== )1(  

 

where µ is the instantaneous drift of the underlying asset, λ  is the annual 

frequency of jumps, κ is the random percentage jump conditional on a jump 

occurring, q is a Poison counter with intensity λ , θ2 is the jump variance, 

and ρ is the correlation coefficient between the volatility shocks and the 

underlying asset movements. Moreover, α/β translate to a variance steady-

state level and β is the rate of mean reversion.  

The value of a European call option is given as a function of state 

variables and parameters: 
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with Τ−
==

)()( ydr
T SeSEF  to be the forward price of the underlying asset, 

with E(.) to be the expectation with respect to the risk-neutral probability 

measure and ST the price of S at option’s maturity. Evaluation of P1 and P2 is 

done under the distributional assumptions embedded in the risk-neutral 

probability measures by using the moment generating functions of  

)S/Sln( T   (Bates, 1996). The following expressions are needed to compute 

P1 and P2: 
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and the resulting probabilities are derived by the numerical Fourier 

inversion: 
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with )S/Xln(≡χ  and the integrals to be evaluated with an adaptive Lobatto 

quadrature.  

In this work, we fit the POPMs in daily prices to obtain the implied 

parameters that minimize an error measure, so these parameters should be 

perceived as the risk-neutral ones indirectly accounting for the pricing of 

jump and volatility risk. 
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Extending the Deterministic Volatility Functions 

 

 As mentioned before, the EPOPMs can be thought of as 

nonparametric/nonlinear generalizations of the Deterministic Volatility 

Function methodology proposed by Dumas, Fleming and Whaley (1998) and 

Christoffersen and Jacobs (2004). According to the Dumas et al. (1998), this 

ad-hoc approach of smoothing the BS implied volatilities across strike prices 

and maturities exhibits superior in and out of the sample performance for 

pricing European options. According to Christoffersen and Jacobs (2004) the 

DVF approach does not constitute a proper and fully specified alternative to 

other structural option pricing models but is a convenient way to mitigate the 

BS deficiencies (and possibly the CS one). They recommend deriving the 

implied volatility by optimizing in respect to the option pricing function. In 

addition, Berkowitz (2001) demonstrates based on a theoretical justification 

that the DVF constitutes a reduced-form approximation to an unknown 

structural model which under frequent re-estimation can exhibit exceptional 

pricing performance.    

 For our analysis we estimate the three different DVF models as in the 

study of Dumas, Fleming and Whaley (1998): 

 

DVF#1: ),01.0max( 2
210 XX ααασ ++=  

DVF#2: ),01.0max( 43
2

210 XTTXX ααααασ ++++=  

DVF#3: ),01.0max( 2
543

2
210 TXTTXX αααααασ +++++=  

 

The DVF approach as proposed by Dumas et al. (1998) refers to the 

estimation of the volatility function via simple Ordinary Least Squares by 

regressing the implied volatilities on different polynomials of T and X. 

Christoffersen and Jacobs (2004) demonstrate that doing this yields biased 

estimates of the observed option prices and show how the DVF should be 

estimated consistently via Nonlinear Least Squares. We estimate the three 

different DVF models each day using the original (L) approach via simple 

OLS and also with the consistent (NL) approach via the nonlinear least 

squares. For the latter we use several initializations to minimize the risk of 
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estimating coefficients based on a local minimum of the optimization 

function.  

 

Necessary Greeks 

  

 Greek letters are the partial derivatives of a call options with respect to 

its structural parameters. For the purpose of this study, and in order to have 

an efficient optimization/training of the EPOPM structure, we need the 

following Greek letters: 

 

- BS Vega: 

)(dnTSecV TydBS
BS −

=
∂
∂

≡
σ

 (3) 

 

- CS Vega: 
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- CS partial derivative of call with respect to skewness: 

3
3

QcCS
=

∂
∂
µ

 (7) 

 

- CS partial derivative of call with respect to kurtosis: 

44
QcCS

=
∂
∂
µ

 (8) 
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3. The EPOPM structure 

 

Multilayer Neural Networks are flexible heuristic techniques for doing 

statistical pattern recognition and for approximating highly nonlinear 

functions. A neural network is a collection of interconnected simple 

processing elements structured in successive layers and can be depicted as a 

network of links (termed as synapses) and nodes (termed as neurons) between 

layers. A typical feedforward neural network has an input layer, one or more 

hidden layers and an output layer. Each interconnection corresponds to a 

modifiable weight, which is adjusted according to the faced problem via 

optimization (the training algorithm). The particularity of ANNs relies on the 

fact that the neurons on each layer operate collectively and in a parallel 

manner on all input data.  

  Figure 1 depicts the general idea of the EPOPM structure while Figure 

2 depicts the exact network structure developed for the purposes of this 

study. For our analysis, inputs are set up in feature vectors, 

]...,,[~
21 Nqqqq xxxx =  for which there is an associated and known target, qt , 

P21q ,...,,≡ , where P is the number of the available sample feature vectors for 

a particular training sample. The network’s outputs are obtained when the 

training patterns are presented as inputs at the input layer and after 

evaluating the signals at each node. To let the network learn the underlying 

relationship, its weights are adjusted in order to minimize the error between 

the network output and the desire target values.      

 The proposed network model under scrutiny has four layers. The first 

three are typical ANN layers: an input layer with N input variables, a hidden 

layer with H neurons, and a layer with M output neurons. For these three 

layers, each node is connected with all neurons in the previous and the 

forward layer. Each connection is associated with a weight, )1(
inw , and a bias, 

)1(
0iw , in the input layer (i=1,2,…,H, n=1,2,…N) and a weight, )2(

jiw , and a bias, 

)2(
0jw , in the hidden layer (j=1,2,…,M). Each neuron behaves as a summing 

vessel that computes the weighted sum of its inputs to form a scalar term and 

with the use of the transfer function it eventually works as a non-linear 

mapping junction for the forward layer. The part of the network that is outside 

the bold-dotted line in Figure 2 is a typical two-layer ANN with a single output 
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that under proper treatment can be used for nonlinear regression (Hutchison 

et al., 1994).  

 The fourth layer, which hereafter will be termed as an enhanced layer, 

makes possible for a chosen POPM to be an inseparable part of the network’s 

structure. This is the innovative contribution of the model since under this 

setting we can hypothesize that our network structure embeds knowledge 

from the parametric model during training. If we let SX  to denote the set of 

all input variables that are necessary for the parametric model to price 

options, then SS XX ⊇1  should correspond to the enhanced3 variables coming 

from the network’s output layer and SS XX ⊃2  those variables that are 

passed to the parametric model exogenously. It is obvious that 

12 SSS XXX −=  and in the case that we choose to let all parametric model 

variables to be determined via the network, then ∅=2SX . The definition of 

1SX  is basically a choice of the researcher and manifests the number of 

neurons at the output layer and the type of transfer function to be used at the 

enhanced layer. 

 According to Figure 2, the operation carried out for computing the final 

estimated output, y, is the following:  

 

),( 2SPM Xvfy =  (9) 

and, 

)](),...,(,)([ 21 21 Mddd dfdfdfv M=  (10) 

 

where (.,.)PMf  refers to the functional form of the parametric options pricing 

model, (.)djf  are a smooth monotonically increasing transfer functions and 

jd  are simply the descaled values of )2(
jy , where Mj ...,,2,1= . 

 Computation of )2(
1y  follows the functional form of a typical two-layer 

ANN:    

  

                                                 
3 We use the term “enhanced variable” to describe the number of variables that are used as 
input to the parametric model and come as an output of the network. 
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where (.)Mf  and (.)Hf  are smooth monotonically increasing transfer 

functions associated with the output and hidden layer respectively and snx , 

n=1,2,…,N, is just the scaled value of the input nx . The network’s structure 

employs a scaling scheme for both the inputs and the enhanced variables. 

This is essential for the training of ANNs since it increases the effectiveness of 

the optimization algorithm and minimizes the significance of differing 

dimensions of the input signals (see Haykin, 1999, and Bishop, 1995). We 

apply a standard z-score scaling: smxz /)~(~ −= , where x~  is the vector of an 

input/enhanced variable, m  is the mean and s  the standard deviation of this 

vector. 
 

 [Figures 1 and 2, here] 

 

For our case, the smooth monotonically increasing transfer function is either 

the hyperbolic tangent sigmoid,  
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the logistic, 

 

γ
αγ be

f
−+

=
1

)(  (13) 

 

or the linear one, 

 

ξξ =)(f  (14) 

 

In the above expressions, with ℜ∈ba,  where a controls the output range and 

b the slope of the transfer function. As advised by Duda et al. (2001, pg.308), 

the overall range and slope are not important, because it is their relationship 
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to parameters such as the learning rate and magnitudes of the inputs and 

targets that affect learning.  According to Bishop (1995) (see also Duda et al., 

2001), these transfer functions work well with ANNs. In the hidden layer we 

always use the standard hyperbolic tangent sigmoid transfer function (with α 

and b equal unity) for (.)Hf , while in the output layer we use a linear transfer 

function for (.)Mf  as this is necessitated by the scaling scheme we apply at 

the output layer.  

 The choice of the transfer function at the enhanced layer is dictated by 

the type of the parametric model we use and the kind of the enhanced 

variable(s) we choose to map via the network; thus it is possible for (.)
1df , 

(.)
2df ,…, (.)Mdf  to be different depending on the case considered. This set of 

transfer functions are necessary during the implementation of the method in 

order to ensure that each of the enhanced variable value is within an 

acceptable range for use with the parametric model4. Table 1 (Panel A) 

describes the different transfer functions we use at the enhanced level for all 

cases considered. We use transfer functions that truncate implicitly the 

enhanced variable value range. For instance in the case of BS we do not allow 

volatility to be larger than 70%, and for the case of CS, skewness is confined 

in the ]15,15[−  range. The choice of the truncation point is not crucial for the 

implementation of the models as long as we allow the enhanced variables to 

vary into plausible ranges. This choice can be guided by empirical 

investigation. For example we rarely observe volatility to be above 70% or 

skewness to be below -15 or above 15 (e.g. Corrado and Su, 1997, Bates, 

1991).    

   

[Table 1, here] 

          

 The training of any type of ANN model is a highly non-linear 

optimization process in which the network’s weights are modified according to 

an error function. The error function between the estimated response qy  and 

the actual response qt  is defined as: 

                                                 
4 For instance, if BS is the chosen parametric model and volatility is the enhanced variable, 
then our transfer function should be a logistic that allows only positive values whilst if the 
enhanced variable is the skewness of CS then the transfer function should be a hyperbolic 
tangent one that allows for both positive and negative values. 
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qqq twywe −= )()(  (15) 

 

where, w  is an ν -dimensional column vector containing the weights and 

biases given by: 

T
MHMHHN wwwwHNwwwww ],...,,...,,...,10,,...,,...,,...,[ )2()2(

0
)2(

1
)2()1()1(

0
)1(

1
)1(

10= .  

The traditional backpropagation algorithm which is based on the gradient 

descent vector is the most popular method for training the ANNs. It is shown 

in Charalambous (1992) that this training algorithm is often unable to 

converge rapidly to the optimal solution. So, in this paper we rely on the 

Levenberg-Marquardt algorithm (LM) which is much more efficient training 

method in terms of training time and convergence rate. According to LM, the 

weights and the biases of the network are updated in such a way so as to 

minimize the following sum of squares performance function: 

 

2

11

2 )()()( ∑∑
==

−≡=
P

q
qq

P

q
q tywewF  (16) 

 

Then, at each iteration τ of the algorithm, the weights vector w is updates as 

follows: 

 

 [ ] )()()()(
1

1 τττττττ µ wewJIwJwJww TT −
+ ++=  (17) 

 

where, )( τwJ  is the P ν  Jacobian matrix of the P-dimensional output error 

column vector at τth iteration, and is given by:   
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T
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In the above, I is νν ×  identity matrix, and τµ  is like a learning parameter that 

is automatically adjusted in each iteration in order to secure convergence (by 

assuring that the part in the square brackets of Eq. (17) is always 
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nonsingular). Large values of τµ  lead to directions that approach the steepest 

descent, while small values lead to directions that approach the Gauss-

Newton algorithm. Further technical details about the implementation of LM 

can be found in Hagan and Menhaj (1994) and Hagan et al. (1996). Based on 

Eq. (20), the weights and biases update takes place in a batch mode and only 

when all input vectors have been presented to the network. Moreover, we 

employ the network initialization technique proposed by Nguyen and Windrow 

(see Hagan et al., 1996) that generates initial weights and bias values for a 

nonlinear transfer function so that the active regions of the layer’s neurons 

are distributed roughly evenly over the input space.   

 The quantity )(weq∇  is the gradient vector of )(weq  with respect to the 

trainable parameter vector w. This quantity is computed in a similar fashion 

(see Charalambous, 1992) as with the case of the traditional backpropagation 

algorithm that is commonly used in the context of multilayer perceptron 

neural networks. Since the error function does not depend explicitly upon the 

network’s weights, )(weq∇  is evaluated via the chain rule. Based on the 

neural network model depicted in Figure 2, the partial derivative of the error 

function in Eq. (15) with respect to the weight )2(
jiw  at the hidden layer is:   

 

)1()2(
)2( ij

ji

q y
w

e
δ=

∂

∂
 (19) 

 

and, 

 

)()( )2()2(
jMjjd

j
PM

j fsdf
v

f
j ψδ ′′

∂
∂

=  (20) 

 

where )( )2(
jMf ψ′  and (.)jdf ′  are the differentials at points )2(

jψ  and jd  

respectively, and js  the standard deviation of the enhanced variable as used 

during scaling.  

 Quantity 
j

PM
v

f
∂
∂  is the partial derivative of the parametric model with 

respect to input jv  and makes our network model more dedicated to options 
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pricing. This quantity is very important during training of the ANN because it 

incorporates knowledge from a parametric model. All necessary Greek letters 

for the implementation of the alternative models have been previously 

discussed in the parametric models section.  

 The partial derivative of the error function in Eq. (15) with respect to 

the weight )1(
inw  at the input layer is: 

 

sni
in

q x
w

e )1(
)1( δ=

∂

∂
 (21) 

where, 

 

)( )1()1()1(
iHii f ψεδ ′=  (22) 

∑
=

=
M

j
jjii w

1

)2()2()1( δε  (23) 

 

and snx is simply the z-score scaled value of nx .  

 The optimal number of hidden neurons is chosen via a cross-validation 

procedure. The EPOPM structures with 2 to 6 hidden neurons are trained, 

and the one that performs the best in the validation period is selected. Since 

the initial network weights affect the final network performance, for a specific 

number of hidden neurons, the network is initialized, trained and validated 

ten separate times. After defining the optimal network structure, its weights 

are frozen and its pricing capability is tested (out of sample) in a third 

separate testing dataset in order to verify the ANN ability to generalize to 

unseen data. 

 

 

4. Data and Methodology 

 

 The data considered cover the period January 2002 to August 2004.  

The S&P 500 index call options are used because this option market is 

extremely liquid. They are the most popular index options traded in the CBOE 

and the closest to the theoretical setting of the parametric models (Garcia and 

Gencay, 2000). All options data are purchased from CSI. For each trading day 
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we have the available last transaction call price, mrkc , along with the strike 

price5, X , date of expiration6, volume and open interest. Along with the index, 

we have collected a daily dividend yield, yd , provided online by Datastream.  

 We used a chronological data partitioning via a rolling-forward 

procedure in order to have a better simulation of the actual options trading 

conditions. The data is divided into ten different overlapping training (trn) and 

validation (vld) sets, each followed by separate and non-overlapping testing 

(tst) set. Each trn, vld and tst period has 12, 2 and 1 month spanning period 

respectively. For instance, the first trn set covers the period January to 

December 2002, the first vld set covers the period January to February 2002, 

the first tst set covers the period March 2003, etc. The eighteen testing (out of 

sample) monthly periods are non-overlapping. For the needs of the analysis, 

we created an aggregate testing period (agr) with about 22,000 datapoints by 

simply pooling together the pricing estimates of all twenty tst periods. For 

period agr , we compute and tabulate: the Root Mean Square Error (RMSE), 

the Mean Absolute Error (MAE), the Median Absolute Error (MdAE) and the 5th 

Percentile of Absolute Error (P5AE) and 95th Percentile of Absolute Error 

(P95AE).  

  

 

Filtering Rules 

 

To create an informative dataset we rely on the following filtering rules 

(see also Bakshi et al., 1997): We first eliminate all observations that have 

zero trading volume since they do not represent actual trades. Second, we 

eliminate observations that violate either the lower or the upper arbitrage 

bounds. Third, we eliminate all options with less than six or more than 260 

days to expiration to avoid extreme option prices that are observed due to 

potential illiquidity problems. Similarly, price quotes of less than 0.5 index 

points are not included. Finally, we demand at least four datapoints per 

                                                 
5 For the purposes of this study we use the following moneyness categories: deep out the 
money (DOTM) when S/X≤0.90, out the money (OTM) when 0.90<S/X≤0.95, just out the money 
(JOTM) when 0.95<S/X≤0.99, at the money (ATM) when 0.99<S/X≤1.01, just in the money 
(JITM) when 1.01<S/X≤1.05, in the money (ITM) when 1.05<S/X≤1.10, deep in the money 
(DITM) when S/X>1.10. 
6 In terms of time length, an option contract is classified as short term maturity when its 
maturity is less than 60 days, as medium term maturity when its maturity is between 60 and 
180 days and as long term maturity when it has maturity longer than (or equal to) 180 days. 
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maturity to secure that during the implied parameters extraction process, 

every maturity period is satisfactorily represented. The final dataset used is 

still larger than previous ANN studies. For instance Hutchison et al. (1994) 

have an average of 6,246 data points per sub-period; Schittenkopf and 

Dorffner (2001) include a total of 33,633 data points. Sample characteristics 

for the dataset can be found in Table 2. 

    

    [Table 2, here] 

 

 

Observed Structural Parameters 

  

 The moneyness ratio, S/X, is usually the basic input in all network 

structures since it is highly related with the pricing bias associated with the 

POPMs (see Hutchison et al., 1994, and Garcia and Gencay, 2000). The 

dividend adjusted moneyness ratio Χ
− /)( TydSe  is preferred here since 

dividends are relevant. In addition, the time to maturity (T ) is computed 

assuming 252 days in a year. Previous studies have used 90-day T-bill rates 

as approximation of the interest rate. In this study we use nonlinear cubic 

spline interpolation for matching each option contract with a continuous 

interest rate, r , that corresponds to the option’s maturity. For this purpose, 

1, 3, 6, and 12 months constant maturity T-bills rates (collected from the 

U.S. Federal Reserve Bank Statistical Releases) were considered.  

 

Implied Volatility Measures 

  

 The methodology employed in this study for the estimation of the 

overall average implied parameters is similar to that in previous studies that 

somehow adopt the Whaley’s (1982) simultaneous equation procedure to 

minimize a price deviation function with respect to the unobserved 

parameters. As with Bates (1991), market option prices (cmrk) are assumed to 

be the corresponding POPM prices (ck, k=BS or CS) plus a random additive 

disturbance term ( k
Nε , k=BS or CS): 

 

k
N

k
N

mrk
N cc ε+=  (26)  
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where N refers to the number of different call option transaction datapoints 

available. To find optimal implied parameter values we solve an optimization 

problem that has the following form: 

 

∑
=

=
tN

j

k
jk

tSSE
1

2)(min)( ε
ξ

 (27) 

 

where t represents the time instance, kξ  the unknown parameters 

associated with a specific parametric option pricing model (k = BS, CS, and 

SVJ). The SSE is minimized via a non-linear least squares optimization 

based again on the Levenberg-Marquardt algorithm. To minimize the 

possibility to obtain implied parameters that correspond to a local minimum 

of the error surface with each model we use different starting values for the 

unknown parameters based on reported average values for the S&P 500 

according to Bates (1991), Bakshi et al. (1997), and Corrado and Su (1996 

and 1997).  

 From the above we obtain the following sets of implied parameters:  

a. Overall average implied BS volatility estimates BSξ ={ BS
avσ } 

b. Overall average implied CS estimates CSξ ={ },, 43 µµσ CS
av . 

c. Overall average implied SVJ estimates SVJξ ={ SVJ
avσ , λ , k , Θ , α , 

β , vσ , ρ }. 

 

 In addition to the above overall average implied parameters we also 

estimate the three DVF models (DVF#1, DVF#2, and DVF#3) defined earlier. 

For BS this is straightforward; for CS and SVJ we compute the implied 

Brownian volatilities after we first estimate and fix the overall average 

implied parameters. So for CS and SVJ the DVF is a two stage nonlinear 

estimation and results to three additional volatility measures per model. We 

differentiate them by using appropriate subscripts: k
NL1σ , k

NL2σ  and k
NL3σ  for 

the nonlinear estimation and  k
L1σ , k

L2σ  and k
L3σ  for OLS estimation (k = BS 

and CS). In addition, the volatility estimates obtained via the nonlinear least 

squares based on initial values obtained from the ordinary least squares 
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are7: k
NLL1σ , k

NLL2σ  and k
NLL3σ . For pricing reasons at time instant t, the 

implied structural parameters derived at day t-1 are used together with all 

other needed information.  

 

 

5. Comparison of the Alternative Models 

  

 With the BS models we use as input S, X, T, yd , r, and any of the 

following ten volatility forecasts: BS
jσ  where j = {av, L1, L2, L3, NL1, NL2, 

NL3, NLL1, NLL2, NLL3} and we use jBS  to differentiate the alternative BS 

models. In a similar way and using the proper symbolization, there are ten 

different CS and SVJ models according to the implied parameters used.  

 The notation for the models depends on the parametric model 

considered. We use jeBS , with j={av, NL2}, to denote the two enhanced 

networks that use as an additional input variable the BS volatilities: BS
avσ  

and BS
NL2σ ; for these models volatility is the only enhanced variable. In the 

same spirit we use sig
jeCS , with j={av,NL2}, to denote the two EPOPMs that 

use as additional inputs the CS variables: CS
avσ  and CS

NL2σ respectively, with 

volatility being the only enhanced variable. Finally, we use all
jeCS , with 

j={av, NL2}, to denote the two networks that use as additional inputs the CS 

variables: CS
avσ , 3µ , 4µ  and CS

NL2σ , 3µ , 4µ respectively, with volatility, 

skewness and kurtosis being the enhanced variables. All EPOPM 

combinations are exhibited in Panel B of Table 1. 

 Tables 3A (in sample) and 3B (out of sample) exhibit the performance 

of all models considered in terms of RMSE, MAE and RMeSE, P5AE, P95AE 

for period agr. Since all types of ANNs are effectively optimized in respect to 

sums of squares (see Eq. 16), the out of sample pricing performance should 

be similarly judged on RMSE and in a lesser only degree on other measures.  

 

[Tables 3A, 3B, 4, here] 

                                                 
7 It is quite tedious to find starting values for the nonlinear estimation of the DVF. Possible candidates 
for this are, among others, the estimates of the DVF coefficients obtained from the ordinary OLS.  
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 We first concentrate our attention to Table 3A (in sample) for the 

parametric BS, CS and SVJ models. Before the Deterministic Volatility 

functions are estimated, the more complex models exhibit superior 

performance, and thus SVJ is the best, followed by CS. The DVF approach 

improves the pricing performance of the BS and CS models considerably, 

with the nonlinear version (NL3) being superior. Note that we tried the DVF 

approach on the SVJ model but it could not improve its performance. We 

then concentrate on Table 3B (out of the sample). The second nonlinear DVF 

model (NL2) provides the best out of sample performance for both BS and CS 

(although for the BS case NL1 was equally good in terms of the RMSE but 

inferior by far in terms of the other measures). Still, the SVJ model retains 

the place of the top performer in all metrics. 

 Finally, we look at Table 4 with the out of sample performance for the 

EPOPMs. We see here that all enhanced models have very good performance, 

and some are competitive to the SVJ model too. The best BS version is 

2NLeBS  which is the enhancement of NL2; and the best CS version is 

all
NLeCS 2  which is the enhancement of NL2 providing as output all three 

parameters of CS (volatility, skewness and kurtosis). This latter model is also 

the overall best EPOPM in terms of the RMSE metric, needs to be estimated 

only once a month and competes with the SVJ model, which is expensive to 

calibrate daily. 

  

    [Table 5 here] 

 

In Table 5 we tabulate statistics for a pairwise comparison of the (statistical 

significance of) pricing performance in terms of MSE for a selection of 

models. Since the eighteen testing periods are disjoint and because we have 

pricing estimates coming from different models we can assume (similarly to 

Hutchison et al, 1994 and Schittenkopf and Dorffner, 2001) that the pricing 

errors are independent and a standard two-tail t-test can be applied. 

Similarly to the previous authors we need to report that these tests should 

be interpreted with caution. We see that the EPOPMs outperform the 

equivalent POPMs (both with overall average and DVF parameter estimates), 

and the difference is statistically significant at the 1% level. The best EPOPM 
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model is all
NLeCS 2  and is competitive to SVJ (any difference in performance is 

not statistically significant) and easier to estimate. Our second best EPOPM 

is all
aveCS  which is marginally only inferior to the SVJ but much easier to 

estimate. 

 

 

6. Summary and Conclusions 

 

 In this study we generalize the Dumas et al. (1998) and Christoffersen 

and Jacobs (2004) DVF approach for option pricing, with a non-parametric 

approach. Our approach allows a set of the input variables to the parametric 

model to be jointly determined by a neural network. The enhanced parametric 

models (EPOPMs) proposed in this study have many desirable properties 

compared to standard ANNs, like arbitrage-free option values, and theory 

consistent option values and Greek letters. In general, this methodology is 

proposed as a way to eliminate some of the deficiencies of the modern 

parametric options models and standard ANNs. 

We compare the proposed methodology with the Black and Scholes, the 

Corrado and Su and the Stochastic Volatility and Jump models. For pricing 

performance analysis we use the S&P 500 index call options, with both overall 

average implied parameters (for all three parametric models) and implied 

parameters derived from Deterministic Volatility Functions (for the BS and CS 

models), for the period January 2002 to August 2004. 

The results obtained strongly support the proposed methodology. 

Specifically, we find that the increase in the pricing accuracy of EPOPM-BS 

over the standard BS models and of the EPOPM-CS over the CS model is 

considerable and statistically significant in the 1% level.  
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Model Enhanced  
Variable 

Transfer 
Function 

Parameter Values 
(a, b) 

BS Volatility Logistic (1.5,1) 
CS Volatility Logistic (1.5,1) 
CS Skewness Tangent  (15,0.15) 
CS Kurtosis Logistic (30,0.20) 

Panel A: Transfer functions used with enhanced variables    

 
Model 

 
Input Variables 

 
Enhanced 
Variable(s) 

aveBS  Χ
− /)( TydSe , T , r , BS

avσ  Volatility 

2NLeBS  Χ
− /)( TydSe , T , r , BS

NL2σ  Volatility 
sig
aveCS  Χ

− /)( TydSe , T , r , CS
avσ  Volatility 

sig
NLeCS 2  Χ

− /)( TydSe , T , r , CS
NL2σ  Volatility 

all
aveCS  Χ

− /)( TydSe , T , r , CS
avσ , 3µ , 4µ  Volatility, skewness, 

kurtosis 
all
NLeCS 2  Χ

− /)( TydSe , T , r , CS
NL2σ , 3µ , 4µ  Volatility, skewness, 

kurtosis 
Panel B: Description of all EPOPMs  
 
Table 1: EPOPM structure characteristics 
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 DOTM OTM JOTM ATM JITM ITM DITM 

S/X <0.90 0.90-
0.95 

0.95-
0.99 

0.99-
1.01 

1.01-
1.05 

1.05-
1.10 ≥1.10 

Short Term Options  <60 Days 
Call 3.585 6.320 12.300 23.960 41.581 75.102 121.855 

Implied Volatility  0.242 0.204 0.184 0.190 0.212 0.254 0.327 
Volume 444 840 1162 1792 568 257 153 

# observations 1461 4009 6861 3980 5023 2718 1454 
Medium  Term Options  60-180 Days 

Call 7.283 17.226 33.304 48.498 65.149 92.811 136.617 
Implied Volatility  0.195 0.182 0.191 0.198 0.214 0.224 0.246 

Volume 343 488 486 717 299 123 102 
# observations 1424 1436 1190 625 729 509 390 

Long Term Options   ≥ 180 Days 
Call 14.495 31.803 51.041 65.248 81.185 106.598 147.316 

Implied Volatility  0.183 0.186 0.194 0.196 0.209 0.217 0.233 
Volume 349 372 307 406 202 107 127 

# observations 1452 1151 1011 576 567 331 271 
Table 2: Sample characteristics  
We cover the period January 2, 2002 to August 31, 2004. All figures refer to 
average values (# observations that refer to the number of call option datapoints 
that are included in certain moneyness and maturity class). 
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 avBS  1LBS  1NLBS  1NLLBS  2LBS  2NLBS  2NLLBS  3LBS  3NLBS  3NLLBS  

RMSE 3.187 2.519 1.511 1.871 1.280 0.779 1.148 1.103 0.638 1.028 
              
           
 avCS  1LCS  1NLCS  1NLLCS  2LCS  2NLCS  2NLLCS  3LCS  3NLCS  3NLLCS  

RMSE 1.369 1.861 1.279 1.401 1.027 0.698 0.944 0.882 0.582 0.829 
              
           
 avSVJ           

RMSE 0.437          

           
Table 3A: In sample performance of parametric models – Jan 2002 to Aug 2004 
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 avBS  1LBS  1NLBS  1NLLBS  2LBS  2NLBS  2NLLBS  3LBS  3NLBS  3NLLBS  

RMSE 3.285 3.128 1.984 2.508 2.921 2.008 2.800 3.260 2.382 3.174 
MAE 2.579 1.908 1.509 1.664 1.530 1.186 1.437 1.468 1.139 1.412 
MeAE 2.172 1.164 1.213 1.242 0.962 0.833 0.923 0.834 0.739 0.826 
AE 5th 0.242 0.091 0.115 0.124 0.082 0.078 0.085 0.072 0.067 0.073 
AE 95th 6.396 6.440 3.796 4.375 4.364 3.100 3.944 4.161 2.983 3.931 

           

 avCS  1LCS  1NLCS  1NLLCS  2LCS  2NLCS  2NLLCS  3LCS  3NLCS  3NLLCS  

RMSE 2.245 2.794 2.110 2.262 2.248 1.766 2.136 2.667 2.189 2.627 
MAE 1.709 1.890 1.609 1.679 1.451 1.257 1.390 1.438 1.252 1.411 
MeAE 1.358 1.233 1.276 1.299 1.002 0.929 0.972 0.945 0.881 0.929 
AE 5th 0.118 0.106 0.115 0.112 0.085 0.085 0.088 0.085 0.085 0.084 
AE 95th 4.370 6.107 4.144 4.470 3.997 3.422 3.835 3.879 3.328 3.794 

           

 avSVJ           

RMSE 1.498          
MAE 1.071          
MeAE 0.796          
AE 5th 0.065          
AE 95th 2.996          

           
Table 3B: Out of sample performance of parametric models – March 3, 2003 to Aug 31, 2004 
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 aveBS  2NLeBS  sig

aveCS  sig
NLeCS 2  all

aveCS  all
NLeCS 2  

RMSE 1.754 1.732 1.646 1.601 1.568 1.535 
MAE 1.327 1.157 1.243 1.176 1.176 1.131 
MeAE 1.046 0.834 0.957 0.886 0.908 0.856 
P5AE 0.097 0.069 0.084 0.078 0.079 0.072 
P95AE 3.473 3.190 3.345 3.220 3.169 3.075 

 
Table 4: Out of sample performance of the EPOPMs – March 3, 2003 to 
Aug 31, 2004 
Models´ optimization: 1-10 hidden neurons, 20 weight initializations   
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 2NLBS  avCS  2NLCS  avSVJ  aveBS  2NLeBS  sig

aveCS  sig
NLeCS 2  all

aveCS  all
NLeCS 2  

avBS  21.93 38.82 50.73 50.46 55.63 44.93 59.03 59.09 61.02 61.18 
2NLBS   -3.53 3.18 6.02 3.40 3.45 4.72 5.23 5.62 5.98 

avCS    19.57 22.50 25.35 15.74 31.38 31.56 35.07 35.29 
2NLCS     6.85 0.52 0.91 5.11 6.62 8.29 9.32 

avSVJ      -7.38 -4.92 -4.21 -2.81 -1.97 -1.01 
aveBS       0.66 6.91 8.73 11.83 12.97 

2NLeBS        2.47 3.65 4.62 5.45 
sig
aveCS         2.70 5.28 6.93 
sig
NLeCS 2          1.90 3.62 
all
aveCS           2.09 

           
Table 5: Two-sample matched pair t-tests for comparison of out of sample model performance 
Two sample matched pair t-test comparing the means of the squared residuals between models in the 
vertical heading versus models in the horizontal heading. In general, a positive (negative) t-value 
larger (larger in absolute terms) than 1.96 (or 2.325) indicates that the model in the vertical 
(horizontal) heading has a larger MSE than the model in the horizontal (vertical) heading at 5% (or 
1%) significance level. 

 
 
 
 
 
 




