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Abstract

This article presents joint econometric analysis of interest rate risk, issuer-specific risk (especially

credit risk) and bond-specific risk (especially liquidity risk) in a Lando (1998) type model within the

Duffie/Singleton framework. Our model includes correlation between interest rate risk and issuer-

specific risk. By means of data augmentation we develop a framework that allows for exact Bayesian

analysis to estimate the model parameters and to separate the different components of risk. In particu-

lar we do not require an arbitrary benchmark bond that is free of any bond-specific risk. The estimation

procedure is applied to coupon bond data from the German market.

Keywords: Credit risk, Liquidity risk, Duffie/Singleton framework, Markov Chain Monte Carlo esti-
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1 Introduction

Credit risk literature and industry measure the difference between risky bonds and risk-free bonds in the

form of risk spreads. These spreads, in general, include both credit risk and liquidity risk and any market

microstructure problems (see e.g. Campbell et al. (1996) or Gallmeyer et al. (2004)). Given empirical

bond data, the standard procedure in literature (see e.g. Duffie et al. (2003) or Pan and Singleton (2005))
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‡Leopold Sögner, Department of Management Science, Vienna University of Technology, Theresianumgasse 27, 1040 Wien,

Austria, soegner@imw.tuwien.ac.at

1



assumes for each issuer the observation of exactly one bond without any liquidity risk, which obviously

is a strong assumption. This article presents a refined estimation technique that allows identification

and estimation of issuer-specific components and bond-specific components becomes without this strong

assumption.

The main objective of this article is to model interest rate risk, issuer-specific and bond-specific risk

and to develop an econometric methodology to separate and analyze these three types of risk. Our

investigation is based on the Lando (1998), Duffie and Singleton (1999) and Feldhütter and Lando (2005)

credit risk framework. For the risk-free term structure we employ a partially decoupled system of affine

diffusion processes as formalized by Duffie and Kan (1996). We model the risk-free term structure by a

representative of the A1(3) class which was introduced by Dai and Singleton (2000) and, under a different

probability measure by Collin-Dufresne and Goldstein (2002). In addition, we use for each issuer one

latent issuer-specific factor (e.g. including credit and issuer-specific liquidity risk) and for each bond a

latent bond-specific factor. One can imagine this bond-specific factor to represent bond-specific liquidity

risk and other sources arising from market imperfections (see e.g. Campbell et al. (1996) or Gallmeyer

et al. (2004)). Motivated by empirical evidence on the correlation of interest rate risk and credit risk

(see e.g. Longstaff and Schwartz, 1995; Wei and Guo, 1997; Duffee, 1999; Frühwirth and Sögner, 2006),

our model is able to account for correlation between the risk-free term structure and issuer-specific risk.

After setting up the model we use coupon bond prices from the German market to estimate the model

parameters. To find out more about the nature of the latent processes representing issuer-specific and

bond-specific risk, the estimates are regressed against some possible determinants (including a liquidity

proxy taken from literature).

Let us briefly review existing literature on the modeling (in a Duffie/Singleton type model) and es-

timation of different spread components. Especially, three papers have to be highlighted in this field:

Duffie, Pederson and Singleton (see Duffie et al., 2003, henceforth DPS) estimate and separate credit risk

and liquidity risk using Russian government bonds. They use simulated maximum likelihood to estimate

the parameters. By contrast, Feldhütter and Lando (2005) focus on the swap and the corporate bond

market. The authors adapt the Lando (1998) framework to decompose corporate bond yields into different
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components (two factors for the risk free short rate, two factors for the credit spread, one factor treasury

premium distinguishing the treasure rate form the riskless rate). For estimation they use the extended

Kalman filter. Also ? used Kalman filter techniques to for parameter estimation. When working with

yields, applying the Kalman filter is straightforward. However, when working with coupon bond data, the

observation equation is highly non-linear in the system equations such that neither filtering is straightfor-

ward nor the distributional assumptions of Kalman filter correspond to the distributional assumptions of

the term structure model. Although, filtering can be adapted to enable parameter estimation, parameter

estimation of term structure models by means of maximum likelihood remains a nasty problem, especially,

when no closed form solutions for the zero coupon prices are available. If not, like in the model structure

used in this article, the maximization of the likelihood requires to solve a system of differential equations

numerically (see Duffie and Kan (1996)) in each maximization iteration. In experiments with simulated

data, Frühwirth et al. (2005) find out that maximum likelihood is unstable and MCMC clearly improves

the quality of the estimation. Last but not least ? provide a lot of interesting results which are also tested

and extended in this article. Driessen inferred a negative relationship between credit spreads and the

risk free term structure, a liquidity component with a downward sloping term structure of the liquidity

component and a significant impact of the bond age on the credit spread.

Our paper extends literature in the following ways:

In contrast to Feldhütter and Lando (2005) or ? we use a Markov Chain Monte Carlo estimation

methodology instead of maximum likelihood estimation based on a Kalman filter. This enables us to use

transition density approximations for the observed data instead of the normal assumption inherent in the

Kalman filter technique. As these approximations in contrast to a normal density assumption are based

on the characteristics of the underlying stochastic processes, these approximations are closer to the true

density than the approximation by a normal density.

Let us come to the difference to DPS: The drawback of the methodology applied in DPS is that for

each issuer they need to exogenously specify a benchmark bond (reference bond) that is absolutely and

at each point in time free of any bond-specific risk (liquidity risk) in order to obtain a one-to-one relation

between bonds available for estimation and driving factors. This assumption requires the non-existence
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of idiosyncratic risk (which is in contrast to e.g. Pan and Singleton (2005), p. 32). Especially, it must

be possible for each issuer analyzed to identify this benchmark bond even before starting the estimation

procedure. Thus, altogether, such an assumption in general can be considered as too restrictive.

Therefore, in contrast to DPS, we take recourse to data augmentation releasing us from the assumption

of a benchmark bond. The DPS framework can be seen as a special case of our methodology. With our

methodology it is possible to evaluate for each issuer if the DPS assumption is appropriate and if this is

the case our methodology can show which bond is the appropriate benchmark bond. Another difference

between our paper and DPS is the estimation methodology: Whereas DPS use simulated maximum

likelihood, we apply Markov Chain Monte Carlo (MCMC) estimation.

This paper is organized as follows: Section 2 describes the model. Section 3 outlines the estimation

methodology. Section 4 describes the data used in the empirical part. Section 5 presents the estimation

results received from the German bond data. Section 6 concludes.

2 The Model

We work in a frictionless and arbitrage-free market setting in continuous time t. A probability space with

a filtration (Ft) with the usual properties (CADLAC) is underlying the model. The empirical probability

measure and an equivalent martingale measure (risk-neutral measure) will be abbreviated by P and Q,

respectively.

In the following, we define as “risk class” a homogenous set of bonds with identical issuer-specific and

bond-specific risk. We consider one issuer with j = 1, . . . , J coupon bonds on the market. We symbolize

by Uj(t) the set of coupon dates for bond j occurring between t and maturity (including maturity). Traded

are risk-free zero-coupon bonds for all maturities and risky zero-coupon bonds for all maturities and all

risk classes, both with a face value of 1. All zero-coupon bond prices satisfy the no-arbitrage condition.

The time-t price of a zero-coupon bond with maturity T reflecting the risk of coupon bond j is abbreviated

by vj(t, T ).

The time t price of the risky coupon bond j, pj(t), is a linear combination of its remaining cash flows
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Cpj(u) and the risky zero-coupon bond prices vj(t, u):

pj(t) =
∑

u∈Uj(t)

vj(t, u)Cpj(u). (1)

The risk-free term structure, the issuer-specific risk and the bond-specific risk are modeled by the

following latent stochastic processes X(t) and discount rates R(t):

Assumption 1. The risk-free area is modeled by a three factor model. Let us define the respective latent

vector process (Xrf (t)) by Xrf (t) = (X1(t), X2(t), X3(t))>. Based on recent literature (see e.g. Tang and

Xia (2005)), we model (Xrf (t)) as a member of the A1(3) family introduced by Dai and Singleton (2000).

This results in 14 identifiable parameters for the risk-free term structure (see Collin-Dufresne et al., 2004).

This model structure turned out to cope with the volatility structure

of term structure models. ¿From (Xrf (t)) we obtain the risk-free discount rate Rrf (t) = δ0,rf +

δ>x,rfXrf (t), with δx,rf = (δ1, δ2, δ3)>.

Assumption 2. For the issuer-specific risk we use one latent process denoted as (X4(t)), independent

of the risk-free area. We model X4(t) by means of a square root process since X4(t) is assumed to

drive especially credit risk (besides some other issuer-specific sources of risk) and consequently should

have a positive domain. From the latent processes driving the risk-free area and from (X4(t)) we receive

the discount rate for a fictitious bond with zero bond-specific risk: RI(t) = δ0,I + δ>x,IXI(t), where

δx,I = (δ1, δ2, δ3, δ4)> and XI(t) = (X1(t), . . . , X4(t))>.

Assumption 3. To model the bond-specific risk we use one latent Ornstein-Uhlenbeck process for each

bond. This process is symbolized by (X5,j(t)), where j stands for the number of the corresponding

bond (j = 1, . . . , J). The processes for different bonds j are assumed to be identical in distribution

but not path-wise. X4 and X5,j are jointly independent, where each X5,j follows a Gauss process. The

bond-specific discount rates are Rj(t) = δ0,j + δ>x,jXj(t), where δx,j = (δ1, . . . , δ4, δ5,j)> and Xj(t) =

(X1(t), . . . , X4(t), X5,j(t))>.

For notational completeness we introduce X(t) = (X1(t), . . . , X3(t), X4(t), X5,1(t), . . . , X5,J(t))>, and

δx = (δ1, . . . , δ3, δ4, δ5,1, . . . , δ5,J)>. ¿From Assumptions 1, 2 and 3 the vector process X(t) is of dimension
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M = 4 + J , furthermore X is an affine stochastic process under P and can be represented in the form

dX(t) = β(α−X(t))dt+ Σ
√
S(t)dW (t) (2)

such that the Duffie and Kan (1996) methodology for affine term structure models can be applied. In (2)

β and Σ are (M ×M) matrices with positive elements, α is M × 1 and S(t) is a diagonal matrix with

components

Sii(t) = ai + b>i X(t) . (3)

¿From the above assumptions a1 = 0, a4 = 0, a5, . . . , a4+J = 1, b1(1), b4(4) = 1, and b2(1), b3(1) free. All

other bi = 0 and Σ diagonal. Note that a1 = 0, b1(1) = 1, and b2(1), b3(1) arbitrary, which follows from

Assumption 1. The first three components of X(t), i.e Xrf (t), are described by an A1(3) model. The

assumptions a1 = 0, a4 = 0 and b1(1), b4(4) = 1 account for the fact that the first component of the risk

free term structure and the issuer specific component are square root. The remaining restrictions arise

from Assumtion 3 where the bond specific components are independent Ornstein-Uhlenbeck processes.

Regarding parameter estimation, if the components a high dimensional diffusion system were indepen-

dent, this would not cause big problems. However when considering term structure models, the results

of e.g. Longstaff and Schwartz (1995); Wei and Guo (1997); Duffee (1999); Frühwirth and Sögner (2006)

provide strong arguments for factors, particularly for correlation between credit risk (which especially

enters into our issuer-specific risk) and interest rate risk. Now, if some factors, i.e. components of (X(t)),

are correlated with the risk-free term structure, the estimation problem becomes non-trivial. A natural

and direct approach is to include these interdependencies by parameterizing the stochastic differential

equations of the latent process X(t). Unfortunately, due to current computing power, the calculation of

closed-form likelihood expansions from Aı̈t-Sahalia (2002) becomes a serious computational obstacle for

order two expansions of higher dimensional interdependent diffusions. Thus, a direct application of a high

dimensional Duffie and Singleton (1999) framework with correlated factors cannot be estimated.
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Therefore, as an alternative we have to reduce the complexity of this problem. We do this by a

separate treatment of the risk-free term structure by means of the A1(3) model (see Assumption 1) and an

application of the Lando (1998) generalized Markovian framework, also applied in Feldhütter and Lando

(2005), for the issuer-specific risk. This framework enables us to construct risky zero coupon prices and a

risky short rate correlated with the risk free short rate, while keeping the Assumptions 1 to 3 unchanged.

Moreover, a separate estimation of the risk-free term structure parameters is possible.

Using this framework we are able to construct an affine term structure model where the issuer-specific

risk is allowed to depend on the risk-free term structure and nevertheless a separate estimation of the

risk-free term structure parameters and issuer-specific and bond-specific components is feasible.1

We consider the most simple setting within the Lando (1998) framework with K = 2 states, where

only a no-default and an absorbing default state are considered. The corresponding generator matrix is

given by:

Λ =

 −λ1 λ12

0 0

 (4)

¿From Lando (1998), if (Xj(t)) is a stochastic process satisfying the usual conditions, the risky zero-

coupon bond prices for bond j in rating class i are given by:

vj(t, T ) =
K−1∑
l=1

βilEQ

[
exp(

∫ T

t
(µ(Xj(s))− ν(Xrf (s)))ds)|Ft

]
, (5)

where EQ[.|Ft] is the conditional expectation under the equivalent martingale measure Q and µ(Xj(t))−
1An alternative to the Lando (1998) frameworkwould have been the Dai and Singleton (2000) framework. However,

using the Dai and Singleton (2000) framework results in the following econometric problem: With interdependent factors the
parameters of the issuer-specific and bond-specific components affect the risk-free zero-coupon bond prices, or more precisely
the parameters of issuer-specific and/or bond-specific components enter into the ordinary differential equations of Duffie
and Kan (1996), when solving for the zero-coupon bond prices. Thus, when calculating the risky zero-coupon bond prices

vj(t, T ) = EQ

[
exp

(
−

∫ T

t
Rj(s)ds

)
|Ft

]
, the risk-free zero-coupon bond prices would change. Thus, a separate treatment

of the risk-free area and the risky area requires restrictions on the parameters that are very severe from an economic point
of view. By contrast, the Lando (1998) approach provides a methodology where a separate treatment of the risk-free term
structure is still possible, and only a small number of (at least one) extra parameter is necessary. For details see later in this
section.
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ν(Xrf (t)) describes the risky stochastic discount rate. ν(Xrf (t)) is a function describing the risk-free

discount rate, i.e. by our above assumptions ν(Xrf ) = δ0,rf + δ>x,rfXrf (t) = Rrf (t). The risky discount

rate can be derived from Rj(t) = β11[µ(Xj(t))− ν(Xrf (t))].

Since K has been set to 2, the sum in (5) consists of only one element and the zero-coupon bond price

and the discount rate are given by β11EQ

[
exp(

∫ T
t (µ(Xj(s))− ν(Xrf (s))ds

]
and β11[µ(Xj(s))−ν(Xrf (t)],

respectively. The coefficient β11 could derived from β11 = −b11b−1
12 , where bil are the corresponding

elements of the matrix of eigenvectors of Λ. However, since the zero-coupon bond price and the discount

rate are proportional to EQ

[
exp(

∫ T
t (µ(Xj(s))− ν(Xrf (s))ds

]
and µ(Xj(s))− ν(Xrf (t), β11 can be set to

1 whithout changing the structure of the model while keeping the model indentified.2

Since, by our assumptions, the risk-free and the risky discount rate are affine (which is also assumed in

the applied part of Lando (1998)), the stochastic discount rate µ(Xj(t))− ν(Xrf (t)) has to be affine, too.

In such a setting the correlation of risk-free term structure and the risky discount rates can be modeled

as follows.3

Rj(t) = δ0,j + (1− c)
3∑

l=1

δlXl(t) + δ4X4(t) + δ5,jX5,j(t) (6)

where the parameter c controls the correlation of the risk-free and the risky discount rates and the risky

zero-coupon bond prices are derived from

vj(t, T ) = EQ

[
exp(−

∫ T

t
Rj(Xj(s))ds)|Ft

]
. (7)

Thus, we can first estimate the risk-free area with the corresponding 14 parameters including δx,rf

and the estimates of (X1(t), X2(t), X3(t)), then with fixed estimates of δx,rf = (δ1, δ2, δ3) and estimates of

2Since β11 is derived from the eigenvalues of a generator matrix, β11 has to be in the interval [0, 1]. E.g. Feldhütter and
Lando (2005) take the coefficients βil from Moody’s transition matrix for credit risk classes. However for a model with K = 2
we do not loose any information and flexibility of the model by setting β11 = 1. An estimation from the data would result in
identification problems.

3Generalizations with are possible, e.g. of the form Rj(t) = δ0,j + (1− c1)X1(t) + (1− c2)X2(t) + . . . .
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(X1(t), X2(t), X3(t))4, we estimate the remaining parameters – including c – of the risky term structure.

In the ongoing analysis we set δ0,rf , δ0,j = 0.

In order to obtain an intuitive interpretation of the market prices of risk we employ a completely

affine market price of risk specification λ =
(
λ1, λ2, λ3, λ4

)>
. By this, XI(t) is an affine stochastic

process also under Q, such that the fundamental term structure PDE can be reduced to a system of ODE’s

as formalized by Duffie and Kan (1996). Due to the affine dynamics of X(t), the price of a (fictitious)

zero-coupon bond subject to the risk of bond j, vj(t, T ), is exponentially affine in Xj(t), resulting in

zero-coupon bond prices

vj(t, T ) = EQ

[
exp(−

∫ T

t
Rj(s)ds)

]
= EQ

[
exp(−

∫ T

t
δ>x,jXj(s)ds)

]
= exp

(
Aj(T − t)−Bj(T − t)>Xj(t)

)
, (8)

where β11 has already has been set to 1, δ0=0, δ0,j=0 and j = 1, . . . , J . In the following, the set of

parameters defined in this section, including the parameters of the stochastic processes, δx and the market

prices of risk λ, are abbreviated by ψ.

3 Estimation Methodology

For parameter estimation of continuous-time multi-factor term structure models in general, financial

econometrics has recently created different approaches to make parameter estimation feasible or to improve

the quality of estimators (e.g. Brandt and Santa-Clara (2002), Elerian et al. (2001), DPS). Onestrand of

recent literature has developed tools based on discretization schemes, for both frequentist and Bayesian

methodologies. Roughly speaking, the idea of these schemes is to augment the observations by latent

terms. With this augmented set of

observations, either maximum likelihood based methods or Bayesian methods can be applied coming

to an improved quality of the estimates. In a Bayesian setting, Elerian et al. (2001) approximate non-
4We use the means from the risk-free posterior.
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linear stochastic differential equations by the Euler scheme. In Bayesian terminology – they augment

the parameter space by latent spot rates between the actually observed data to improve the quality of

the estimation methodology. The authors find that inserting approximately ten data points between two

actually observed data points is sufficient. A similar approach with similar results is provided in Eraker

(2001).

Alternatives such as simulated maximum likelihood (see e.g. Brandt and Santa-Clara, 2002) or some

Bayesian analogs developed in Elerian et al. (2001) and Eraker (2001), as well as the methods of Singleton

(2001), or Bates (2005), all suffer from a different curse of dimensionality. Consequently, these approaches

turn out to be very time consuming, resulting in an insufficient number of MCMC steps within reasonable

time.

We consider a problem with discretely sampled data, generated by diffusion processes. We have time

gaps ∆n = tn−tn−1 and n = 1, . . . , N . In absence of holidays and weekends the step-width would be always

1/365. Due to holidays and weekends the step-width is correspondingly higher between some successive

observations. The measurements of the continuous-time stochastic process (X(t)) and the corresponding

transformations Xrf (t), R(t), and pj(t) at tn are Xn, Xrf,n, Rj,n, and pj,n.

A well-known difficulty with this kind of estimation problem is that an estimation of the stochastic

differential equations based on an Euler approximation results in poor performance for different estimation

methodologies when ∆n is too large.

¿From our assumptions in Section 2 the transition density π(Xn) | Xn−1) corresponds to

π(Xn | Xn−1) = π(X1,n, X2,n, X3,n | X1,n−1, X2,n−1, X3,n−1)

·π(X4,n | X4,n−1)
J∏

j=1

π(X5,j,n | X5,j,n−1), (9)

where the closed-form approximations from Aı̈t-Sahalia (2001), Aı̈t-Sahalia (2002), and Aı̈t-Sahalia and

Kimmel (2002) are applied to obtain the first density on the right hand side.
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For any one-to-one transformation Pn = F (Xn), the transition density of Pn is derived by

π(Pn|Pn−1) = π(Xn|Xn−1)
1

det|JF (.)|
(10)

where det|JF (.)| is the determinant of the Jacobian of the function F (.). This requires that the Jacobian

of the transformation F (.) has full rank.

3.1 Augmentation of the Parameter Space

Our goal is the estimation of the parameters without having to exogenously select a benchmark bond free

of any bond-specific risk. The main problem that occurs without defining a benchmark bond is that the

number of coupon bonds is too small compared to the number of latent stochastic processes.

Given that we have three factors for the risk-free area and one latent process reflecting issuer-specific

risk, modeling and estimating the processes for J bonds of the same issuer requires a joint density of

dimension 4+J . The processes for the risk-free area can be estimated from time series of risk-free interest

rates for three different maturities. In addition, we have J time series from the J coupon bond prices,

giving altogether 3+J time series. Thus, there is a lack of one time series. E.g. if we consider two bonds

of the same issuer (J = 2) we have one latent process driving the issuer-specific risk and two processes

driving bond-specific risk. We therefore have three latent processes but only two bonds.

In formal terms, the main difficulty arises from the fact that the dimension of the observations P̄n∈ RL

is smaller than the dimension of the vector of latent variables Xn∈ RM . While due to the number of risk

factors M = 4 + J , the observations P̄n include three risk-free interest rates and J coupon bond prices,

such that the dimension is L = 3 + J . From our model assumption the components of P̄ ∈ RL are linear

combinations of zero-coupon bond prices. This fact has already been described by equations (1) and

(8), where the risky zero-coupon bond prices ∈ RM depend on the risk-free components Xrf,n. Next we

abbreviate the map from Xn ∈ RM to P̄ ∈ RL by F̄ (Xn). Since the dimension of the domain of F̄ (Xn) is

of higher dimension than its range, the mapping P̄n = F̄ (Xn) cannot be one-to-one.

Due to this lack of a one-to-one relation between the latent factors and the data, the transition densities

of the bond prices cannot be calculated by using the change of variables formula in (10) using e.g. the
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closed-form likelihood expansions as developed in Aı̈t-Sahalia (2001), Aı̈t-Sahalia (2002) and Aı̈t-Sahalia

and Kimmel (2002).

One way to solve this technical problem is to assume that there is a benchmark bond without any

bond-specific risk, as done by DPS. By this, one can reduce the dimension of Xn from M = L + 1 to

M = L which enables a one-to-one mapping.

In this paper we present an alternative resolution of this dilemma, namely data augmentation. To be

more precise, we add the entire time series of an artificial bond to the parameter space. This artificial

bond is free of any bond-specific risk.5 Thus, we augment the parameter vector by X̃4,n, n = 1, . . . , N ,

which is a one-to-one transformation (parameterization) of X4,n; this transformation will be abbreviated

by g(X4,n).

 P̄n

X̃4,n

 =

 F̄ (Xn)

g(X4,n)

 := F (Xn) = Pn (11)

This makes the vector of augmented bond prices Pn ∈ RM , such that the transformation Pn = F (Xn)

is one-to-one. Pn includes three risk-free yields (or bond prices), the artificial bond X̃4,n and the risky

coupon bond prices pj , j = 1, . . . , J .

A well-known fact with MCMC methods is that the parameterization of latent variables has an im-

portant impact on the convergence properties of the sampler (see e.g. ?, ?). For this reason we performed

simulation experiments. In these experiments we found out that working directly with X4(t), assuming

X̃4(t) = X4(t), results in good sampling properties. Therefore, in the following we set X̃4(t) equal to

X4(t).
5A similar methodology is also applied in Bayesian estimation of stochastic volatility models, where latent volatility paths

are included into to the set of model parameters. Since the transition densities of the returns are usually known, adding
latent volatility terms makes parameter estimation by means of MCMC feasible (see e.g. Jones (2003) or ?). Alternatively,
in terms of filtering literature, we consider a dynamic model of dimension 4+J , where the observation equation defines a
vector of dimension 3+J . The system equations are of dimension 1. By augmenting the parameter space, we add the system
equations to the observation equation and derive a system enabling a one-to-one mapping between the bond prices and the
stochastic processes on the one hand and the latent backward driving stochastic process (X(t)) on the other hand. Then
the conditional densities of the bonds can be computed by applying the change of variables formula. As our approach is in
principle an application of the well-developed missing-value or filtering literature, it is worth noting that our methodology
offers an opportunity to investigate also other models where extra securities are necessary to complete the model and to
perform parameter estimation.
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An important aspect of our approach is that the Markov property is maintained6 such that the cal-

culation of joint conditional densities remains straightforward. The key ingredient to our methodology is

that given a specification (including its parametrization) for the dynamic evolution of the processes, we

only look out for values of X4(t) and consequently (X5,j(t)), that most likely have happened. Instead of,

before estimation, defining one actually existing and observed time series as the time series that reflects

a bond without bond-specific risk we add to the existing time series a time series of an artificial bond

without bond-specific risk. This is done simultaneously to the estimation of all parameters. We point out

that our estimation framework allows both the estimation of the sample path of this artificial bond and

the estimation of the corresponding model parameters.

We point out that the methodology developed above can be easily extended to models with an arbitrary

number nf of factors for the risk-free area and nd > 1 issuer-specific risk factors. In this case time series

of risk-free interest rates for nf maturities are necessary and nd time series are missing which requires

augmentation of the parameter space by nd latent stochastic processes (i.e. nd artificial bonds free of any

bond-specific risk).

Our approach in one aspect resembles the DPS approach, as both approaches involve a bond without

bond-specific risk. Therefore, we want to point out the major differences: First, with our approach no

observed time series is defined as “without bond-specific risk”. Thus, (in our framework) the DPS technique

involves a reduction of the number of latent processes (by one process) whereas our technique involves an

increase in the size of the parameter space (by one complete time series of an artificial bond). Second,

we have a simultaneous simulation of the posterior distribution of the artificial bond and estimation of

the model parameters (including those generating the simulated time series). Third, we admit that our

methodology produces a ”softer” statement than DPS: We can only identify the most likely latent processes

for bond-specific and issuer-specific risk instead of presenting unique latent processes (i.e. with probability

1).

To further elaborate the relation between the two approaches: The DPS approach can be seen as a
6See Appendix A for a more detailed coverage. Appendix A shows that ouraugmentation results in a well-defined model

and that {P (t), σ(P (s), s < t)} is Markov as well (since L < M). It is worth noting that P̄ (t) need not necessarily be Markov
(see e.g. the comment in Aı̈t-Sahalia and Kimmel (2002).)
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special case of our methodology. If the benchmark bond assumption of the DPS approach does not hold,

then our approach produces a ”softer” statement than DPS, which however is more correct than a hard

statement relying on a bond (without bond-specific risk) that does not exist. If the DPS benchmark

bond assumption holds, our methodology should estimate for one of the bonds a bond-specific component

insignificantly different from zero over the whole time span considered. This bond so turned out to be the

appropriate benchmark bond. Thus, with our methodology it is possible to evaluate for each issuer if the

DPS assumption is appropriate and if yes which bond can be used as a benchmark bond.

3.2 MCMC estimation

As already noted, the complex model structure makes a direct application of maximum likelihood infeasi-

ble. Therefore we apply Bayesian simulation methods to estimate the posterior distribution of the model

parameters. The simulation methods concerned with this simulation task are Markov Chain Monte Carlo

methods (see Robert and Casella (1999)). Using D for the data observed, by means of the Bayes theorem

the posterior distribution of a parameter θ, π(θ|D) is proportional to the likelihood f(D|θ) times the prior

π(θ), i.e.

π(θ|D) ∝ f(D|θ)π(θ) ,

In our modelD corresponds to the bond prices observed P̄ = (P̄1, . . . , P̄n, . . . , P̄N ), n = 1, . . . , N , where

N is the number of periods considered. As outlined in Section 3.1 we add the artificial bond process or

issuer-specific spread process X4,n = X̃4,n, n = 1, . . . , N , to the set of parameters. A full Bayesian analysis

also requires to calculate the density π(X1|X0), where X0 = (X1,0, X2,0, X3,0, X4,0, . . . , X4+J,0)′ has to be

included to the set of unknown parameters.7 Thus with the augmented set of parameters θ = (X4, X0, ψ)

and with our model structure, the a-posteriori distribution fulfills
7By contrast, Aı̈t-Sahalia and Kimmel (2002) work with N − 1 conditional densities and marginal density π(X1), where

the impact of this last density is asymptotically negligible; X0 and X1 the first and the second element of (Xn). For an
exact Bayesian analysis we can either work with the marginal density - which has to be known explicitly - or with data
augmentation. Since this marginal is not available, we proceed with the latter approach.
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π(θ|D) ∝ f(D|θ)π(θ)

∝ π(P̄ |X4, X0, ψ)π(X4|X0, ψ)π(X0|ψ)π(ψ)

∝ f(P |X0, ψ)π(X0|ψ)π(ψ) . (12)

where P = (P1, . . . , PN ). The definition Pn = (P̄n, X̃4,n)>), X̃4,n = X4,n and by the Bayes theorem

π(P̄ |X4, X0, ψ)π(X4|X0, ψ) = f(P |X0, ψ) we derive the likelihood f(P |X0, ψ), which is the product of N

densities derived in equation (9).

Equipped with these conditional densities an exact Bayesian analysis can be performed to estimate

all model parameters θ. π(X0|ψ) and π(ψ) are the priors of the initial value of X and the unknown

parameters of the stochastic processes ψ. These priors are chosen by the econometrician, while by the

fact that π(P̄ |X4, X0, ψ)π(X4|X0, ψ) = f(P |X0, ψ), the ¨prior¨ π(X4|X0, ψ) is completely determined by

our model assumptions.

Priors: We use flat priors for all the remaining parameters X0 and ψ. The prior for X0 is multivariate

normal with true unconditional expectation and five times the covariance, where each element of the

variance-covariance matrix is multiplied by this constant factor. The expectation and the covariance can

be computed as limits of the exact conditional expectation and covariance, that are readily available for

affine diffusions. Since this limits only converge for stationary diffusions a consequence of this choice of

prior is stationarity throughout the estimation. I.e. measure zero is put on parameter constellations where

the Feller condition does not hold for any of the square root processes.

Moreover, from an economic point of view it is plausible that the spread induced by bond and issuer

specific risk is non-negative, i.e. Rj,n ≥ Rrf,n. ¿From equation (6) we therefore derive −c
∑3

l=1 δlXl,n +

X4,n + δ5,jX5,j,n(t) ≥ 0 ∀n = 1, . . . , N . 8 Measure zero is put to all parameters where this restriction

does not hold. Despite the fact that this restriction is based on economic considerations, the sampling

properties improve and .. hier kommt noch Text dazu

MCMC: Since all conditional distributions are well-defined, Markov Chain Monte Carlo methods can
8Here we already use δ0,j = 0 and δ4 = 1.
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be applied. By decomposing an updating sweep m into updating steps (which usually result from the

structure of the joint density of the model), we construct an ergodic Markov chain (θ[m]). This chain

converges to its invariant distribution which is the desired posterior distribution of the model parameters.

In an application of MCMC, the updating procedure is repeated until the Markov chain has reached its

invariant distribution. In the current application the autocorrelation of the sample paths are high. To

cope with this, we generated runs with 1,000,000 simulation sweeps. For more detailed information on

Markov chain Monte Carlo methods the reader is referred to Robert and Casella (1999) and Albert and

Chib (2003)).

For the underlying model the updating sweep m, from θ[m−1] to θ[m], is split up into three steps:

Step 1: X
[m]
4 from π(X4|P̄ ,X [m−1]

0 , ψ[m−1])

Step 2: X
[m]
0 from π(X0|P̄ ,X [m]

4 , ψ[m−1])

Step 3: ψ[m] from π(ψ|P̄ ,X [m]
4 , X

[m]
0 )

Samples of the conditionals π(X4|P̄ ,X [m−1]
0 , ψ[m−1]), π(X0|P̄ ,X [m]

4 , ψ[m−1]) and π(ψ|P̄ ,X [m]
4 , X

[m]
0 )

are derived by means of the Metropolis/Hastings algorithm. Let ζ be a subset of θ, i.e. elements of X4,

X0 or ψ, then a proposal ζnew from the proposal density q(ζnew|ζ) is accepted with probability min(1, rp),

where

rp =
π(Pnew|ψnew, Xnew

0 )π(Xnew
0 |ψnew)π(ψnew)

π(P |ψ,X0)π(X0|ψ)π(ψ)
q(ζnew|ζ)
q(ζ |ζnew)

. (13)

ζnew replaces the corresponding elements of θ in the case of acceptance, in the case of rejection corre-

sponding parameters remain equal to ζ. The following comments show the use of the Metropolis/Hastings

algorithm in each of the three steps of the respective updating sweeps in the MCMC estimation, described

above.

ad Step 1: When X4 is updated we split the path (X4,n), n = 0, 1, . . . , N into random blocks, with

expected block size 3. This number is small compared to the proposals suggested in Elerian et al. (2001),

but accounts for the fact that we are confronted with daily data which results in very informative densities.
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Given the block indices n0 and n1, ζ = (X4,n0, . . . , X4,n1) is going to be updated. X4 is a component

of P in equation (13), such that the application of the Metropolis/Hastings algorithm is straightforward.

We adopt the proposal strategy from Eraker (2001). As in step 1 only elements of X4 are updated, the

densities π(X0|ψ)π(ψ) cancel out in equation (13).

ad Step 2: The update of X0 works equivalently to the update of X4. In updating X0 we update the

elements in one block jointly with X4. Note that when X0 is updated the conditional densities referring

to X1 still remain in equation (13).

ad Step 3: Updating of ψ is once again a straightforward application of the Metropolis/Hastings

algorithm. When comparing the results with different expected block sizes, it turned out that blocks with

mean expected block size 3 resulted in good properties.

Proposal densities: For all the parameters we use a normal proposal e.g. logX4,n: Xnew
4,n = X4,n + cxε

and ε ∼ iid N (0, 1). The term log q(ζnew|ζ)− log q(ζ |ζnew) = 0 in (13). Admissibility of the parameters

is ensured through the prior of X0 which implies stationarity.

To attain a sampler capable of “switching” between different regions of the parameter space, we vary

c.. In 10% of the proposals for the parameters ψ, c. is large, while for the remaining parameters we use a

small variance. Particularly with the log-normal proposals we switch between c. = 0.1. and c. = 0.5.

4 Data

The data used in our study are daily observations from January 1st, 2004 to August 31st, 2005. Excluding

holidays and weekends the observation period includes 428 days with data.

For the default-free area we exclusively used data provided by the Deutsche Bundesbank which can

be downloaded from http://www.bundesbank.de. For the maturities 1 month, 3 months and 6 months we

took recourse to the respective EURIBOR data. For the maturities 1, 2, ..., 10 years we used estimates

of the parameters of the Svensson (1994) model. The Svensson parameters have been estimated by the

Deutsche Bundesbank from German government bonds (”Federal bonds”) and government notes (”Federal

notes”) with residual maturities of at least three months, using a non-linear parametric approach.9

9The interest rates described are interest rates with annual compounding (for the Svensson interest rates) or compounding
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The default-risky bond data set comprises 7 German Mark (DEM) or Euro (EUR) denominated fixed-

rate senior unsecured bank10 or corporate bonds11 without sinking fund provisions or embedded options.

Bonds issued by a financing subsidiary and guaranteed by the mother were considered as issued by the

guaranteeing mother. From the Bloomberg database we extracted for each issuer the rating history and

for each bond the bond features.

As regards rating, we used the long-term domestic issuer rating from S&P. All issuers selected had a

stable rating (both the coarse rating and the fine rating reflected by - or +) throughout the observation

period. 5 bonds are issued by Bayerische Hypo- und Vereinsbank with an A- rating, 2 bonds are issued

by METRO with a BBB rating. Issuer, maturity, coupon rate and instrument code (ISIN) of all bonds

are listed in Appendix B.

For each bond and each trading day, we obtained the gross price (dirty price) from the Datastream

database with the prices of the HVB bonds derived from Munich stock exchange and those of the METRO

bonds from Frankfurt stock exchange.

5 Estimation Results

5.1 Estimated Spread Processes

From our model assumptions the total risk spread of a bond consists of both issuer-specific and bond-

specific risk. From equation (6) (where δ0,j = 0) we can derive the instantaneous issuer specific spread

at the end of the maturity (for EURIBOR). As in our model continuously compounded interest rates are required, the
(sub-)annually compounded rates were converted into continuously compounded rates before entering into our model.

10One argument sometimes raised against the analysis of credit risk of banks is that banks usually are bailed out and
therefore cannot go bankrupt. However, bailing out is no default in the sense of credit risk models, as no claims are reduced.
One popular example of a bank default, corresponding to the usual definition, is the Barings case in 1995. In addition,
analysts forecast that intensifying competitive pressures in the banking sector will provoke an increase in the number of bank
defaults. Furthermore, if banks could not default it would have to be argued why banking laws contain insolvency provisions
for banks, why secured senior bonds or subordinated bonds are issued by banks and why there are price differences between
government bonds and identical bank bonds and within identical bank bonds of different seniority. It is hard to believe
that the total of these price differences is attributable to liquidity differences. Also, Kiesel et al. (2003) cannot support the
argument, that bank bonds are less risky than non-bank bonds with the same rating.

11As the liquidity of bank and corporate bonds usually is smaller than that of government bonds, sometimes researchers use
credit derivatives instead of or in addition to default-risky bonds to estimate or evaluate credit risk models (see Cossin and
Hricko (2001) or Houweling and Vorst (2003)). However, as the credit derivatives market in Germany is only in its infancy
and therefore liquidity of credit derivatives is not satisfactory, we decided to use bonds. The same is done by e.g. Düllmann
et al. (2000) and Houweling P and Kleibergen (2001) who use German bond data of different rating classes for credit risk
analysis.
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at time-step n, ISPRn = RI(tn)−Rrf (tn) and the instantaneous total spread for bond j at time-step n,

TSPRn,j = Rj(tn)−Rrf (tn):

ISPRn = −c
3∑

l=1

δlXl(t) +X4(t) , (14)

TSPRn,j = −c
3∑

l=1

δlXl(t) +X4(t) + δ5,jX5,j,n . (15)

From the MCMC output we can estimate these spreads. ÎSPRn is an estimate of ISPRn taken

from the posterior distribution. ÎSPR1 is derived by taking the sample mean of the MCMC samples of

the issuer-specific process (1,000,000 MCMC steps with 500,000 burn in), n = 0, 1, . . . , N ; T̂ SPRj,n, j =

1, . . . , J is derived in the same way as the estimates of the model parameters. Although the Feller condition

was used to check for stationary model parameters for square root processes, the standard Dickey-Fuller

test rejects the zero hypothesis of a unit root at a 5% significance level, while an augmented Dickey-Fuller

test (with a constant) does not reject the zero hypothesis of a unit root when using the estimates of the

issuer-specific risk process. Table 1 presents some descriptive statistics, with a multiplication of these

statistics by 10,000 being required to receive the corresponding statistics for spreads in terms of basis

points.

Figure 1 shows samples of the posterior distribution of the total spread for the two METRO bonds.

We observe that the estimated paths for both bonds have a downward trend and that the spread for the

second METRO bond is higher. We observe the same behavior with the HVB bonds.

Table 2 presents estimates of the model parameters.

The following subsection will provide a more in depth analysis on the properties of these estimates.

5.2 Determinants of the Spreads

The goal of this subsection is to find out the drivers of corporate bond spreads. To this end we first

present plausible candidates and afterwards show the estimation results.
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MEAN MEDIAN MAX MIN STD
HVB

ÎSPR 0.01989 0.01989 0.002077 0.001859 3.89E-05
T̂ SPR1 0.006677 0.006583 0.011362 0.001710 0.002377
T̂ SPR2 0.003856 0.003961 0.007969 5.40E-05 0.001653
T̂ SPR3 0.007254 0.007088 0.013124 0.000872 0.002890
T̂ SPR4 0.007550 0.007669 0.013056 0.001255 0.003090
T̂ SPR5 0.013421 0.014303 0.022633 0.003011 0.005580

METRO
ÎSPR 0.002036 0.002046 0.002139 0.001852 5.34E-05
T̂ SPR1 0.002235 0.002066 0.005022 0.000243 0.001267
T̂ SPR2 0.001938 0.001577 0.005694 0.000140 0.001311

Table 1: Descriptive statistics of issuer specific spreads and total spreads.

5.2.1 Candidates for Determinants of the Spreads

The candidates used in our analysis as explanatory variables for the issuer-specific spread and the bond-

specific spread are the DAX index, the market-value debt ratio, the distance to default, the default-free

term structure level, the term spread of the default-free term structure, and the age of the respective

bond.

We include the DAX 30 Xetra Performance Index, extracted from Datastream, to measure economic

activity. An economic upturn reflected by rising stock prices (DAX) should reduce the credit risk perceived

by the market participants, by this reducing especially the (credit risk related) issuer-specific spread.

Including a stock market index (instead of the less frequently observed macroeconomic indicators GNP or

GDP) has been suggested by e.g. Jarrow and Turnbull (2000). Additionally, we include the share price,

STPn, for which similar arguments are supposed to hold.

A further candidate for the credit spread is the market value debt ratio (”debt to value ratio”)

DV Rn =
Dn

Sn +Dn
, (16)

where Sn is the daily market capitalization at stock exchange and Dn is the market value of a firm’s

debt. Since the difference between book and the market values with debt is smaller than with equity,
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HVB METRO
α4 0.00205523 (4.92E-01) 0.00201856 (5.85E-05)
β44 4.79083 (0.65898255) 5.40477 (0.32670972)
λ1d 0.189665 (0.03556379 ) 0.0699962 (0.0223327)
Σ44 0.0100979 (3.59E-05) 0.0100061 (3.78E-05)
λ2d 0.00597845 (0.0025578) -0.00031647 (0.00180545)
λ5,1 0.415789 (0.12063633 ) -0.114041 (0.051889)
λ5,2 -0.415164 (0.11363376) -0.455991 (0.03734826)
λ5,3 -0.395363 (0.05975682 )
λ5,4 -0.242079 (0.07161819)
λ5,5 -0.377617 (0.05298538 )
β55 1.20426 (0.16118358) 1.63966 (0.18226555)
β66 1.17691 (0.09890209) 1.45526 (0.17783472 )
β77 1.20585 (0.1094075)
β88 1.22573 (0.09176127)
β99 1.1274 (0.18987861)
δ5,1 0.00890408 (0.00029579) 0.00314502 (0.00011315)
δ5,2 0.00593328 (0.00038141) 0.00241247 (0.00012731)
δ5,3 0.00778648 (0.00070022)
δ5,4 0.00631431 (0.00103032)
δ5,5 0.00923439 (0.00343892)
c 0.573638 (0.01918452) 0.118908 (0.01479916)

Drift under Q
β55 0.000643764 (0.01334669) -1.63733 (0.02269867)
β66 0.0293178 (0.04795671) -1.45183 (0.02318898)
β77 0.140446 (0.05384456)
β88 0.00792883 (0.04865862)
β99 0.143731 (0.11206857)

Table 2: Parameter estimates (and standard deviations in parantheses). βii are elements of the (4 + J)× (4 + J) matrix β
(see equation (2)).
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Figure 1: Estimates of the total spreads for the METRO Bonds (left subfigure: Bond METRO 1, right subfigure: Bond
METRO 2) estimated from 1,000,000 MCMC steps (500,000 burn in steps).

we use book values. For the dates at the end of the respective quarters we take the quarterly debt data

from the quarterly balance sheets. For all other dates, we derive Dn by linear interpolation. We expect,

that the higher the debt to value ratio, the higher the probability of default and therefore, the higher the

corresponding spreads.

In Merton type models, the distance to default is a major ratio to describe the conditional probability

of default. In industry practice the KMV distance to default (see e.g. ?) is often used:

DDj
n =

Sn +Dn −DP

(Sn +Dn)σj
V

(17)

Sn + Dn is the value of the firm. σV is the standard deviation of the firm value. In this article we

calculate three different distances to default, depending on the methodology σV is calculated. First,

based on the model assumptions σj
V is a constant parameter. Therefore, we estimate this parameter by

means of unlevering the equity volatility, derived from the market capitalization; this results in DDI
n.

I.e. we calculated σ2
V = NSV(STPn)365, where STPn is the share price and NS is the number of shares

outstanding. As often done in applied literature, the standard deviation of the firm value is derived by

an implicit estimation from the Black-Scholes formula. KMV used a constant interest rate of five percent

in this calibration scheme. This results in DDII
n . Third, we used the one year risk-free spot rate instead
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of a constant interest rate, resulting in DDIII
n . Although, there are even problems with the distance to

default to predict default probabilities (see ?), the KMV distance to default is one commonly accepted

indicator of default risk. Thus, we expect that the higher the distance to default, the smaller the actual

(issuer-specific) spread.

The default-free term structure level and the term spread are selected to check for a dependence of the

spread process on the default-free term structure. This is important because there is plenty of literature

showing a relation between credit risk (which is part of our issuer-specific spread process) and the risk-

free term structure. As indicated by several articles (see e.g. Litterman and Scheinkman (1991) or Duffee

(1998)), most of the variation in the default-free term structure can be captured by its level and its slope

(also referred to as ”term spread”).

Literature on the influence of the level of the default-free term structure is mixed. Longstaff and

Schwartz (1995), Wei and Guo (1997), Duffee (1998), Alessandrini (1999), Düllmann et al. (2000) and

Annaert et al. (2000) come to the result that the credit spread is inversely related to the default-free term

structure level. According to Duffee (1999) the influence of the risk-free rate level is not significant. Jaffee

(1975) and Fridson and Jonsson (1995) find that the influence of the default-free term structure on credit

spreads is negligible. Bühler et al. (2001) find an insignificant dependence on the default-free interest rate

level (for most of the maturities investigated). Morris et al. (1999) show a negative short-run relationship

and a positive long-run relationship. Arak and Corcoran (1996) find that parameters and significance

depend on credit quality.

There is plenty of literature relating to the influence of the term spread, too. E.g. Duffee (1998) shows

at least in part a significant influence of the default-free term spread. In Alessandrini (1999) or Annaert

et al. (2000) a significant dependence of credit spreads for alternative credit risk classes on the term spread

can be found - at least for some maturities. Düllmann et al. (2000) find that a decrease in the slope of the

default-free term structure leads to a decrease in short-term credit spreads and an increase in medium-

and long-term credit spreads.

Our proxy for the default-free term structure level is the one-year spot rate (denoted as RFLEV EL

in the regression models), calculated from the Svensson parameters. Basically, the choice of the maturity
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is arbitrary and we could equally select a long-term spot rate as a level proxy. Our proxy for the term

spread (symbolized by RFSLOPE in the regression models) is the difference between the ten year spot

rate and the one year spot rate, both computed from the Svensson parameters. We do not select a spot

rate with a maturity of more than ten years as both number and liquidity of government bonds is very low

in the ”>10 years” segment. Moreover, the 10-year/1-year spread is also used as a proxy for the interest

rate differential in the German bond market by the Deutsche Bundesbank.

Finally, we use age as a liquidity proxy in our analysis. Two arguments are raised for including

liquidity proxies in our regression. First, it is plausible to assume that both the issuer-specific spread

and (especially) the bond-specific spread reflect liquidity risk. Second, Ericsson and Renault (2001) find

a positive correlation between liquidity risk and credit risk. These facts should be reflected in higher

issuer-specific and bond-specific spreads for less liquid bonds. The use of age (AGE) as a liquidity proxy

is consistent with literature (see e.g. Sarig and Warga (1989), Warga (1992), Ericsson and Renault (2001)

and Schultz (2001)). Newly issued bonds in general are considered to be more liquid than older bonds.

Thus, we would expect a positive coefficient for the age variable. Last but not least we also include the

trading volume, V OLn. Unfortunately, volume data were only available for the second Metro bond.

5.2.2 Results - Determinants of the Spreads

Given the candidates discussed in Subsection 5.2.1, we estimate the regression model ÎSPRn = β0 +

β1AGEn +β2RFLEV ELn +β3RFSLOPEn +β4DAXn +β5STPn +β6IDD
I
n +β6IIDD

II
n +β6IIIDD

III
n +

β7DV Rn + β9ÎSPRn−1 + β10ÎSPRn−2 + εn, where n is the number of the observation, AGEn in the

context of the issuer-specific spread is the age of the second bond issued by this issuer (HVB 2 or METRO

2, respectively).

Performing standard model selection for the ÎSPRn time series, results in the significant variables

AGE, RFLEVEL, RFSPREAD and ÎSPRn−1 for the HVB when using a 5% significance level. For

METRO the variables AGE, DAX and the first order lagged term remained significant. I.e. only the

variable AGE has a significant influence. The sign is negative for both issuers. Thus, the older the bonds

(to be more precise the second bond of an issuer), the lower the issuer-specific spread.

24



For HVB the signs for the variables RFLEV EL and RFSLOPE are significant and positive, i.e.

the higher the level or the slope of the risk-free term structure, the higher the issuer-specific spread.

The positive influence of the term structure slope on the spread is unexpected, as a bank borrows on a

short-term basis and lends on a longer-term basis resulting in higher earnings if the term structure slope is

higher. By contrast, for METRO RFLEV EL and RFSLOPE are highly insignificant. We point out that

as we have already included the parameter c to cope with the interdependence between the risk-free and

the risky term structure, the regression results especially for HVB indicate that the model is not flexible

enough to describe the complete interdependence between the risky and the risk-free area observed with

the data.

The DAX index is significant only for METRO. The different influence of the risk-free interest rates

and the equity markets for the two issuers seems plausible: HVB is a financial institution where one

would expect a stronger influence of the interest rate environment than for the (non-financial) METRO.

Obviously, by contrast the bond prices of METRO are driven to a larger extent by the overall equity

market than by the interest rate environment.

It is interesting to see that the both the distance to default and the debt ratio, that seem to be very

obvious candidates, turn out to be insignificant for both issuers.

Table 4 presents the regression analysis for the total spreads, with the regression setting T̂ SPRj,n =

β0 + β1AGEn + β2RFLEV ELn + β3RFSLOPEn + β4DAXn + β5STRn + β6IDD
I
n + β6IIDD

II
n +

β6IIIDD
III
n + β7DV Rn + β8V OLn + β9ÎSPRn−1 + β10ÎSPRn−2 + +εTSPR,n. For all bonds considered,

the variable AGE is significant with the sign of the corresponding regression parameter being negative.

This negative impact of age on the spread has already been observed with the issuer-specific spread.

We conclude from our regression analysis that the liquidity proxy AGE has a significant impact on both

bond-specific and issuer-specific spreads. However, the negative signs of the estimates are in contrast to

our expectations (see Subsection 5.2.1). As the influence of size is negative for all spreads and all bonds,

the reason may be that a time trend that is automatically included in the variable AGE, as both age and

time evolve deterministically, may outweigh the liquidity effect in the AGE variable. E.g. if there was

a trend like a reduction of credit and/or liquidity risk perceived by the market, this could explain the
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inverse relation between age and spread.

An interesting structure of significance of the parameters can be observed. While a lot of the regression

parameters are insignificant for the METRO bonds and the HVB bonds with a relatively short time to

maturity, the credit proxies become significant for those bonds with longer time to maturity. For the first

METRO bond, which matures in 2006, only RFLEV EL, DAX and DRG are significant in addition to

AGE and the first order autoregressive term, while for the second METRO bond (with maturity 2008)

DD and DRG are also significant. For the first HVB bond it was RFLEV EL, DAX and DDj and DRG,

while it was DAX and DRV for the second one. For the HVB bonds with the longer time to maturity

only RFSLOPE is insignificant, while the other parameters considered are significant. For the long term

bonds all proxies have a significant impact.

What is interesting concerning the influence of the risk-free term structure is the difference in the

influence of the risk-free interest rate level on the issuer-specific risk on the one hand and total risk on the

other hand. For the issuer-specific risk, the significance level of parameters is relatively low, however, the

higher the risk-free interest rate level, the larger the issuer-specific spread (which is in line with the results

of Longstaff and Schwartz (1995), Wei and Guo (1997), Duffee (1998), Alessandrini (1999), Düllmann

et al. (2000) and Annaert et al. (2000)). For the total spread the results are mixed. This may be a

possible explanation of the ambiguous findings of Arak and Corcoran (1996) and Morris et al. (1999) on

the influence of the risk-free term structure on the spread.

A further interesting finding is the fact that the remaining impact of RFLEV EL measured by β̂2 is

significant, i.e. the model setup cannot completely cope with the interdependence of the risky and the

risk-free term structure. For the second HVB bond and the METRO bonds the sign of β̂2 is negative,

for the other bonds the sign is positive. For those bonds with a positive (negative) β̂2, the Lando (1998)

model underestimates (overestimates) the impact of the risk-free term structure. The mixed results with

respect to the slope of the risk-free term structure correspond to the ambiguous results one can find in

literature.

As regards the DAX, we observe only positive regression parameter estimates, i.e. if β4 is significant, a

growth in the stock price index increases the spread. Thus, against the intuition an increase in the general
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stock market increases the total spread. This counter-intuitive result leaves room for future research.

Especially, it has to be checked whether a disaggregation using the stock price of the respective issuer

instead of a broad market index (as in the Jarrow and Turnbull (2000) suggestion) leads to more intuitive

results. For the variables DD and DRV , the signs of the parameter estimates, when significant, meet our

expectations. A higher distance to default decreases the total spread, while a higher debt to value ratio

increases the spread.

Altogether, when comparing the two issuers we can observe that for the BBB-rated METRO bonds a

lot of variables are insignificant while for the A-rated HVB bonds many variables are significant. Especially,

it is plausible that the influence of the risk-free term structure is more dominant/significant for the HVB

bank bonds than for the non-bank bonds of METRO or alternatively, that this impacts are caused by the

time to maturity of the bonds.
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6 Conclusions

The goal of this article is to separate and estimate the components of the spread between corporate bonds

and the risk-free term structure. In our model the risk-free area is modeled by a representative of the

A1(3) family, the issuer-specific spread is driven by a square root process and the bond-specific spreads

are modeled by Gauss processes. We apply and adapt the Lando (1998) framework. This setting enables

a separate estimation of the risk-free term structure parameters, along with integrating a correlation

between issuer-specific risk and interest rate risk.

For this model standard maximum likelihood estimation cannot be applied for lack of the likelihood.

As regards the estimation technology, in contrast to existing literature (Duffie et al. (2003), Feldhütter

and Lando (2005)) we use MCMC estimation based on density approximations from Aı̈t-Sahalia (2002).

We apply Bayesian simulation methods to estimate the posterior distribution of the model parameters.

To enable an exact Bayesian analysis we augment the parameter space by a latent process, reflecting the

issuer-specific spread (artifical bond without any bond-specific risk). This procedure makes the vector

of ”observed” variables the same dimension as the vector of latent stochastic factors. Together with

standard assumptions on affine term structure models this results in a one-to-one correspondence between

the observations and the latent stochastic factors such that the density transformation formula can be

used to calculate the densities required for Bayesian estimation. Therefore, our approach sheds light on

new applications that can be engineered with the well-developed tools of the missing-value literature.

Extensions of our methodology to models with rating-specific and/or industry-specific risk are straight-

forward, given sufficient computing power for higher dimensional density approximations as well as to

perform a sufficient number of MCMC steps. Also, the methodology developed in this article allows to

build cascades of factors, e.g. rating-specific factors on an upper (more aggregate) level, industry-specific

factors on a lower (more disaggregated) level, etc. An analysis of this kind is hardly possible if one has to

rely on benchmark bonds (with one risk factor equal to zero) or other approaches currently documented

in literature.

One major advantage of the MCMC sampler is that also the posterior distribution of the latent issuer-

specific and bond-specific processes is estimated. Therefore, we can use these estimates and check for
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further determinants of the bond-specific and issuer-specific spread. We find that the age of the bond

(inversely), in part the level of the risk-free term structure (inversely for the issuer-specific spread and

positively correlated for the bond-specific spread) and in part the slope to the risk-free term structure

(positively correlated) have a significant impact on the issuer-specific and bond-specific spreads. The

influence of the risk-free term structure is more dominant/significant for the HVB bank bonds than

for the non-bank bonds issued by METRO. The DAX index has no significant impact on the spreads.

This provides an argument against Jarrow and Turnbull (2000) type models that model explicitly the

dependence of the spread on a stock index.

A Markov Property of the Augmented Observations

First we check whether the augmentation results in a well-defined model. In (11), the function F̄ is

extended such that P (t) = F (Y (t)) and F−1(.) exists (a.s.). An augmentation of this kind of course

requires that the Jacobian of F̄ has full rank, i.e. rank(J(F̄ (.))) = L (a.s.)., which is fulfilled by the model

assumptions of Section 2. If rank(J(F̄ (.))) < L extra augmentations would be necessary. Now a function

F (.) can be constructed such that the Jacobian of F has rank M (a.s.). E.g. if rank(F̄ ) = L = M−1, then

an augmentation with the component X̃4,n = g(X4,n) provides us with the desired result. In simulation

experiments it turned out that working with X̃4,n = X4,n results in good sampling properties.

Second, we have to show if {X(t), σ(X(s), s < t)} and F̄ (.) fulfills the properties described in Section 2

with the augmentation constructed in Section 3, then {P (t), σ(P (s), s < t)} is Markov as well.

Proposition 1 (Joint Markovianity of P ). If {X(t), σ(X(s), s < t)} is Markov, P (t) = F (Y (t)) and

is continuous and one-to-one, then {P (t), σ(P (s), s < t)} is a joint Markovian system.

Proof. We need to show that

E [P (t) | σ(P (s), s < t)] = E [P (t) | P (s)] .

Since X is Markov, P̄ (t) given the sigma field generated by X(t) is Markov. F is one-to-one, i.e. F−1(.)

exists and continuous (and therefore measurable). Therefore every open set in σ(P (s), s < t) has a open
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corresponding set in σ(X(s), s < t), i.e. both sigma fields are equivalent.

B List of bonds used for estimation

HVB bonds (AA bank):

Bond# Abbreviation Issuer Maturity Coupon ISIN

(MM/DD/YYYY) (p.a.)

1 HVB 1 Bayerische Hypo- und Vereinsbank 02/13/2006 4.75% DE0002515590

2 HVB 2 Bayerische Hypo- und Vereinsbank 01/08/2007 4.5% DE0002516416

3 HVB 3 Bayerische Hypo- und Vereinsbank 08/11/2008 3.875% DE0008087834

4 HVB 4 Bayerische Hypo- und Vereinsbank 11/26/2010 5.75% DE0002515566

5 HVB 5 Bayerische Hypo- und Vereinsbank 03/27/2012 5.625% DE0002516556

METRO bonds (BBB non-bank):

Bond# Abbreviation Issuer Maturity Coupon ISIN

(MM/DD/YYYY) (p.a.)

6 METRO 1 Metro Finance BV 03/09/2006 5.75% DE0006111909

7 METRO 2 Metro AG 02/13/2008 5.125% DE0002017217
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