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1. Introduction  

One of the most important tasks facing financial institutions is the evaluation of the 

degree to which they are exposed to market risk. This risk appears as a consequence of the 

changes in the market prices of the assets that compose their portfolios. One way to measure 

this risk is to evaluate the possible losses that can occur from changes in market prices. This 

is precisely what the VaR (value at risk) methodology does. This methodology has been 

very widely used recently, and it has become a basic tool for market risk management of 

many investment banks, trading banks, financial institutions and some non-financial 

corporations. Also, the Basel Committee on Banking Supervision (1996) at the Bank for 

International Settlements uses VaR to require financial institutions such as banks and 

investment firms to meet capital requirements to cover the market risk that they incur as a 

result of their normal operations.  

The VaR of a portfolio is a statistical measure that tells us what is the maximum 

amount that an investor may lose over a given time horizon and with a given probability. 

Alternatively, the VaR of a portfolio can be defined as the amount of funds that a financial 

institution should have in order to cover the portfolio losses in almost all circumstances, 

except for those that occur with a very low probability.  

Although VaR is a simple concept, its calculation is not trivial. Formally, VaR 

(α%) is the percentil  of the probability distribution of the changes in value of a 

portfolio, that is, it is the value for which 

α

α% of the values lie to the left on the distribution. 

Consequentially, in order to calculate VaR we must firstly estimate the probability 

distribution of the changes in value of the portfolio.  

Several methods have been developed to do this: Monte Carlo Simulation, 

Historical Simulation, Parametric Models, and Stress Testing. See Jorion(2000) to get a 

general vision of  this methodologies. Among all of these, the most widely used methods are 

those based on the parametric approach, or on variance and co-variance.  We can see some 

applications of this method in Morgan(1995), García-Donato at all(2001) Gento(2001), 

Gento(2000), Benito and Novales(2005), Alex NcMain(2001).  

The parametric approach is based on the assumption that the changes in value of a 

portfolio will follow a known distribution, which is generally assumed to be Normal. Under 

such an assumption, the only relevant parameter for the calculation of VaR is the variance 

conditional on the changes in value of the portfolio, assuming that on average these are zero. 
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The estimation of this variance is not trivial, since it requires estimating the variance co-

variance matrix of the assets that make up the portfolio.  

The estimation of this matrix poses two types of problems: (1) a dimensionality 

problem and (2) a viability problem. The first appears due to the large dimension of the 

matrix, which makes it difficult to estimate. For example, in order to estimate the variance 

of the return of a portfolio that is made up of five assets, it is necessary to estimate five 

variances and fifteen covariances, that is a total of twenty variables. This problem becomes 

especially important in fixed income portfolios in which the value depends on a large 

number of different interest rates, for different time horizons. The second problem has to do 

with the difficulty of estimating the conditional covariances if one uses sophisticated 

models, such as multivariate GARCH models. The estimation of such models is both very 

costly in terms of computation, and is also generally not even possible when the dimension 

of the matrix is greater than three. It is for this reason that these models have not been at all 

popular for financial management. 

In the recent literature, these problems are tackled using the assumption that there 

exist common factors in the volatility of the interest rates, and that these same factors 

explain the changes in the temporal structure of the interest rates (TSIR). Under these two 

assumptions, it becomes theoretically possible to obtain the variance-covariance matrix of a 

wide range of interest rates using a factor model of TSIR. For example, Alexander (2001) 

and Gento (2000) show that if we begin with a principal components model (Alexander 

2001) or a regression model (Gento, 2000), then we can get the variance-covariance matrix 

from a vector of interest rates at a low calculation cost.   

The present paper proposes an alternative method of estimating the variance-

covariance matrix of interest rates at a low computational cost. We take as our starting point 

the model of Nelson and Siegel (1987), which was developed initially to estimate the TSIR. 

This model provides an expression of the interest rates as a function of four parameters. 

Starting with this model, we can obtain the variance-covariance matrix of the interest rates 

by calculating the variances of only four variables – the principal components of the 

changes in the four parameters. 

This paper continues as follows. In section 2 we present the method proposed to 

estimate the variance-covariance matrix for a large vector of interest rates at a low 

computational cost. The next sections evaluate the proposed method for a sample of data 

from the Spanish market. In section 3 we briefly describe the data that we use, and we apply 



the proposed method to obtain the variance-covariance matrix of a vector of interest rates. In 

section 4 we evaluate the proposed methodology to calculate the VaR in fixed income 

portfolios, and we compare the results with those that are obtained from standard methods 

of calculation. Finally, section 5 presents the main conclusions of the paper.  

 

2. A parametric model for estimating risk. 

In this section we present a methodology to calculate the variance-covariance matrix 

for a large vector of interest rates at a low computational cost. To do this we take as our 

starting point the model proposed by Nelson and Siegel (1987), designed to estimate the 

yield curve (TSIR).  

The Nelson and Siegel formulation specifies a parsimonious representation of the 

forward rate function given by: 

 0 1 2
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This expression allows one to accommodate the different forms that may 

characterise (level, positive or negative slope, and greater or lower curvature) as a function 

of four parameters ( 0 1 2, , andβ β β τ ).  

Bearing in mind the fact that the spot interest rate for a term of m can be expressed 

as the sum of the instantaneous forward interest rates from 0 up to m, that is, by integrating 

the expression that defines the instantaneous forward rate: 

 ( )
0

m t
tr m d= u u∫ ϕ  (2) 

we obtain the following expression for the spot interest rate for a term of m: 
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Equation (3) shows that spot interest rates are a function of only four parameters. 

Consequentially the changes in these parameters are the variables that determine the 

changes in the interest rates. Using a linear approximation we can estimate the change in the 

zero coupon rate of term m from the following expression:  
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In a multivariate context, the changes in the vector of interest rates that make up the 

TSIR can be expressed by generalizing equation (4) in the following way:  

 β=t tdr G d t  (5) 
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This approximation (equation (5)) has been used with some success in interest rate 

risk management for fixed income assets (Gómez, 1999) and for portfolio immunization 

(Gómez, 1998).  

In the context of this model, and using expression (5), we can calculate the variance-

covariance matrix of a vector of changes in the k interest rates using the following 

expression: 

  (6) 'var( ) = Ψt t tdr G Gt
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At this point we note that we have arrived at an important simplification in the 

dimension of the variance-covariance matrix that we need to estimate. Note that for a vector 

of k interest rates, instead of having to estimate k(k+1)/2 variances and covariances, we only 
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need to estimate 10 second order moments. However, the problem associated with the 

difficulty of the estimation of the covariances still remains. 

But we can still simplify the calculation of the variance-covariance matrix even 

further, by applying principal components to the vector of the changes in the parameters 

( β td ). In this way, the vector of changes in the parameters of the model of Nelson and 

Siegel (1987) can be expressed as: 

 β =td A tF

t

 (7) 
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where Ft is the vector of principal components associated with the vector βtd  and A is the 

matrix of constants that form the eigenvectors associated with each one of the four 

eigenvalues of the variance-covariance matrix of the changes in the parameters of the 

Nelson and Siegel model ( βtd ).  

Substituting equation (7) into equation (5) and given that each principal component 

is orthogonal to the rest, we can express the variance-covariance matrix of the interest rates 

as follows: 
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Therefore, equation (8) gives us an alternative method to estimate the variance-

covariance matrix of the changes in a vector of k interest rates using the estimation of the 

four principal components of the changes in the parameters of the Nelson and Siegel (1987) 

model. In this way, the dimensionality problem associated with the calculation of the 

covariances has been solved. 

In the following sections we evaluate this method, both to calculate the variance 

matrix of a vector of interest rates, and to calculate the VaR of fixed income portfolios. 
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3. Estimating the variance-covariance matrix 

3.1. The data  

To examine the method proposed in this paper, we estimate a daily term structure of 

interest rates using actual mean daily Treasury transactions prices. The original data set 

consists of daily observations derived from actual transactions in all bonds traded on the 

Spanish government debt market. The database of bonds traded on the secondary market of 

Treasury debt covers the period from September, 1 1995 to October, 29 1997. We use this 

daily database to estimate the daily term structure of interest rates. We fit Nelson and 

Siegel’s (1987) exponential model for the estimation of the yield curve and minimise price 

errors weighted by duration. We work with daily data for interest rates at 1, 2,…, 15 year 

maturities.  

 3.2. The results 

In this section we examine this new approach to variance and covariance matrix 

estimation. The first section begins by comparing the changes in the estimated and observed 

interest rates. The changes in interest rates are modelled by equation (5), and then we 

compare these changes with the observed ones1. 

Then we estimate the variance-covariance matrix of a vector of 10 types of interest 

rate, using the methodology proposed in the previous section, and we compare these 

estimations (Indirect Estimation) with those obtained using some habitual univariate 

procedures (Direct Estimation). 

Both in direct and indirect estimation we need a method for estimating variances 

and covariances. For the case of indirect estimation the estimation method gives us the 

variances of the four principal components of the changes in the parameters of the Nelson 

and Siegel model, which allow us to obtain, from equation (8), the variance-covariance 

matrix of the interest rates.  

In order to estimate the variance-covariance matrix of the interest rates changes and 

the variance of the principal components, we use two alternative measures of volatility: 

exponentially weighted moving average (EWMA) and Generalized Autoregressive 

Conditional Heteroskedasticity models (GARCH). 

(1) Under the first alternative, the variance-covariance matrix is estimated using the 

RiskMetrics methodology, developed by J.P. Morgan. RiskMetrics uses the so called 

 
1 The software we used in this application is MATLAB. 



exponentially weighted moving average (EWMA) method. Accordingly, the estimator for 

the variance is: 
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J.P. Morgan uses the exponentially weighted moving average method to estimate 

the VaR of its portfolios. On a widely diversified international portfolio, RiskMetrics found 

that the value λ = 0.94 with  = 20 produces the best backtesting results. In this paper, we 

use both of these values.  

N

 Therefore, we obtain the direct estimations of the variance-covariance matrix 

(D_EWMA) of the interest rates from equations (9) and (10) where and are the 

interest rates at different maturities . For the case of indirect estimation of the variance-

covariance matrix (I_EWMA), we use equation (9) to obtain the variances of the principal 

components (where x

tx ty

t are now these principal components) and, from there, equation (8) 

gives us the relevant matrix. 

(2) The EWMA methodology, which is currently used for the RiskmetricsTM data, is 

quite acceptable for calculating VaR measures, but some authors suggest that one alternative 

is to use variance-covariance matrices obtained using Multivariate Generalized 

Autoregressive Conditional Meteroskedasticity Models (GARCH). Nevertheless, the large 

variance-covariance matrices used in VaR calculations could never be estimated directly 

using a full multivariate GARCH model, because the computational complexity would be 

insurmountable. For this reason we only compute the variances of interest rates changes 

using univariate GARCH models and do not compute the covariance.   

Given that indirect estimation (I_GARCH) does not require the estimation of 

covariances, we estimate the condicional variance of the principal components of the 

changes in the parameter of the Nelson and Siegel model using univariate GARCH models. 

In the sub-section two of this section, we compare the alternative estimations of the 

variance-covariance matrix described above. This comparison is summarised in Table 1.  
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Table 1. Type of variance-covariance matrix estimation 

  Type of variance models 

  EWMA GARCH 

Direct Estimation D-EWMA D-GARCH*Type of 

estimation Indirect Estimation I-EWMA I-GARCH 
* We have not estimated  multivariate GARCH model because of the computational complexity 

are insurmountable, so that only present the  result of the variances which have been estimated 

unsing univariate GARCH  models. 

 

What is relevant is that the estimation of the variance-covariance matrix using the 

methodology proposed here (indirect estimation) involves a minimum calculation cost, since 

it is only necessary to estimate the variance of four variables (the principal components of 

the daily changes in the parameters of the Nelson and Siegel model).  

 

3.2.1. Comparing the changes of interest rates 

Firstly, we have evaluated the ability of the model that we propose here to estimate 

the daily changes in a vector of interest rates. To do this, we compare the observed interest 

rates with their estimations from equation (5). In Illustration 1 in the Appendix, we show the 

scatter diagrams that relate the observed changes with the estimated changes in interest rates 

at 1, 3, 5 and 10 years. As can be seen, independently of the period considered, the 

relationship is very close.  

[Insert Illustration 1] 

In Table 2 we report some descriptive statistics of the errors of estimation of the 

interest rate. The average error is very small, about five basic points for all maturities. This 

error represents, in relative terms, 0.5% of the interest rates. Furthermore, we observe too 

that both the average error and the standard deviation are very similar in all period lengths 

so that the accurate of the model seems good for all maturities.  
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Table 2. Estimation errors in interest rates. Descriptive statistics. 

 1 year 2 years 3 years 4 years 5 years 6 years 7 years 8 years  9 years 10 years

Mean (a) 3.1 4.3 4.8 5.0 5.1 5.0 5.0 5.0 5.0 5.0 

Standard deviation 4.3 5.6 6.2 6.4 6.5 6.5 6.4 6.4 6.4 6.4 

Maximum error 30.6 25.2 26.2 26.6 25.7 25.2 25.2 25.1 25.0 25.0 

Minimum error -17.5 -21.9 -24.0 -24.5 -24.4 -24.3 -24.3 -24.4 -24.5 -24.7 
Note: The sample period is from 1/9/1995 to 29/10/1997. The errors (and all statistics) are expressed in basic 
points. (a) The average error is calculated in absolute value. 

 

Therefore, these results imply that the degree of error committed when estimating 

the changes in zero coupon rates using equation (5) are practically non-existent. In what 

follows, we evaluate the differences in the estimation of the variance-covariance matrix 

using the different alternatives. 

 

3.2.2. Comparing the estimations of variance-covariance matrix 

In Illustration 2 we show the conditional variances of the interest rates at 1, 3, 5 and 

10 years, as estimated using the exponentially weighted moving average method, both 

directly and indirectly: D_EWMA versus I_EWMA. In Illustration 3 we show the direct 

estimation of the conditional variances of these same interest rates using the GARCH 

(D_GARCH) models, and the indirect estimation of the same data (I_GARCH). As can be 

seen in both illustrations, in most of the time horizons considered, the variances estimated 

using the method proposed in this paper are very similar to the direct estimates.  

[Insert Illustration 2] 

[Insert Illustration 3] 

The descriptive statistics of the differences between the standard deviations that are 

estimated using both procedures are reported in Table 3. We compare the direct and indirect 

estimation methods using an EWMA model in panel (a), and using a GARCH model in 

panel (b). Panel (a) shows that the differences in absolute value for EWMA specification 

oscillate between 0.62 and 1 base point. This average difference represents between 10% 

and 20% of the size of the estimated series.  

Panel (b) of Table 3 also shows that the average difference in absolute value for 

GARCH specification is quite small, even though greater than those of panel (a). However, 

as a percentage of the estimated conditional variance series, these differences are smaller 

than those of panel (a). In both comparisons, we can note that the range of differences 
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between each pair of estimations is far greater for a one year rate than for the other horizons. 

We also note that the range of the estimation error is also greater for the case of one year 

than for the other interest rates (Table 2). 

 

Table 3. Differences in the estimation of the standard deviation of interest rates. Descriptive 
statistics. 
  1 year 2 years 3 years 4 years 5 years 6 years 7 years 8 years  9 years 10 years

 Panel (a): Comparing D_EWMA vs. I_EWMA. 

Mean (a) 0.74 0.62 0.77 0.9 0.96 0.99 1 1.01 1 0.99 

Standard deviation 1.28 0.83 1.02 1.17 1.25 1.29 1.31 1.32 1.32 1.31 

Maximum error 1.12 1.71 1.92 2.03 2.1 2.1 2.05 1.97 1.88 1.78 

Minimum error -14.48 -5.31 -3.12 -3.88 -4.56 -5.25 -5.61 -5.77 -5.79 -5.74 

  Panel (b): Comparing D_EGARCH vs. I_EGARCH. 

Mean (a) 0.89 1.21 0.96 0.86 0.83 0.81 0.77 0.87 0.84 0.8 

Standard deviation 1.35 1.1 1.29 1.28 1.24 1.28 1.25 1.26 1.25 1.23 

Maximum error 17.6 5.31 7.72 7.61 7.34 8.21 7.91 7.2 7.44 7.58 

Minimum error -0.8 -3.37 -2.15 -1.61 -1.46 -1.27 -1.29 -2.58 -2.47 -2.49 

Note: Sample period from 29/9/1995 to 29/10/1997 (515 observations). I_EWMA indirect estimation (equation (8)) 
and D_EWMA direct estimation. Riskmetrics methodology (EWMA). I_GARCH: indirect estimation (equation (8))
and D_GARCH direct estimation. Conditional autoregressive volatility models (GARCH). (a) The average of the 
differences has been calculated in absolute value. Differences measured in base points. 

 

We now compare the covariances estimated directly with those obtained from the 

procedure suggested in this paper. As we have mentioned above, given the extreme 

complexity of the GARCH multivariate model estimations, the direct estimation of the 

covariances was only done using EWMA models.  

[Insert Illustration 4] 

Illustration 4 shows the estimated covariances between the different pairs of interest 

rates, using both procedures: D_EWMA versus I_EWMA. As can be seen in the graphs, the 

estimated covariances have very similar behaviour, although we can note that there are 

greater differences than for the variances. In Table 4 we report some of the descriptive 

statistics of the estimated covariances. The average absolute value difference is very small, 

between 0.0007 and 0.0019. However, this does represent about 40% of the average 

estimated covariance.  



 

 

Table 4. Differences in the estimation of covariances between interest rates. Descriptive 
statistics.  

Comparing D_EWMA vs. I_EWMA 
  1 year 3 years 5 years 
  3 years 5 years 10 years 5 years 10 years 10 years 

Mean (a) 0.0008 0.0007 0.0007 0.0019 0.0018 0.0017 

Standard deviation 0.0013 0.0013 0.0015 0.0020 0.0021 0.0022 

Maximum error 0.0042 0.0078 0.0131 0.0032 0.0037 0.0046 

Minimum error -0.0140 -0.0120 -0.0138 -0.0162 -0.0170 -0.0172 
Note: Sample period from 29/9/1995 to 29/10/1997 (515 observations). I_EWMA indirect estimation 
(equation (8)) and D_EWMA direct estimation. Riskmetrics methodology (EWMA). (a) The average 
difference is calculated in absolute value. 

 

To sum up this section, we have shown that the procedure proposed in this paper to 

estimate the variance-covariance matrix of a large vector of interest rates generates results 

that are quite satisfactory, above all as far as variances are concerned. For the case of co-

variances, we have detected some differences that could be important. In the following 

section we evaluate whether these differences are important for risk management. To do 

this, we apply the methodology to the calculation of Value at Risk (VaR) in several fixed 

income portfolios. 

 

4. Estimating the Value at Risk 
In this section we evaluate the utility of the proposed method for risk management 

of fixed income portfolios, by constructing a parametric measure of VaR as an indicator of 

the risk of a given portfolio.  

 

4.1. Value at Risk 

The VaR of a portfolio is a measure of the maximum loss that the portfolio may 

suffer over a given time horizon and with a given probability. Formally, the VaR measure is 

defined as the lower limit of the confidence interval of one tail: 

 ( )Pr τ αΔ < =⎡⎣ t tV VaR ⎤⎦  (10) 

where α  is the level of confidence and ( )τΔ tV  is the change in the value of the portfolio 

over the time horizon τ . 
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The methods that are based on the parametric, or variance-covariance, approach 

start with the assumption that the changes in the value of a portfolio follow a Normal 

distribution. Assuming that the average change is zero, the VaR for one day of portfolio j is 

obtained as:  

 13

% , ,( %) αα σ= ⋅j t t dV jVaR k  (11) 

where %αk  is the α  percentile of the Standard Normal distribution, and the parameter to 

estimate is the standard deviation conditional upon the value of portfolio j ( ,σ t dV j ).  

In a portfolio that is made up of fixed income assets, the duration can be used to 

obtain the variance of the value of portfolio j from the variance of the interest rates in the 

following way (Jorion, 2000):  

  (12) 2
, ,σ = Σt dV j t t j tj D D'

,

where  is the variance-covariance matrix of the interest rates and  is the vector of the 

duration of portfolio j. This vector represents the sensitivity of the value of the portfolio to 

changes in the interest rates that determine its value.  

tΣ j,tD

In this section, value at risk measures are calculated and compared. In the 

parametric approach, we use the estimations of the variance-covariance matrix as obtained 

in the previous section (see Table 1). Table 5 illustrates the four measures of VaR that we 

obtain from the four variance-covariance models: 

Table 5. Type of VaR measures 

 Type of variance- covariance 

matrix estimation 

Type of VaR measure 

D_EWMA VaR_D_EWMA 
Direct Estimation 

D_GARCH VaR_D_GARCH*

I_EWMA VaR_I_EWMA 
Indirect Estimation 

I_GARCH VaR_I_GARCH 
* We did not compute VaR_D_GARCH because of the impossibility to estimate a multivariate GARCH 

model with 10 variables.  
 

In the case of the first VaR measure, VaR_D_EWMA, the VaR is obtained by 

directly estimating tΣ  with an EWMA model. This is a popular approach to measuring 

market risk, and it is used by JP Morgan (RiskMetricTM). The second VaR measure, 



VaR_D_GARCH, is also obtained by directly estimating the variance-covariance matrix, 

but in this case the second order moments are estimated using GARCH models. This VaR 

measure has not been calculated, given that the large variance-covariance matrices used in 

VaR calculations could never be estimated directly using a full multivariate GARCH model, 

because the computational complexity would be insurmountable. 

The final two VaR measures are calculated by estimating the variance-covariance 

matrix of the interest rates using the procedure described in Section 2. We can estimate the 

variance-covariance matrix of interest rates indirectly, by substituting equation (8) into 

equation (12) to obtain a new expression for the variance of the changes in the value of the 

portfolio:  

 14
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In indirect estimation,  is a diagonal matrix that contains on its principal 

diagonal the conditional variance of the principal components of the changes in the four 

parameters of the Nelson and Siegel model, and  is the modified vector of durations of 

portfolio j (of dimension 1x4) which represents the sensitivity of the value of the portfolio to 

changes in the principal components of the four parameters of the Nelson and Siegel model. 

In the VaR_I_EWMA, we use an EWMA model to estimate the variance of the principal 

components; and we use a GARCH model to estimate these variances in the case of the 

calculation of the VaR_I_GARCH measure.  

tΩ

m
j,tD

 

4.2. The portfolios 

In order to evaluate the procedure proposed in this paper for calculating VaR we 

have considered 4 different portfolios made up of theoretical bonds with maturities at 3, 5, 

10 and 15 years, constructed from real data from the Spanish debt market. In each portfolio, 

the bond coupon is 3.0%. The period of analysis is from 29/9/1995 to 29/10/1997, which 

allows us to perform 516 estimations of daily VaR for each portfolio. 

In order to estimate the daily VaR we have assumed that the characteristics of each 

portfolio do not change over the dates of the period of analysis: the initial value of the 

portfolio, the maturity date and the coupon rate. In this way, the results are comparable over 

the entire period of analysis since we avoid both the pull to par effect (the value of the bonds 

tends to par as the maturity date of the bond approaches) and the roll down effect (the 

volatility of the bond decreases over time).  



 

4.3. Comparing VaR measures 

In this section value at risk measures are compared. For all portfolio considered we 

calculate daily VaR at a 5%, 4%, 3%, 2% and 1% confidence level. Firstly, before formally 

evaluating the precision of the VaR measures under comparison, we examine actual daily 

portfolio value changes as implied by daily fluctuations in the zero cupon interest rate and 

compare them with the 5% VaR. In Illustration 5 we show the actual change in a 10 year 

portfolio together with the VaR at 5% for the three measures of VaR that we consider: 

VaR_D_EWMA (Figure 1), VaR_I_EWMA (Figure 2) and VaR_I_GARCH (Figure 3). In 

Figures 1 and 2 we observe that the value of the portfolio falls below the VaR on more 

occasions than in Figure 3. In all case, the number of times that the value of the portfolio 

falls below the VaR is closer to its theoretical level. This result is also evident in the other 

portfolios that we consider, but that we have not reported due to space considerations. This 

preliminary analysis suggests that the estimations of VaR that are obtained from both 

models, both directly and indirectly are very precise. However, a more rigorous evaluation 

of the precision of the estimations is required. 

We then compare VaR measures the actual change in portfolio value on day t+1, 

denoted as . If  <  VaR, then we have an exception. For testing purposes, we 

define the exception indicator variable as 

1tV +Δ 1tV +Δ

  (14) 1
1

1

1
0

t
t

t

if V VaR
I

if V VaR
+

+
+

Δ <⎧
= ⎨ Δ ≥⎩

a) Testing the Level  

The most basic test of a value at risk procedure is to see if the stated probability 

level is actually achieved. The mean of the exception indicator series is the level of the 

procedure that is achieved. If we assume the probability of an exception is constant, then the 

number of exceptions follows the binomial distribution. Thus it is possible to form 

confidence intervals for the level of each VaR measure (see Kupiec (1995)). 
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Table 6. Testing the Level 
 Number of exceptions 

VaR measures 3- years 5-years 10-years 15-years 

Confidence 
intervals at 

the 95% level 
VaR_D_EWMA (1%) 5 5 8 10 (1 - 10) 
VaR_D_EWMA (2%) 6 10 12 12 (5 - 17) 
VaR_D_EWMA (3%) 10 11 14 14 (8 - 23) 
VaR_D_EWMA (4%) 14 16 18 18 (12 - 30) 
VaR_D_EWMA (5%) 21 23 22 24 (17 - 36) 
VaR_I_EWMA (1%) 6 9 9 11 (1 - 10) 
VaR_I_EWMA (2%) 7 14 14 14 (5 - 17) 
VaR_I_EWMA (3%) 17 16 18 19 (8 - 23) 
VaR_I_EWMA (4%) 19 24 23 24 (12 - 30) 
VaR_I_EWMA (5%) 21 29 29 28 (17 - 36) 
VaR_I_GARCH (1%) 3 5 5 4 (1 - 10) 
VaR_I_GARCH (2%) 5 9 7 5 (5 - 17) 
VaR_I_GARCH (3%) 7* 9 13 11 (8 - 23) 
VaR_I_GARCH (4%) 11* 13 14 14 (12 - 30) 
VaR_I_GARCH (5%) 13* 17 17 17 (17 - 36) 

Note: Sample period 29/9/1995 to 29/10/1997. Confidence intervals derived from the number 
of exceptions follows the binomial distribution (516, x%) for x=1, 2, 3, 4 and 5. An * indicates 
the cases in which the number of exceptions is out of the confidence interval, so that, we obtain 
evidence to reject the null hypothesis at the 5% level type I error rate. 

 

Table 6 shows the level that is achieved and a 95% confidence interval for each of 

the 1-day VaR estimates. An * indicates the cases in which the number of exceptions is out 

of the confidence interval, so that, we obtain evidence to reject the null hypothesis at the 5% 

confidence level. For the three measures and almost all portfolios considered, the number of 

exceptions is inside the interval confidence, so that the VaR estimation (direct and indirect) 

seems to be good.  

We find just only three cases in which the number of exceptions is out of the 

confidence interval. This happen for VaR_I_GARCH measure for 3%, 4% and 5% 

confidence level of the portfolio at 3 years. In those cases the number of exceptions are 

much lower than the theoretical level, so that it seems that this measure is overestimating the 

risk of short-term portfolio. 
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b) Testing Consistency of Level  

We want the level of the VaR that is found to be the stated level on average, but we 

also want to find the stated level at all points in time. One approach to testing the 

consistency of the level is to use the Ljung-Box portmanteau test (Ljung and Box, 1978) on 

the exception indicator variable of zeros and ones. When using Ljung-Box tests, there is a 

choice of the number of lags in which to look for autocorrelation. If the test uses only a few 

lags but autocorrelation occurs over a long time frame, the test will miss some of the 

autocorrelation. Conversely should a large number of lags be used in the test when the 

autocorrelation is only in a few lags, then the test won’t be as sensitive as if the number of 

lags in the test matched the autocorrelation.  

Different lags have been used for each estimate in order to try to get a good idea of 

the autocorrelation. Table 7 shows the Ljung-Box statistics at lags of 4 and 8. 
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Table 7. Testing Consistency of Level 

 Lags 3- years 5-years 10-years 15-years 
VaR_D_EWMA (1%) 4  0,20 (0,995) 0,20 (0,995) 0,52 (0,971) 0,82 (0,936)

 8  0,41 (1,000) 0,41 (1,000) 1,06 (0,998) 5,07 (0,750)
VaR_D_EWMA (2%) 4  0,29 (0,990) 0,82 (0,936) 1,19 (0,879) 1,19 (0,879)

 8  0,59 (1,000) 4,98 (0,760) 13,60* (0,093) 4,10 (0,848)
VaR_D_EWMA (3%) 4  4,13 (0,389) 1,00 (0,910) 1,64 (0,802) 2,30 (0,681)

 8  4,85 (0,773) 4,46 (0,814) 11,22 (0,189) 5,41 (0,713)
VaR_D_EWMA (4%) 4  2,96 (0,565) 2,16 (0,707) 2,30 (0,681) 5,29 (0,258)

 8  5,26 (0,729) 4,41 (0,819) 7,30 (0,504) 7,17 (0,518)
VaR_D_EWMA (5%) 4  2,66 (0,617) 2,16 (0,707) 4,44 (0,349) 6,04 (0,196)

 8  10,66 (0,222) 6,59 (0,581) 7,90 (0,444) 7,33 (0,502)
VaR_I_EWMA (1%) 4  0,29 (0,990) 0,66 (0,956) 0,66 (0,956) 3,37 (0,498)

 8  0,59 (1,000) 5,91 (0,657) 5,91 (0,657) 6,77 (0,562)
VaR_I_EWMA (2%) 4  0,40 (0,983) 2,30 (0,681) 2,30 (0,681) 8,57* (0,073)

 8  0,80 (0,999) 5,27 (0,728) 4,63 (0,796) 10,90 (0,207)
VaR_I_EWMA (3%) 4  2,20 (0,700) 2,16 (0,707) 4,84 (0,305) 4,28 (0,369)

 8  7,79 (0,454) 4,34 (0,826) 6,71 (0,568) 5,47 (0,706)
VaR_I_EWMA (4%) 4  2,44 (0,656) 1,28 (0,864) 3,30 (0,509) 4,03 (0,403)

 8  6,75 (0,564) 2,62 (0,956) 4,48 (0,812) 6,82 (0,557)
VaR_I_EWMA (5%) 4  1,93 (0,748) 0,75 (0,945) 3,53 (0,474) 3,78 (0,436)

 8  5,55 (0,698) 2,49 (0,962) 7,87 (0,447) 14,77* (0,064)
VaR_I_GARCH (1%) 4  0,07 (0,999) 0,20 (0,995) 0,20 (0,995) 0,13 (0,998)

 8  0,15 (1,000) 0,41 (1,000) 0,41 (1,000) 0,26 (1,000)
VaR_I_GARCH (2%) 4  0,20 (0,995) 0,66 (0,956) 0,40 (0,983) 0,20 (0,995)

 8  0,41 (1,000) 5,91 (0,657) 9,68 (0,288) 19,69* (0,012)
VaR_I_GARCH (3%) 4  0,40 (0,983) 0,66 (0,956) 2,51 (0,643) 3,37 (0,497)

 8  0,80 (0,999) 5,91 (0,657) 6,15 (0,630) 9,15 (0,330)
VaR_I_GARCH (4%) 4  1,00 (0,910) 1,40 (0,843) 2,29 (0,682) 2,29 (0,682)

 8  4,40 (0,820) 5,04 (0,753) 5,28 (0,727) 5,93 (0,655)
VaR_I_GARCH (5%) 4  2,51 (0,643) 1,95 (0,746) 2,19 (0,701) 1,95 (0,745)

 8  5,05 (0,752) 3,66 (0,886) 3,91 (0,865) 3,67 (0,886)
Note: Sample period 29/9/1995 to 29/10/1997. The Ljung-Box Q-statistics on the exception 
indicator variable and their p-values. The Q-statistic at lag 4 (8) for the null hypothesis that there is 
no autocorrelation up to order 5 (10). An * indicates that there is evidence to reject the null 
hypothesis at the 5% level type I error rate. 

 

We only detect the existence of autocorrelation in the portfolios at 10 years with the 

VaR_D_EWMA (2%) estimate, in the portfolio at 15 years with the measures 

VaR_I_EWMA (2%) and (5%) and the portfolio at 15 years with the measures 

VaR_I_GARCH (2%). In general, the results of the Ljung-Box comparison indicate that 

autocorrelation is not present. When we consider other lags, that are not reported here in the 



interests of space, the result are pretty the same, so that the VaR estimate also seems to be 

good using this test.  

c) Unconditional Coverage Tests

Assuming that a set of VaR estimates and their underlying model are accurate, the 

exceptions can be modeled as independent draws from a binomial distribution with a 

probability of occurrence equal to α  percent. Accurate VaR measures should exhibit the 

property that their unconditional coverage ˆ x Tα =  equals α  percent, where x is the 

number of exceptions and T the number of observations. The likelihood ratio statistic for 

testing whether α̂ α=  is 

 ( )( ) ( )( )ˆ ˆ2 log 1 log 1T x T xx xLR α α α α− −⎡ ⎤= − − −
⎣ ⎦

 

which has an asymptotic χ2 (1) distribution. 
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Table 8. Unconditional Coverage Tests and The Back-testing Criterion 

 % of exceptions (a) (b)

 3- years 5-years 10-years 15-years 
VaR D EWMA (1%) 1,0% 1,0% 1,6%* 1,9%*+

(0,002) (0,002) (0,587) (1,563) 
[-0,071] [-0,071] [1,257] [2,141] 

VaR D EWMA (2%) 1,2%* 3,1% 3,9%+ 4,3%+ 
(0,942) (-1,156) (-1,565) (-2,340) 

[-1,358] [1,786] [3,044] [3,673] 
VaR D EWMA (3%) 1,9%* 2,1%* 2,7% 2,7% 

(0,990) (0,644) (0,065) (0,065) 
[-1,414] [-1,156] [-0,382] [-0,382] 

VaR D EWMA (4%) 2,7%* 3,1%* 3,5% 3,5% 
(1,086) (0,510) (0,159) (0,159) 

[-1,492] [-1,042] [-0,593] [-0,593] 
VaR D EWMA (5%) 4,1%* 4,5% 4,3% 4,7% 

(0,435) (0,144) (0,269) (0,059) 
[-0,970] [-0,566] [-0,768] [-0,364] 

VaR I EWMA (1%) 1,2% 1,7%* 1,7%* 2,1%*+

(0,057) (1,026) (1,026) (2,189) 
[0,372] [1,699] [1,699] [2,584] 

VaR I EWMA (2%) 1,4%* 2,7%* 2,7%* 2,7%*

(0,533) (0,524) (0,524) (0,524) 
[-1,044] [1,157] [1,157] [1,157] 

VaR I EWMA (3%) 3,3% 3,1% 3,5% 3,7%*

(0,065) (0,008) (0,175) (0,335) 
[0,392] [0,134] [0,650] [0,908] 

VaR I EWMA (4%) 3,7% 4,7% 4,5% 4,7% 
(0,061) (0,236) (0,118) (0,236) 

[-0,368] [0,755] [0,530] [0,755] 
VaR I EWMA (5%) 4,1%* 5,6% 5,6% 5,4% 

(0,435) (0,175) (0,175) (0,084) 
[-0,970] [0,646] [0,646] [0,444] 

VaR I GARCH (1%) 0,6%* 1,0% 1,0% 0,8% 
(0,467) (0,002) (0,002) (0,124) 

[-0,956] [-0,071] [-0,071] [-0,513] 
VaR I GARCH (2%) 1,0%* 1,7% 1,4%* 1,0%*

(1,498) (0,078) (0,533) (1,498) 
[-1,673] [-0,415] [-1,044] [-1,673] 

VaR I GARCH (3%) 1,4%*+ 1,7%* 2,5% 2,1%*

(2,602) (1,425) (0,188) (0,644) 
[-2,188] [-1,672] [-0,640] [-1,156] 

VaR I GARCH (4%) 2,1%*+ 2,5%* 2,7%* 2,7%*

(2,441) (1,467) (1,086) (1,086) 
[-2,166] [-1,716] [-1,492] [-1,492] 

VaR I GARCH (5%) 2,5%*+ 3,3%* 3,3%* 3,3%*

(3,522) (1,552) (1,552) (1,552) 
[-2,585] [-1,778] [-1,778] [-1,778] 

Note: Sample period 29/9/1995 to 29/10/1997. (a) Between parentheses Unconditional Coverage Tests: The LR 
statistic for testing whether the percentage of exceptions ( ˆ x Tα = ) is α  percent. An * indicates that there is 
evidence to reject the null hypothesis at the 5% level type I error rate. (b) Between square brackets Back-testing 
Criterion: The Z statistic for determining the significance of departure for ˆ x Tα =  from α %. An + indicates that 
there is evidence to reject the null hypothesis at the 5% level type I error rate. 

 20



 

Table 8 reports the percentage of exceptions observed for the 1%, 2%, 3%, 4% and 

5% quantiles over the entire sample period. In parentheses, Table 8 reports the LR statistic 

for testing whether the percentage of exceptions is the quantile. For the case of measures 

obtained from VaR_ I_ EWMA, independently of the quantile considered, we reject the null 

hypothesis that the percentage of exceptions coincides with the corresponding quantile in 

40% of the cases. The result with VaR_I_EWMA measure are pretty the same (45%). It is 

worth to note that the measure VaR_D_EWMA produce a slight underestimation the risk for 

1% confidence level and overestimate the risk for 2%, 3%, 4% and 5% confidence level. 

However, the measure VaR_I_EWMA underestimate the risk for 1%, 2% and 3% and 

overestimate for 5% confidence level.  

The result are worst with the measure VaR_I_GARCH. For this measure reject the 

null hypothesis in 75% of the times. With this measure overestimating the risk in all cases. It 

seems that whem the aim is to calculate value at risk, the GARCH models doesn’t produce a 

good estimation of the volatility.  

 

d) The Back-testing Criterion

The back-testing criterion is used to evaluate the performance of these VaR 

measures. The most popular back-testing measure for accuracy of the quantile estimator is 

the percentage of returns falling below the quantile estimate, denoted as α̂ . For an accurate 

estimator of an α  quantile, α̂  will be very close to α %. In order to determine the 

significance of departure of α̂  from α %, the following test statistic is used2: 

 Z = ˆ( %) %(1 %) (dT T T Nα α α α− − ⎯⎯→ 0,1)  

where T is the simple size. 

Table 8 presents the Z statistic for VaR measures in square brackets. For the case of 

measures obtained from EWMA, (independently of the quantile considered), we reject the 

null hypothesis that the percentage of exceptions coincides with the corresponding quantile 

in three cases with the VaR_D_EWMA measure and one time with the VaR_I_EWMA 

measure. On the other hand, with this test just only in three cases of the VaR_I_GARCH 

measure reject the hypothesis.  

In summary, we can say that the VaR measures we obtain using the simplification 

proposed in this paper are so good as that we obtain from Riskmetrics method 

 21



 22

                                                                                                                                                    

(VaR_D_EWMA). The advantage of the method we propose is that the computational cost 

to calculate value at risk is much lower. Additionally, we find slight evidence that to 

estimate value at risk the EWMA model seem more accurate that the autoregressive 

conditional volatility models (GARCH models).  

 

5. Conclusion 

In this paper we propose a method for calculating the variance-covariance matrix of 

a large set of interest rates with a low computational cost. The methodology suggested 

exploits the parametrization of the underlying interest rates that was proposed by Nelson 

and Siegel (1987) for estimating the yield curve. The method proposed in this paper turns 

out to be useful for estimating VaR, since it simplifies considerably the calculation of this 

measure.  

Following the papers of Alexander (2001) and Gento (2000), the starting point for 

our method is an explanatory model of the interest rates. However, contrary to those 

authors, our model is based on that of Nelson and Siegel (1987) whose objective was to 

estimate the TSIR. Using a linear approximation, this model provides a relationship in 

which the changes in interest rates are a function of the changes in four parameters. 

Although this approximation reduces the dimension of the variance-covariance matrix, it 

still requires covariances to be estimated. In order to solve this problem, we propose the 

application of principal components of the changes in the four parameters of the Nelson and 

Siegel model (1987). Given the orthogonality of the principal components among 

themselves, the resulting variance-covariance matrix has a smaller dimension since it is 

diagonal, that is, all the covariances are zero.   

The procedure that we propose in this paper has been contrasted using data from the 

Spanish debt market. The results of this application of our methodology are very 

satisfactory. On the one hand, the variances that we estimate with our procedure and those 

that are given by a direct estimation are quite similar, independently of the method used to 

estimate them (Exponentially Weight Moving Average Model (EWMA) vs. autoregressive 

conditional volatility models). 

Concerning the calculation of VaR, the estimations that we obtain using EWMA 

models, both under direct and indirect estimation (following the procedure proposed here) 

are quite precise. The estimations of VaR get worse when we directly estimate the variance-

 
2 This criterion has been used by Alexander and Leigh (1997), etc.  
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covariance matrix of the interest rates using GARCH models. These results not only validate 

the methodology proposed in this paper, but they also point out that the use of EWMA 

models for calculating VaR yields superior results to those obtained using GARCH models. 

 



 24

References 
 

Alexander, C.O. and C.T. Leigh (1997) “On the covariance Matrices used in Value at Risk 
Models”, Journal of Derivatives, 4,3, 50-62. 

Alexander, C.O. (2001), “Orthogonal GARCH,” Mastering Risk (C.O. Alexander, Ed.) 
Volume 2. Financial Times – Prentice Hall, 21-38. 

Basel Committee on Banking Supervision (1996), Amendment to the Capital Accord to 
Incorporate Market Risk. 

Benito, S,. and Novales, A., (2005): "A factor analysis of volatility across the term structure: 
the spanish case". Documento de trabajo nº0502 del Departamento de Fundamentos 
de Análisis Económico II de la UCM.  

Gento, P. (2000), “Un enfoque alternativo para el cálculo del valor en riesgo en carteras de 
renta fija”, Documentos de Trabajo del Área de Teoría Económica y Economía 
Financiera de la Universidad de Castilla-La Mancha, 1/2000/3. 

Gento, P. (2001), “Comparación entre modelos alternativos para la estimación del riesgo”, 
Documentos de Trabajo del Área de Teoría Económica y Economía Financiera de la 
Universidad de Castilla-La Mancha, 1/2001/1. 

García-Donato, G., Gento, P. and Ortega, J.F. (2001), “Normal versus student in measuring 
value at risk. An empirical bayesian overview”, Documentos de Trabajo del Área de 
Teoría Económica y Economía Financiera de la Universidad de Castilla-La Mancha, 
1/2001/4. 

Gómez, I. (1999), “Aproximación al riesgo de precio de un activo de renta fija a través de 
un modelo de duración multifactorial paramétrico”. VII Foro de Finanzas, Valencia. 

Gómez, I. (1998), “Estructura Temporal de Tipos de Interés en el Mercado Español de 
Deuda del Estado: Caracterización, Dinámica e Implicaciones en Nuevas 
Herramientas para la Gestión de Carteras de Renta Fija”, Tesis Doctoral, Huelva. 

Jorion, P. (2000), Value at Risk: The New Benchmark for Managing Financial Risk, 
published by McGraw-Hill. 

Morgan, J.P. (1995), “RiskMetrics Technical Document”, 3d ed. New York. 

Kevin, D.(2002), Measuring Market Risk, published by John Wiley & Sons Ltd. 

Kupiec, P. (1995), “Techniques for verifying the accuracy of risk measurement models”, 
Journal of Derivatives, 2, 73-84. 

Ljung, G.M. and G.E.P. Box (1978), “On a Measure of Lack Fit in Time Series Models. 
Biometrica, 65(2) pp 297-303. 

Nelson, C.R. and Siegel, A.F. (1987), “Parsimonious modelling of yield curves”, Journal of 
Business, 60 (4), 473-489. 

  

 



Illustration 1. Comparing the changes of interest rates observed with the estimated changes (equation (5)). 
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Illustration 2. Comparing the variance of changes of interest rate: Direct and indirect estimation using 
exponentially weighted moving average model. 

 
Figure 1(a). Conditional Standar Deviation, 1 year 
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Figure 1(b). 1 year
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Figure 2(a). Conditional Standar Deviation,  3 years 
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Figure 2(b). 3 years
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Figure 3(a). Conditional Standar Deviation,  5 years
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Figure 4(b). 10 years
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Figure 4(a). Conditional Standar Deviation, 10 years
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Figure 4(b). 10 years
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Illustration 3. Comparing the variance of changes of interest rate: Direct and indirect estimation using 
GARCH model. 
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Figure 1(b). 1 year
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Figure 2(a). Conditional Standar Deviation,  3 years 
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Figure 2(b). 1 year
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Figure 3(a). Conditional Standar Deviation,  5 years 
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Figure 3(b). 5 years
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Figure 4(a). Conditional Standar Deviation,  10 years
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Figure 4(b). 10 years
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Illustration 4. Comparing the covariance between interest rate: Direct and indirect estimation using 
exponentially weighted moving average model. 
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Figura 2(a). Conditional Covariance, 3 years - 5 years
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Figure 1(b). 3 year - 5 years
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Figura 3(a). Conditional Covariance, 3 years - 10 years
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Figure 1(b). 3 year - 10 years
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Figura 4(a). Conditional Covariance, 5 years - 10 years
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Figure 1(b). 3 year - 10 years
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Illustration 5. The 5% one day VaR for a 10 year portfolio. Direct estimation using an exponentially 
weighted moving average model, VaR_D_EWMA(5%), indirect estimation using an exponentially 
weighted moving average model, VaR_I_EWMA(5%), and indirect estimation using a GARCH model, 
VaR_I_GARCH(5%). 
 

5% one day VaR. Portfolio at 10 years. 
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5% one day VaR. Portfolio at 10 years. 
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5% one day VaR. Portfolio at 10 years. 

VaR_I_GARCH 
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