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Shape Factors and Cross-Sectional Risk

A New Measure and its Empirical Implications for Portfolio Risk Management

Abstract

Litterman, Scheinkman, and Weiss (1991) and Engle and Ng (1993) provide empirical

evidence of a relation between yield curve shape and volatility. This study offers theo-

retical support for that finding in the general context of cross-sectional time series. We

introduce a new risk measure quantifying the link between cross-sectional shape and

market risk. A simple econometric procedure allows us to represent the risk experienced

by cross-sections over a time period in terms of independent factors reproducing possible

cross-sectional deformations. We compare our risk measure to the traditional cross-yield

covariance according to their relative performance. Empirical investigation in the US

interest rate market shows that 1) cross-shape risk factors outperform cross-yield risk

factors (i.e., yield curve level, slope, and convexity) in explaining the market risk of yield

curve dynamics; 2) hedging multiple liabilities against cross-shape risk delivers superior

trading strategies compared to those stemming from cross-yield risk management.



1 Introduction and Summary of Results

Financial risk management aims at reducing the unpredictable effect of volatile market

conditions on the value of investment portfolios. Traditionally, this variability is

evaluated through dispersion measures of the portfolio value around its expected

average return. Assessing these figures requires some hypotheses about the random

evolution of factors determining the value of all positions in the portfolio.1 Beyond

the problem of data availability, modeling market determinants is a challenging task

due to their heterogeneity and high number.

One way to reduce factor heterogeneity is to identify and sort basic financial quan-

tities (e.g., yields, asset prices, implied volatilities) along one or more cross-sectional

dimensions.2Modeling cross-sectional dynamics is a difficult task due the high num-

ber of involved variables. In principle, there is one variable per observation along

each cross-sectional dimension. The issue of identifying and hedging against a re-

duced number of significant factors has been extensively dealt with in the context of

interest rate markets. All major traditional approaches to bond portfolio risk man-

agement share a common methodology. First, yield curve deformations are selected

and linked to a reduced number of underlying factors. Then, the investment portfolio

is diversified so as to minimize its sensitivity to yield curve shifts stemming from a

perturbation in these factors. However, these approaches differ in the way these shifts

are modeled.

One strand of literature assigns specific functional forms to any conceivable yield

curve updating. These forms range from parallel shifts as postulated by Redington

(1956) and Fisher and Weil (1972) to parametric families of functions as suggested by

Chambers, Carleton, and McEnally (1988) and Prisman and Shores (1988), among

others. The approach has the remarkable advantage of accounting for full information

about the yield curve. Unfortunately, it provides no statistical support for the selected

deformations, which are usually chosen on the basis of qualitative considerations. This

absence may hinder the effectiveness of hedging strategies grounded on this approach.

Another branch of literature identifies factors in a few benchmark yields (e.g., El-

ton, Gruber, and Michaely (1990)), or particular linear combinations of them, usually
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determined by means of statistical analysis (e.g., Litterman and Scheinkman (1991)).

In the latter case, factors are ranked according to their contribution to the histori-

cal market volatility and the first few significant ones are retained for the purpose

of representing market risk. This approach dramatically simplifies the selection of

effective risk management strategies. However, and in contrast with the aforemen-

tioned functional approach, the method is irrespective of the typical shapes displayed

by time series of yield curves and leave the corresponding information unaccounted

for.3In particular, it ignores any possible link between cross-sectional shape and mar-

ket volatility.

In the context of interest rate markets, Litterman, Scheinkman, and Weiss (1991)

report evidence of strong correlation between interest rate volatility and yield spreads

of certain butterfly positions representing yield curve shape through its convexity;

Engle and Ng (1993) show that empirical yield curve deformations can be explained

by combining expected short-term rate changes and term premia, which in turn are

related to a volatility factor through the standard APT.

Motivated by these findings, we introduce a new measure of risk accounting for the

link between cross-sectional shapes and volatility and provide an empirical assessment

of its performance in the U.S. Treasury Bond market. Our presentation is organized

along three logical steps. First, we record the empirical covariance experienced by

cross-sectional shapes on a given time period. This is our measure of cross-sectional

risk and we refer to it as cross-shape risk. Next, we decompose this risk into analytic

cross-sectional deformations representing cross-shape risk factors. These steps consti-

tute the main theoretical contribution of the paper. Finally, we compare cross-shape

risk to the traditional cross-yield covariance and assess their performance for 1) re-

producing the historical market volatility through a reduced number of underlying

factors and 2) selecting effective risk management strategies.

We run a backtest simulation and compare two multiperiod bond portfolio strate-

gies, one immunizing against cross-shape risk, the other hedging against cross-yield

risk. A first test shows that a limited number of cross-shape factors better accounts

for interest rate risk than the same number of cross-yield factors as defined as the
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principal components of a cross-yield covariance. Even more interestingly, a second

test indicates that the vast majority of trading simulations that immunize against

cross-shape risk deliver profit and loss (P&L) distributions displaying a significantly

smaller dispersion than those resulting from strategies that hedge against cross-yield

risk. These empirical results indicate that our cross-shape risk measure outperforms

the cross-yield covariance for the purpose of explaining and managing interest rate

volatility.

The paper is organized as follows. Section 2 introduces the notion of cross-shape

risk and provides an econometric decomposition of it in terms of ranked cross-sectional

deformations. Section 3 highlights the main differences between cross-shape risk and

the traditional notion of cross-yield covariance. Section 4 describes the U.S. Treasury

bond data used in the empirical analysis. Sections 5 and 6 develop comparative tests

on the performance of cross-shape and cross-yield risk measures. Section 7 concludes

with a few remarks and suggestions for further research.

2 Cross-Shape Risk

2.1 Model Setting

We consider a financial market where a cross-section y (t) = {y (t, τ) , τ > 0} of inter-
est rates, asset prices, or any other financial index is quoted on each day t. For the

purpose of assessing the market risk experienced by the cross-section on a time period,

we consider a number N of quoted values y1 = y (t, τ1) , ..., yN = y (t, τN ), sorted by

time-to-maturity, i.e., τ1 < ... < τN . Absolute returns ∆yi := y (t+∆, τ i)− y (t, τ i)

over a period ∆ can be linked to factors z1, ..., zN representing the systematic (i.e.,

nondiversifiable) components of market risk through the Linear Return-Generating

Gaussian Model adopted by Litterman and Scheinkman (1991):

∆yi = µi +
NX
j=1

vji zj + εi. (1)

Here the εi’s represent mutually independent and nonsystematic risk components,

each one being idiosyncratic to the corresponding return.4 This representation suffers
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from two shortcomings. First, it does not account for the risk borne by returns not

included in the set. This feature undermines the risk analysis of portfolios involving

unobservable portions of the cross-section. Moreover, model (1) makes no reference to

the shapes exhibited by historical yield curves, which represent important information

for the trader.

We propose to modify model (1) and account for a continuum of yields by setting

∆y (τ) = µ (τ) +
NX
j=1

vj (τ) zj , (2)

where µ (τ) denotes the expected shift in the cross-section and z =(z1, ..., zN ) ∼
NN (0, I) gathers independent and normally distributed sources of market noise. The

relationship between cross-sectional shape and risk is accounted for through functions

vj (τ) (j = 1, ...,N ; τ ≥ 0) representing statistically independent curve deformations.
Although these latter are usually unobservable, they can be inferred from the mar-

ket through a simple econometric procedure that generalizes principal components

analysis to functional data.

2.2 Model Econometrics

We propose a three-step procedure to define and decompose a measure of cross-

sectional risk in terms of statistically independent cross-sectional deformations.

Step I (Cross-sectional fitting). We assume the cross-section is daily recovered as a

superposition of a finite number of basis shapes, i.e.,

y (t, τ) =
NX
l=1

cl (t)ψl (τ) , (3)

where each coefficient cl (t) denotes the curve sensitivity with respect to a small

perturbation in the corresponding shape ψl at time t. As noted by Anderson et al.

(1996), these shapes can be selected based on the typical cross-sectional deformations

displayed in the market under investigation.

Step II (Cross-sectional risk measurement). The average shift µ (τ) in formula (2) and

the cross-section of time normalized and centered absolute returns∆y := ∆−1/2 [∆y − µ]
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are both linear combinations of basis shapes, i.e.,

µ (τ) =
NX
l=1

µlψl (τ) , and ∆y (τ) =
NX
l=1

δlψl (τ) , (4)

where weighing coefficients are defined by µl := E [cl (t+∆)− cl (t)] and δl :=

∆−1/2 [cl (t+∆)− cl (t)− µl]. The risk borne by yield curve dynamics can be mea-

sured through the following dispersion measure of the centered return ∆y (τ).

Definition 1. The Cross-Shape Risk born by a cross-section y (t, ·) , t ≥ 0 is the
covariance matrix of the vector δ =(δ1, ..., δN ) of weighting coefficients, i.e.,

CS (∆y) := Cov (δ) . (5)

In particular, the Shape Risk is the sum of the variances across all coefficients δi,

i.e., VS (∆y) := Trace[Cov (δ)]. Naturally, empirical figures over a time period are

obtained by replacing the covariance operator with its sample counterpart.

Step III (Factor identification). We assume that the vector gathering yield curve

sensitivities to the selected basis shapes is normally distributed with zero mean and

covariance matrix Σ, i.e., δ =(δ1, ..., δN) ∼ NN (0,Σ). If Σ = UΛUT is the cor-

responding eigenvalue decomposition, with Λ = diag (λ1, ..., λN) (λi > λi+1) and

U =
£
u1
¯̄
...
¯̄
uN
¤
(
°°ui°° = 1), the set of variables defined by the scalar product

zj :=
1p
λj
uj · δ, for j = 1, ..., N , (6)

defines a random vector z with distribution NN (0, I). By inverting the system of

equations (6) with respect to δ, we obtain components δl =
PN

j=1

p
λju

j
l zj , where

ujl denotes the l-th component of the j-th eigenvector. After plugging these values

into expression (4), we finally come up with a linear representation of cross-sectional

dynamics in terms of basis shapes and a factor model of the kind (2):

∆y (τ) =
NX
l=1

⎛⎝ NX
j=1

p
λju

j
l zj

⎞⎠ψl (τ) =
NX
j=1

vj (τ) zj , (7)
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with vj (τ) :=
p
λj
PN

l=1 u
j
lψl (τ). Each function vj represents the effect on the cross-

sectional shape caused by a shock in the j-th most significant risk factor zj . This

observation leads to the following

Definition 2. The j-th Cross-Shape Risk Deformation driving cross-sectional

dynamics (2) is defined as the linear combination of basis shapes ψ1, ..., ψN

vj (τ) :=
NX
l=1

dlψl (τ) , (8)

with coefficient defined by dl =
p
λju

j
l . According to expression (7), this function

can be identified with the j-th Cross-Shape Risk Factor zj driving cross-sectional

dynamics.

The key point here is that functions v1 (·) , ..., vN (·) have been selected through a
statistically sound method and ranked according to their importance in explaining

cross-sectional dynamics. Specifically, each eigenvalue λj assesses the quota of shape

risk carried by the corresponding factor as measured with respect to a new coordi-

nate system
n
fj (τ) :=

PN
l=1 u

j
lψl (τ) , j = 1, 2, ...,N

o
. Consequently, the number of

explanatory variables in our model can be reduced by retaining factors whose joint

contribution to the shape risk attains a given percentage, and by discarding all the

others.

3 Comparison with Cross-Yield Risk

In the context of fixed-income markets, cross-sectional risk is traditionally identified

with Cross-Yield Risk. This is defined as the sample covariance matrix of a time

series of annualized yield increments, usually inferred from market quotations of liq-

uid securities (Steeley (1990), Litterman and Scheinkman (1991), and Hull (2005)).

Unfortunately, this measure, and the corresponding factors, do not allow to make any

assessment about the risk affecting those portions of the yield curve which are not

covered by the set of observed yields, the so-called ”non-traded” times-to-maturity.

On the contrary, our measure of risk allows to compute the cross-yield covariance over
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a continuum of times-to-maturity through the simple formula5

Cov (∆y (τ1) ,∆y (τ2)) =
NX
j=1

vj (τ1) vj (τ2) . (9)

This decomposition shows an explicit link between the magnitude of risk embodied by

absolute yield returns and market expectations about the future evolution of the term

structure as represented by the cross-shape risk deformations vj . These latter thus

play the double role of 1) typical yield curve shifts and 2) sources of cross-sectional

risk.

Recovering risk over the entire time-to-maturity spectrum is particularly impor-

tant for the computation of price sensitivities of rolling-over hedging portfolios. These

strategies usually involve bonds with fixed coupon payment dates. As time goes by,

each portfolio adjustment entails computing bond prices and sensitivities for sliding,

and then non-traded, times-to-maturity.

If risk is measured by a cross-shape covariance CS, each coupon sensitivity is given
by the corresponding cash flow multiplied by the partial derivative of the correspond-

ing discount bond price with respect to the relevant noise term zj as defined in formula

(6). Recalling the pricing identity P (t, τ) = exp (−y (t, τ) τ) and adopting the yield
curve model ∆y (τ) =

PN
j=1 vj (τ) zj , the discount bond price sensitivity to the j-th

cross-shape factor at time t depends on the cross-shape deformation vj through

∂jP (t, τ) = −τP (t, τ) vj (τ) , τ ≥ 0. (10)

If, instead, risk is measured by a cross-yield covariance and dynamics are assigned

by ∆y (τ i) =
PN

j=1 υ
j
izj (i = 1, ..., N), the sensitivity to a factor j can be ana-

lytically computed only for zero-coupon bonds corresponding to the selected yields

y (τ1) , ..., y (τN ) as

∂jP (t, τ i) = −τ iP (t, τ i) υji , (11)

where υji :=
√
γjw

j
i are volatility components, coefficients γ1, · · · , γN represent the

decreasingly ordered eigenvalues of the covariance matrix of centered yield increments

∆y (τ1) , ...,∆y (τN ), and vectors w
j =

³
wj
1, ..., w

j
N

´T
(j = 1, ..., N) denote the corre-

sponding normalized eigenvectors.
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In summary, the main quantities involved in cross-yield and cross-shape analyses

are:

Cross-Yield Cross-Shape

Covariance Cov(∆y (τ1) , ...,∆y (τN )) Cov(δ1, ..., δN )

Eigenvalues γ1, · · · , γN λ1, · · · , λN
Eigenvectors w1, ..., wN u1, ..., uN

j-th Deformation υj :=
³√

γjw
j
1, · · · ,

√
γjw

j
N

´T
vj (τ) :=

p
λj
PN

l=1 u
j
lψl (τ)

j-th Sensitivity −τP (t, τ) ∂ky (τ) υjk −τP (t, τ) vj (τ)

Bond sensitivities at non-traded times-to-maturity must be obtained through inter-

polation between observed yields. If the fitted yield curve is y (τ) =
PN

l=1 blψl (τ),

then sensitivities read as

∂jP (t, τ) =
NX
k=1

∂P (t, τ)

∂y(τ)

dy(τ)

dy(τk)
υjk = −τP (t, τ)

NX
k=1

Ã
NX
l=1

bl [dτψl] (τk)

!
υjk, (12)

where [dτψl] (τk) are ordinary derivatives with respect to time-to-maturity.

Contrary to the cross-shape risk analysis, here interpolation is done after perform-

ing factor analysis and the resulting yield sensitivities have no statistical significance.

The key difference of our approach is that yields are first fitted and then the entire

yield curve undergoes a principal components analysis based on the history of market

dynamics. Consequently, we can obtain a statistically assessed yield volatility function

over the whole time-to-maturity spectrum. This is the major theoretical improvement

of our methodology compared to the traditional cross-yield risk analysis.

4 Data

In conducting this study, we used data from the U.S. Treasury bond market. The

data consist of daily observations for the period from March 1, 1988 to February

28, 2002. Each observation comprises constant maturity par yields referring to the

following benchmark times-to-maturity (including selected key rates as reported in

RiskMetrics (1996)):6 6-month, 1-year, 2-year, 5-year, 7-year, 10-year, 15-year, and
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20-year. All data, except the 7-year and the 15-year yields, are obtained from the

Bloomberg system. The 7-year and 15-year yields stem from an internal information

system at BNP Paribas in London.7According to standard market quotation rules,

these data include mid-market quotations of Treasury bond yields.

During the examined period, yield curves exhibit four qualitatively distinct shapes:

convex, concave, downward humped, and upward humped. Sample curve are dis-

played in Figure 1.

Insert Figure 1 about here

These forms reflect market anticipations about the future evolution of interest rates.

For instance, long-term growth expectations in the economy translate into positively

sloped yield curves as demand for long-term investments increases. Symmetrically,

gloomy economy forecasts, possibly linked to the economic cycle or sociopolitical

events, are reflected in negatively sloped yield curves.

Factors should reproduce the stylized shapes displayed by empirical yield curve

fluctuations. This goal can be achieved by selecting a suitable class of basis shapes.

We propose to adopt term structure profiles defined by

ψl(τ) := Ll(τ) exp (−ζτ) , l = 1, ..., N , (13)

where Ll(τ) denotes the Laguerre polynomial of order l, and ζ is a positive constant.

The first three basis shapes are:

ψ0(τ) = e−ζτ , ψ1(τ) = e−ζτ (1− τ) , ψ2(τ) =
e−ζτ

2

¡
2− 4τ + τ2

¢
.

This choice is motivated by three heuristic considerations.

First, empirical yield curves in our data set can be recovered by proper linear com-

binations of these functions (Figure 1) and the same holds for their changes over time.

Second, the exponentially decreasing multiplicative factor ensures proper smoothness

in the curve outline and adequate interpolation stability under possible shocks af-

fecting single yields.8Finally, and more importantly, the chosen set of basis functions

spans the range of observed yields quite uniformly. This feature is the direct coun-

terpart of the property requiring evenly lagged yield observations in the traditional
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principal components analysis of term structure dynamics. Moreover, as will be shown

in the next two sections, it turns out that this is a key property for ensuring a good

quality of risk measurement and management performance.

It should be also stressed that our choice is in agreement with several stud-

ies proposing alternative functional families to model yield curve dynamics for the

purpose of bond portfolio immunization (e.g., Barrett, Gosnell, and Heuson (1995),

Navalka and Chambers (1996), Willner (1996), Phoa and Shearer (1997), and Ro-

drigues De Almeida, Duarte, and Coelho Fernandes (1998), among others).

In summary, our input data consist of a set of discount yields and a number of in-

terpolating basis functions reproducing the qualitative features displayed by empirical

yield curves.

5 Risk Measurement

Cross-yield risk has long shaped the way quantitative analysts select driving factors

underlying continuous time models of interest rate dynamics, the most important

instance being represented by the Heath, Jarrow, and Morton (1992) framework.

Moreover, cross-yield factors υj play an important role in setting trading strategies

to hedge against yield curve fluctuations. These considerations suggest taking the

cross-yield risk as our benchmark and evaluating the relative performance of cross-

shape risk.

A first test compares the speed of risk clustering around uncorrelated factors of

the two types.

Insert Table 1 about here

Table 1 shows the percentage quota of the overall empirical risk embodied by the

first one, two, three, and four uncorrelated cross-shape and cross-yield factors over

four time periods. We see that the first three yield factors capture between 94% and

99% of the total yield risk represented by the sum to all eigenvalues of the cross-

yield covariance, whereas the corresponding number embodied in cross-shape factors

always reproduce more than 99% of the observed shape risk. We underline that yield
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and shape risk numbers need not match, although they refer to a common time-to-

maturity.

A second test compares the ability of a reduced number K < N of cross-yield

and cross-shape factors to recover the empirical yield risk represented by the sample

volatility function across varying times-to-maturity.

The yield volatility function resulting from our cross-shape risk measure obtains

by setting τ1 = τ2 = τ in formula (9), i.e.,

Volcs (∆y (τ)) :=

vuut KX
j=1

vj (τ)
2, for all τ > 0, (14)

where shape risk factors are defined in formula (8).

The yield volatility function resulting from a cross-yield risk measure is obtained

by interpolating between sample yield risk defined by

Volcy (∆y (τ i)) :=

vuut KX
j=1

λjw
j 2
i , for all τ i (i = 1, ..,N), (15)

where wj
i denotes the i-th component of the eigenvector corresponding to the j-th

largest eigenvalue of the cross-yield covariance matrix Γ corresponding to a set of N

benchmark times-to-maturity τ1, ..., τN .
9

Insert Figure 3 about here

Figure 3 displays yield volatility functions as obtained by selecting the first one,

two, three, and four most relevant cross-shape factors (dashed curve) and cross-yield

factors (plain line). These are compared to the yield volatility profile experienced by

the market over the entire time horizon (dotted path).

Two main considerations arise from an inspection of these graphs. First, cross-

shape factors account for yield volatility more accurately than cross-yield factors do

in all cases and for most times-to-maturity. For instance, Pérignon and Villa (2006)

notice that empirical volatility functions display a hump between the second and the

fifth year in the time-to-maturity axis. We see that the volatility function resulting
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from cross-shape factors owns this property, whereas the one computed from cross-

yield factors does not display this feature. This can be explained by the fact that

cross-yield analysis does not account for the unobservable portions of the yield curve,

while cross-shape risk analysis makes a precise statistical assessment of all yields

recovered by a preliminary interpolation procedure.

The second consideration concerns the speed of convergence of reduced-factor yield

volatility functions to the empirical volatility path as the number of factors increases.

The volatility function resulting from a cross-shape analysis converges to the sample

volatility more rapidly than the one derived by a cross-yield analysis. This effect is

in accordance with the quicker convergence of cross—shape eigenvalues than the one

displayed by the cross-yield eigenvalues (see Table 1).

The absolute performance of cross-yield and cross-shape risk measures depends

on the way input data are built. In the former case, yields should be observed on

evenly spaced time-to-maturity lags. A similar property is required for the case of

cross-shape risk analysis, where basis functions should span the range of possible yield

curves as uniformly as possible. Specifically, if the selected class of functions uncovers

some portions of the range spanned by the observed yields over the time-to-maturity

spectrum from 0 to 20 years, then interpolation requires relatively large coefficients

and a poor risk representation is experienced in those portions of the yield curve. We

support this conjecture by a further empirical test comparing cross-shape analyses

conducted on a common data set under alternative bases. We consider exponentially

weighted Laguerre, Legendre and Chebyshev polynomials, as reported in Appendix A.

In all cases, functional uniformity is followed by a good reproduction of the empirical

volatility function. Figure 4 shows this effect in the case of Laguerre and Chebyshev

polynomials.

Insert Figure 4 about here

In summary, cross-sectional risk proves to be a more efficient and effective measure

of market variability than the traditional notion of cross-yield risk. This observa-

tion paves the way to cross-shape risk management as a viable alternative to the

classical factorial hedging strategies based on cross-yield risk factors. We empirically
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investigate this conjecture in the following section.

6 Risk Management

We perform a back-test analysis to assess the relative ability of cross-shape and cross-

yield risk measures to properly drive portfolio selection for risk management purposes

in a fixed income market. Specifically, we consider bond portfolios immunizing a

multiple liability against the interest rate risk experienced in the US Treasury bond

market during the last decade. Empirical market risk is alternatively measured by the

cross-shape and the cross-yield covariance. This leads to a pair of trading strategies,

the former hedging against cross-shape risk, the latter neutralizing cross-yield risk.

We refer to these as the ”cross-shape strategy” and the ”cross-yield strategy”, respec-

tively. Barber and Copper (1996), Willner (1996), and Soto (2004), among others,

document the superiority of the cross-yield strategy over trading driven by alternative

risk measures. Accordingly, we select this methodology as a benchmark to compare

the performance of our cross-shape strategy. The analysis is based on distributional

properties of the two P&L streams generated by the net portfolio consisting of the

hedging asset positions minus the selected outstanding liability.

6.1 Test Design

We formulate our risk management test in terms of a multiperiod immunization pro-

gram as seen from current date 0. An outstanding liability is given as a multiple cash

flow maturing at a future time T . Our goal is to hedge this position value against the

effects caused by interest rate fluctuations occurring during the contract lifetime.

We perform hedging by trading in the bond market. Tradeable bonds are indexed

by α = 1, ...,m, and the issued liability is labelled α = 0. We assume that each bond

α is issued at par upon inception, i.e., the initial price equals face value Nα and α

pays out nα constant coupons with annual frequency, beginning exactly one year after

the strategy outset. The par condition determines a unique constant coupon as

cα =
Nα (1− P (0, nα))Pnα

i=1 P (0, i)
, α = 0, 1, ...,m.
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We suppose the trading horizon [0, T ] splits into exactly n periods with uniform length

∆ (years), i.e., n∆ = T , and we form a dynamic portfolio of tradeable bonds in a

way that the joint position with the outstanding liability is as immune as possible to

the effects of yield curve fluctuations on each trading date k∆, k = 1, ..., n. This goal

can be achieved by a three-step procedure.

Step 1 (P&L recording). We register a possible gap between the bond portfolio price

and the present value of the outstanding liability as occurred on the period elapsed

since the last trading day. This mismatch contributes to the trader’s P&L. If B (k) =

(B1 (k) , ..., Bm (k))
T gathers all tradeable coupon-bond prices at time k∆ and L (k)

indicates the time k∆ value of the outstanding liability, the realized P&L streams

from the two strategies over the period ∆k = [(k − 1)∆, k∆] read as

P&Lcs (k) = B (k) · q (k − 1)− L (k) , (16)

P&Lcy (k) = B (k) · χ (k − 1)− L (k) , (17)

where q (k) = (q1 (k) , ..., qm (k))
T (resp. χ (k) = (χ1 (k) , ..., χm (k))

T) denotes the

vector of bond positions held between consecutive trading dates k∆ and (k + 1)∆

under the cross-shape (resp. cross-yield) strategy.

Step 2 (Risk updating). We update the outstanding risk measurement and the result-

ing risk factors. Cross-shape factors issue from the cross-shape risk measure, while

cross-yield factors result from the cross-yield risk measure as computed on a time

series including historical yield curves observed in the last period.

Step 3 (Dynamic hedging). We change our bond selection in a way that the resulting

portfolio is: a) self-financing, and b) as sensitive to the updated risk factors as to the

outstanding liability. Self-financing means that no wealth is created nor required for

adjusting the portfolio composition. In other words, the rebalanced portfolio must be

exclusively funded by the proceeds resulting from liquidating the standing portfolio

plus any increase in the liability value since the last trading day. This imposes the

first constraint on the bond portfolio mix q (k) (resp. χ (k)), that is

B (k) · q (k) = B (k) · q (k − 1) + L (k)− L (k − 1) , (18)

B (k) · χ (k) = B (k) · χ (k − 1) + L (k)− L (k − 1) . (19)
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The condition is initialized by supposing that all proceeds from the liability issue are

immediately reinvested in the hedging portfolio, namely

B (0) · q (0) = L (0) , (20)

B (0) ·χ (0) = L (0) .

These formulae are clarified in Appendix B.

Additional d constraints stem from neutralizing the net portfolio value against

market moves driven by the same number of selected principal factors. A bond

portfolio (or liability) sensitivity to a given factor reduces to a linear combination of

discount bond sensitivities, which we compute through formulae (10) and (12). The

resulting constraints are obtained by matching asset and liability sensitivities.

The cross-shape strategy satisfies the first-order constraints

∇Bcs (k) · q (k) = ∇Lcs (k) , (21)

where the (j, i)-entry of matrix ∇Bcs (k) contains the sensitivity of the i-th hedging
bond to the j-th cross-shape factor prevailing at time k∆, and vector ∇Lcs (k) gathers
all liability sensitivities to the same factors.

Similarly, the cross-yield strategy satisfies the first-order conditions

∇Bcy (k) · χ (k) = ∇Lcy (k) , (22)

where the (j, i)-entry of matrix ∇Bcy (k) contains the sensitivity of the i-th hedging
bond to the j-th cross-yield factor prevailing at time k∆, and vector ∇Lcy (k) gathers
all liability sensitivities to the same factors. Explicit formulae for all these quantities

are derived in Appendix C. These arguments lead to the following:

Portfolio Adjustment Rule: select bond positions meeting the balance condition

(18) (resp. (19)) and hedging constraints (21) (resp. (22)).

Clearly, if d is the number of conditions to be met by hedging portfolios, trading

must involve no less than d+ 1 bonds. Explicit constraints for the minimal hedging

portfolios, i.e., m = d+ 1, are derived in Appendix B, equation (23), and Appendix

C, equations (24) and (27). Portfolio selection is performed on all trading dates
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0,∆, 2∆, ..., (n− 1)∆ = T−∆, leading to a P&L stream for each of the two strategies.
In Appendix D, we derive detailed expressions for these quantities.

6.2 Empirical Results

We assess the relative performance of cross-shape risk vs. cross-yield risk as a hedging

device in the US interest rate market. For the purpose of ascertaining the validity

of our findings, we carry out several risk management experiments under alterna-

tive parameterizations. However, all trading strategies share a number of common

features.

First, within the two examined frameworks, market risk is represented by the

first three factors resulting from cross-shape and cross-yield risk analyses over the

same time period prior to each trading date. This choice is in agreement with the

empirical observation that the first three principal components are the main drivers of

bond price variations (Litterman and Scheinkman (1991), Knez et al. (1994), Willner

(1996), and Lekkos (2001), among others), and further factors are likely to contribute

to a negligible extent (Soto (2004)). Cross-shape and cross-yield factor analyses are

performed on each trading day over the time series that includes data accrued since

the last trade. The resulting cross-shape volatility components v1 (τ) , ..., vd (τ) and

cross-yield volatility terms υ1, ...,υd are updated accordingly.

Second, all strategies aim at neutralizing the market risk experienced by a single 8-

year liability. This is performed by trading in exactly four coupon bonds, that is, one

bond per risk factor plus a position to meet the balance condition. This choice allows

us to discard all issues related to asset selection within the (quite larger) basket of

tradeable assets in the market. In particular, this contrivance enables us to avoid any

bias from the portfolio selection process. The hedging instruments are coupon-bonds

with one unit nominal value and maturity equal to 2, 5, 10, and 20 years.

As for the hedging criterion, all first order sensitivities of the liability price to fac-

tors are neutralized by selecting a suitable mix of tradeable coupon-bonds. Empirical

evidence reported in Kahn and Lochoff (1990), Lacey and Nawalkha (1993), and more

recently in Soto (2001), suggests that high-order sensitivities are of minor importance
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in representing bond returns when compared to first order terms. Consequently, no

constraint is imposed on these quantities and, in particular, on bond price convexities.

All hedging strategies are allowed to adjust at varying frequencies over a one-year

trading period and coupons are paid on an annual basis. This allows to avoid consider-

ing the technical problem of stripping coupon payments out of the asset values. Also,

short sales are allowed for the purpose of forming hedging portfolios. This option

has been advocated by several authors such as Chambers, Carleton, and McEnally

(1988), Bierwag, Fooladi, and Roberts (1993), and Nawalkha and Chambers (1996),

and can be practically achieved through appropriate positions in futures contracts,

as noted by Soto (2004).

Finally, all market imperfections such as transaction costs, liquidity constraints

and asymmetric creditworthiness of the involved counterparts are ignored.10

Risk management strategies differ in terms of 1) factor estimation period, 2)

trading period, and 3) hedging frequency.

The factor estimation period is defined as the interval prior to each portfolio

adjustment date determining the time series of yield curves on which factors are

estimated. By varying this parameter, we can measure the relative importance of old

vs. recent market volatility in explaining the current structure of market risk. We

consider both fixed and floating periods. In the former case, factors are computed from

data spanning a fixed number of days by progressively replacing data in the farthest

end of the period with recent observations. In the latter case, all new information

accrues over the existing one. Following a suggestion by Soto (2004), on each trading

day we compute the standing risk factors by using all data available on the same day.

The trading period is the calendar year over which active risk management is

carried out. This parameter allows us to check for time consistency and statistical

robustness in our findings. We consider several consecutive one-year periods starting

on March 1, 1993.

The hedging frequency is the pace at which a hedging portfolio is adjusted to

reflect updated market conditions. Following the back-testing scheme in Barone-

Adesi, Giannopoulos, and Vosper (2002), we consider 1-day, 2-day, 5-day, and 10-day
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adjustment frequencies. This parameter allows us to investigate the convergence speed

of a strategy performance to the ideal situation represented by a perfect hedge.

Once a value for each of these three parameters is selected, the risk management

test described in the previous section is performed and a pair of P&L streams are

recorded, the former corresponding to the cross-shape strategy, the latter stemming

from the cross-yield strategy. The empirical distributions of the two P&L streams

represent an important device for assessing the quality of the corresponding risk mea-

sures. If hedging is perfect, then distributions shrink to zero. Descriptive statistics

(e.g., mean, standard deviation, skewness, and kurtosis excess) constitute our main

tool to assess the proximity of a P&L stream to the ideal situation of a perfect hedge.

In reality, P&L streams substantially deviate from this benchmark. There are three

main reasons for this effect. First, yield curve movements need not be linear in the

underlying factors, whereas the selected strategy hedges against a first order approx-

imation of yield curve deformations. Next, a perfect hedge would require trading

in continuous time, while our hedging portfolio is adjusted on a periodic basis.11

Finally, any model represents an approximation of the actual market behavior. How-

ever, these features do not have a significant impact on the relative performance of

the two strategies.

Our first experiment focuses on the effect of varying factor estimation periods,

specifically from one to eight years prior to the first hedging date. Table 2 reports

empirical results for risk management strategies performed between March, 1 2000

and February, 28 2001 using weekly trading.12

Insert Table 2 about here

In all cases, the P&L returns stay around the benchmark value 0. However, P&L

standard deviations corresponding to cross-shape strategies are lower in most cases.

In general, we remark a decrease in this figure as the factor estimation period increases

until a minimum is reached on the 5-year (resp. 4-year) window in the cross-shape

(resp. cross-yield) case. The degree of distributional symmetry is quite stable over

the examined parameterization, showing a persistently positive skewness in the cross-

shape hedging and a negative skewness in the cross-yield hedging. We detect no
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significant trend in the behavior of the P&L kurtosis.

A second experiment examines trading strategies performed over several 1-year

periods ranging from 1993-1994 to 2000-2001. Table 3 reports results for risk man-

agement strategies featuring daily trading under a two-year factor estimation period.

Insert Table 3 about here

Four out of eight experiments show a noticeably lower standard deviation under cross-

shape trading. The remaining cases display a comparable dispersion under both

strategies. The two skewness numbers share a common sign in five instances, with

highly symmetric shapes exhibited by cross-shape P&L’s. We notice a marked differ-

ence in tails between the two P&L’s: cross-yield strategies deliver P&L distributions

with kurtosis excesses from 1.5 to 26 times larger than their cross-shape counterparts.

A third experiment explores the impact of adjusting the portfolio each 1, 2, 5, and

10 days over the hedging performance. Table 4 reports results for risk management

strategies carried out in the periods 1995-1996 (Panel A) and 1997-1998 (Panel B)

under a two-year factor estimation period.

Insert Table 4 about here

Again the P&L distributions are quite symmetric and centered around the benchmark

hedge. Six cases out of eight exhibit a standard deviation with lower values under

cross-shape trading, with figures ranging from twenty to fifty percent of the corre-

sponding numbers under cross-yield hedging. Period 1995-1996 (Panel A) has been

selected from the worst performing periods for cross-shape trading. Nevertheless, the

distributional kurtosis is larger compared to the values obtained under cross-yield

trading. Period 1997-1998 (Panel B) represents a typical risk management scenario.

In all circumstances, the kurtosis excess increases with the hedging frequency. This

phenomenon is explained by the smoothing effect played by infrequent portfolio re-

balancing compared to trading with frequent response to local market perturbations.

Kurtosis from cross-shape trading is always smaller (and more slowly increasing over

time) than the corresponding figure under cross-yield hedging. Figure 5 displays em-

pirical P&L distributions estimated by a Gaussian kernel for experiments conducted

19



over the periods 1994-1995 (left-hand graph) and 1997-1998 (right-hand graph) .

Insert Figure 5 about here

These curves highlight an important property of cross-shape risk. Specifically, the

P&L distribution from cross-shape hedging is much closer to the Gaussian density

sharing the same mean and variance than the P&L distribution from cross-yield hedg-

ing. In particular, the former displays thinner tails than the latter. Moreover, this

feature implies that the standard tools of Gaussian approximations adopted for Value-

at-Risk measures of fixed-income portfolios deliver more accurate risk assessments in

a framework based on cross-shapes than they can do in a cross-yield setting.

It is worth noticing that all the above experiments have been conducted using yield

data with evenly staggered tenors and basis functions spanning the yield curve range

quite uniformly. Our final experiment relaxes these assumptions and investigates

the impact of the selected functional basis on the quality of risk management. We

repeated the second experiment stated above using alternative classes of interpolating

functions, namely exponentially weighed Laguerre and Chebyshev polynomials.

Insert Table 5 about here

The results reported in Table 5 exhibit a strong bias and instability across time in

the descriptive statistics of P&L distributions from cross-shape strategies grounded on

Chebyshev basis functions compared to those resulting from Laguerre shapes. A simi-

lar conclusion can be obtained by comparing the performance of cross-yield strategies

computed on terms structures with tenors displaying varying levels of uniformity, a

fact that has been rarely pointed out in the existing literature. Consequently, the

final user should put a particular care in 1) selecting observed yields on uniformly

spanned times-to-maturity and 2) identifying a class of basis functions covering the

range of admissible yield curves as uniformly as possible.

In summary, the notion of cross-shape risk introduced in this paper remarkably

improves the sample performance of traditional immunization strategies.
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7 Conclusion

Yield curve changes represent the main determinant of interest rate market risk. Con-

sequently, the risk management of investment portfolios requires a careful assessment

of factors driving yield curve dynamics. The existing literature is divided between

the analytic description of possible yield curve deformations and the quantitative

measurement of risk borne by limited portions of the curve.

Our proposal fills in the gap between the two methodologies. We introduced a new

measure of cross-sectional risk linking yield curve shapes and market volatility. This

measure, which is rooted in the empirical investigations carried out by Litterman,

Scheinkman, and Weiss (1991) and Engle and Ng (1993), goes beyond the traditional

cross-yield covariance introduced by Steeley (1990) and Litterman and Scheinkman

(1991). We developed our theory for general cross-sectional data, detailed an econo-

metric procedure to decompose cross-shape risk into analytic cross-sectional defor-

mations, and provides an expression for all cross-yield covariances in terms of our

cross-shape risk factors.

On the empirical side, we focused on the US Treasury Bond market and compared

cross-shape and cross-yield risk measures according to their performance as a market

risk measure and as a risk management tool. An empirical test showed that a limited

number of cross-shape factors accounts for interest rate risk better than the same

number of cross-yield factors. A further experiment exhibited that the vast majority

of trading simulations immunizing against cross-shape risk deliver less volatile P&L

distributions than those resulting from strategies hedging against cross-yield risk.

Our methodology can be applied to any market delivering time series of quoted

cross-sections. Further applications may include risk analysis and management in

equity, commodity, and option markets.
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Footnotes

1. Fong and Vasiček (1984) and Balbás and Ibáñez (1998), among others, propose non-

factorial methods to immunize bond portfolios against yield shifts. We do not consider this

literature since our main concern here is factor modeling of yield curve dynamics.

2. Relevant dimensions include time-to-maturity for bond prices, equity size and book-to-

market for equity prices, moneyness and time-to-expiration for option prices.

3. Key rates and cross-yield principal components provide no assessment about the risk

experienced by the unobservable portions of the yield curve.

4. Factors zj and errors εi are supposed to satisfy appropriate distributional assumptions (see

Knez, et al. (1995)). In particular, yield returns over different time periods share a common

distribution, so that the corresponding process is time-homogeneous.

5. One-unit standard deviation in the j-th noise component zj generates vj (τ) units of

standard deviation in the yield increment corresponding to a time-to-maturity τ .

6. Ho (1992) and Golub and Tilman (1997) describe trading strategies based on key rates.

7. Usually the 2, 5, and 10-year yields are stripped from T-bonds, while other yields, e.g.,

the 6-month, 1, 7, 15, and 20-year yields, are obtained from other liquid instruments. No

transaction cost is included.

8. Other popular classes suffer from severe drawbacks. Piecewise linear yield curves introduce

discontinuities in forward rates, generating instability in the value of interest rate derivatives.

Purely polynomial curves produce implausible oscillations between interpolated yields, stimu-

lating traders to enter positions in the less liquid, and riskier, portions of the curve. Empirical

experiments suggest that the smoothing parameter ζ should be selected between 0.3 and 0.5.

Our results turn out to be quite similar across all values of ζ in this range.

9. Geman, El Karoui, and Lacoste (2000) detail the method within arbitrage-free dynamics.

10. Transaction costs may be relevant for an empirical investigation of the absolute perfor-

mance of our methodology, a topic which is not dealt with in the present study. Here, we

focus instead on the relative performance of our method in comparison with the up-to-date
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best performing alternative (standard PCA). Notice however that trading involves highly liq-

uid on-the-run bonds, for which the bid-ask spread is typically a fraction of a basis point.

Consequently, including transaction costs has a negligible effect on the absolute performance

of the method over the time horizon we considered.

11. We suppose the underlying market is complete. This condition is met by assuming that

as many bonds can be traded as the number of the underlying independent factors.

12. One working week consists of five consecutive sample dates in the data set.
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genia Shlimovich, the seminar participants at Bocconi University, Imperial College,

Tilburg University, the 32nd European Finance Association Meeting (Moscow, Au-

gust 2005), the IFORS Congress (Honolulu, July 2005), the International Summer

School on Risk Management and Control (Rome, June 2005), the Third International

Bachelier Congress (Chicago, July 2004), the Quantitative Methods in Finance Con-

ference (Cairns and Sydney, December 2002), the Editor, and the two anonymous

referees for valuable comments. The usual disclaimers apply. Roncoroni gratefully

acknowledges financial support from CERESSEC. We wish to thank BNP Paribas for

kindly providing data.

23



References

[1] Anderson, N., Breedon F., Deacon M., Derry A., Murphy G., 1996, Estimating

and Interpreting the Yield Curve, John Wiley & Sons, New York.
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A Appendix: Alternative Bases

We consider three bases. Each basis is a set of functions

ψl(τ) := Ll(τ) exp (−ζτ) , l = 1, ..., N .

Here ζ is a positive constant and Ll(τ) denotes the l-th polynomial in either of the
following three classes (each polynomial being defined as a solution of an equation

that we report together with its first three solutions):

1) Laguerre polynomials.

Definition: τL00l (τ) + (1− τ)L0l (τ) + lLl (τ) = 0.
Solutions: L0(τ) = 1,L1(τ) = 1− τ ,L2(τ) = 1

2

¡
2− 4τ + τ2

¢
.

2) Legendre polynomials.

Definition:
¡
1− τ2

¢
L00l (τ)− 2τL0l (τ) + l (l + 1) = 0.

Solutions: L0(τ) = 1,L1(τ) = τ ,L2(τ) = −12 +
3τ2

2 .

3) Chebyshev polynomials.

Definition: Ll (τ) = cos (l arccos(τ)) .
Solutions: L0(τ) = 1,L1(τ) = τ ,L2(τ) = −1 + 2τ2.

B Appendix: Balance Conditions

The cheapest portfolio that hedges against a number d of independent factors needs to

containm = d+1 securities. In this case, par conditions Bα (0) = Nα, α = 0, ..., d+1,

lead to explicit expressions for the initial balance constraints (20):

d+1X
α=1

Nαqα (0) = N0,
d+1X
α=1

Nαχα (0) = N0,

where qα (0) (resp. χα (0)) denotes the initial quantity of bond α in the portfolio selec-

tion under a cross-shape (resp. cross-yield) strategy. The running balance conditions

state that the current value of the rebalanced portfolio must match the current value
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of the standing portfolio plus any increase in the market value of the outstanding

liability, that is

d+1X
α=1

nαX
i=1

cαpk,iqα (k) =
d+1X
α=1

nαX
i=1

cαpk,iqα (k − 1) +
n0X
i=1

c0 [pk,i − pk−1,i] , (23)

where pk,i denotes the discount factor prevailing on the current date k∆ for the i-th

coupon payment time i− k∆. We notice that pk,i is defined for all i = 1, ...,maxα n
α,

namely the last coupon payment date in the basket of tradeable bonds. Self-financing

conditions for the cross-yield strategy can be derived by simply replacing q with χ in

the above expression.

C Appendix: Hedging Constraints

We begin by deriving the first-order constraints for the cross-shape strategy and then

move to calculate the corresponding conditions for the cross-yield strategy.

Let τk,i = i− (k − 1)∆ denote the period (in years) between the k-th trading day
(k = 1, ..., n) and the payment date of the i-th coupon. The discount bond sensitivity

to the j-th cross-shape factor is given by ∂jP (t, τ) = −τP (t, τ) vj (τ). Since day

k price of the α-th hedging bond is
nαP
i=1

cαpk,i, then the corresponding sensitivity

to the j-th factor reads as −
nαP
i=1

cατk,ivj (τk,i) pk,i. The same formula holds for the

outstanding liability, with α = 0. A bond portfolio sensitivity to the same factor can

be expressed as −
nd+1P
α=1

nαP
i=1

cατk,ivj (τk,i) pk,i. Consequently, the hedging portfolio is

required to satisfy the following set of conditions:

∇Bcs (k) · q (k) = ∇Lcs (k) , (24)
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where q is the (d+ 1)-dimensional vector of bond positions,

∇Bcs (k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n1P
i=1

c1τk,iv1 (τk,i) pk,i ...
nd+1P
i=1

cd+1τk,iv1 (τk,i) pk,i

n1P
i=1

c1τk,iv2 (τk,i) pk,i ... ...

...
n1P
i=1

c1τk,ivd (τk,i) pk,i
nd+1P
i=1

cd+1τk,ivd (τk,i) pk,i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(25)

is a d× (d+ 1) matrix gathering raw-wise all coupon-bond sensitivities to the d cross-
shape factors and

∇Lcs (k) =

⎛⎜⎜⎜⎜⎜⎝
Pn0

i=1 c
0τk,iv1 (τk,i) pk,iPn0

i=1 c
0τk,iv2 (τk,i) pk,i

...Pn0

i=1 c
0τk,ivd (τk,i) pk,i

⎞⎟⎟⎟⎟⎟⎠ (26)

is a d-dimensional vector containing all liability sensitivities to the d cross-shape

factors.

If risk is measured by a cross-yield covariance, the hedging conditions read as

∇Bcy (k) · χ (k) = ∇Lcy (k) , (27)

where χ is the (d+ 1)-dimensional vector of bond positions and sensitivities∇Bcy and
∇Lcy are computed according to the chosen interpolation method. Specifically, these
quantities obtain by replacing functions vj in formulae (25) and (26) with interpolating

sensitivity functions

v∗j (τ) = ∂ky (τ) υ
j
k, j = 1, ..., d.

Here y (τ) =
PN

l=1 bl (y (τ1) , ..., y (τN))ψl (τ) is the yield curve interpolating yields

y (τ1) , ..., y (τN ), ∂ky (τ) =
∂y(τ)
∂y(τk)

measures the sensitivity of a recovered yield y (τ) to

a small shock in the observed yield y (τk), and υ
j
k is the k-th entry of the eigenvector

corresponding to the j-th greatest eigenvalue of the empirical cross-yield covariance

matrix.
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D Appendix: Profit and Loss Streams

Let P&Lcs = (P&Lcs (1) , ...,P&Lcs (n)) (resp. P&Lcy = (P&Lcy (1) , ...,P&Lcy (n)))

denote the sequence of profits and losses resulting from the cross-shape (resp. cross-

yield) strategy on the trading dates ∆, 2∆, ..., (n− 1)∆ and the final day n∆. Ac-

cording to expressions (16) and (17) in section 6, a single P&L occurring on day k

is given by the difference in value between the hedging portfolio and the outstanding

liability. The former involves d + 1 positions in coupon-bonds, each position being

determined one time step before as qα (k − 1). The latter is just the present value of
the outstanding liability.

P&Lcs (k) =
d+1X
α=1

nαX
i=1

cαpk,iqα (k − 1)−
n0X
i=1

c0pk,i,

P&Lcy (k) =
d+1X
α=1

nαX
i=1

cαpk,iχα (k − 1)−
n0X
i=1

c0pk,i.
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Table 1
Cumulative percentage variance borne by the one, two, three, and four most significant cross-shape and cross-yield factors.

Time Period
Factor Type Standard Shape Standard Shape Standard Shape Standard Shape

Factor 1 78,09 78,76 76,48 77,19 91,03 82,47 86,07 81,29
Factors 1+2 92,58 97,11 90,65 95,37 97,74 97,29 97,22 97,36
Factors 1+2+3 96,35 99,14 94,64 99,02 98,95 99,56 98,83 99,52
Factors 1+2+3+4 98,05 99,83 96,58 99,68 99,50 99,95 99,44 99,96

Each entry displays the percentage of historical variance explained by the corresponding number of factors as defined according to the indicated
type of risk analysis.

March, 1st 88-91 March, 1st 91-94 March, 1st 94-97 March, 1st 97-02



Table 2
Descriptive Statistics of Hedging P&L's under Varying Factor Identification Periods.

Panel A: 1-year to 4-year Identification Periods.

Factor Type Standard Shape Standard Shape Standard Shape Standard Shape

Average (x 0.1%) 0.00 0.00 -0.01 -0.01 -0.03 -0.01 -0.03 -0.03
Std. Dev. (x 0.1%) 0.92 0.87 1.00 0.90 0.87 0.84 0.79 0.83
Skewness -0.31 0.44 -0.45 0.48 -0.46 0.50 -0.38 0.50
Kurtosis Excess 0.05 -0.34 0.24 0.09 0.22 -0.03 0.18 -0.21

Panel B: 5-year to 8-year Identification Periods.

Factor Type Standard Shape Standard Shape Standard Shape Standard Shape

Average (x 0.1%) -0.03 -0.03 -0.03 -0.05 -0.01 -0.01 -0.07 -0.11
Std. Dev. (x 0.1%) 0.85 0.73 0.69 0.77 0.94 0.99 0.92 1.30
Skewness -0.18 0.42 -0.06 0.43 -0.69 -0.56 0.18 0.54
Kurtosis Excess 0.07 -0.32 -0.05 -0.40 0.31 -0.11 0.11 -0.12

Descriptive statistics of hedging P&L's distributions are computed for trading strategies based on standard yield risk and shape risk estimated
on different time periods prior to each portfolio adjustement date. Estimation is performed on floating time windows ranging from 1 to 8 years. 
Strategies span the period between March, 1 2000 and February, 28 2001, and corresponding portfolios are adjusted every 5 business days. 

5 years 6 years 7 years 8 years

1 year 2 years 3 years 4 years



Table 3
Descriptive Statistics of Hedging P&L's under Varying 1-Year Trading Periods.

Panel A: 1-year Trading Periods from 1993 to 1996.

Factor Type Standard Shape Standard Shape Standard Shape Standard Shape

Average (x 0.1%) -0.54 -0.17 0.05 0.00 0.01 0.01 -0.01 0.01
Std. Dev. (x 0.1%) 9.32 2.34 0.51 0.38 0.31 0.30 0.38 0.29
Skewness -2.48 -3.41 1.25 0.20 0.54 -0.11 0.59 0.46
Kurtosis Excess 59.78 31.51 6.27 0.24 5.68 1.19 3.93 2.61

Panel B: 1-year Trading Periods from 1997 to 2000.

Factor Type Standard Shape Standard Shape Standard Shape Standard Shape

Average (x 0.1%) 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.01
Std. Dev. (x 0.1%) 0.44 0.33 0.37 0.38 0.32 0.45 0.32 0.36
Skewness -0.93 0.21 0.41 -0.65 -1.12 -0.11 0.36 0.07
Kurtosis Excess 11.72 0.97 3.97 0.23 2.51 0.36 1.55 -0.08

Descriptive statistics of hedging P&L's distributions are computed for trading strategies based on standard yield risk and shape risk estimated
on a 2-year time window prior to the first trading day and then updated at each portfolio adjustment. Trading is performed on 8 consecutive
1-year periods, starting on March, 1 1993 and ending on February, 28 2001. Corresponding portfolios are adjusted every business day. 

1997 - 1998 1998 - 1999 1999 - 2000 2000 - 2001 

1993 - 1994 1994 - 1995 1995 - 1996 1996 - 1997 



Table 4
Descriptive Statistics of Hedging P&L's under Varying Portfolio Adjustment Frequency.

Panel A: Trading from March, 1st 1995 to February, 28 1996. 

Factor Type Standard Shape Standard Shape Standard Shape Standard Shape

Average (x 0.1%) 0.12 -0.17 0.06 -0.19 0.02 -0.07 0.01 0.00
Std. Dev. (x 0.1%) 0.71 0.37 0.65 0.34 0.38 0.45 0.31 0.30
Skewness -0.48 -0.52 -0.03 -0.32 0.54 -0.93 0.54 -0.11
Kurtosis Excess 1.02 1.50 0.42 1.18 2.87 3.14 5.68 1.19

Panel B: Trading from March, 1st 1997 to February, 28 1998. 

Factor Type Standard Shape Standard Shape Standard Shape Standard Shape

Average (x 0.1%) -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00
Std. Dev. (x 0.1%) 1.17 0.72 0.85 0.50 0.55 0.45 0.44 0.33
Skewness -0.62 0.43 -0.89 -0.76 -1.30 -0.10 -0.93 0.21
Kurtosis Excess 0.31 -0.27 2.66 0.64 6.83 0.30 11.72 0.97

Descriptive statistics of hedging P&L's distributions are computed for trading strategies based on standard yield risk and shape risk estimated
on a 2-year time window prior to the first trading day and then updated at each portfolio adjustment.   Trading is performed on two 1-year
periods: March, 1 1995 - February, 28 1996 (Panel A), March, 1 1997 - February, 28 1998 (Panel B). Corresponding portfolios are adjusted
at frequencies of 1, 2, 5, and 10 days.

10 days 5 days 2 days 1 day

10 days 5 days 2 days 1 day



Table 5
Descriptive Statistics of Hedging P&L's under Varying 1-Year Trading Periods and Alternative Shape Risk Assessments.

Panel A: 1-year Trading Periods from 1993 to 1996.

Factor Type Chebyshev Laguerre Chebyshev Laguerre Chebyshev Laguerre Chebyshev Laguerre

Average (x 0.1%) -0,20 -0,17 -0,80 0,00 -0,30 0,01 -0,10 0,01
Std. Dev. (x 0.1%) 3,00 2,34 53,20 0,38 46,00 0,30 7,65 0,29
Skewness -2,66 -3,41 -12,42 0,20 -1,34 -0,11 0,24 0,46
Kurtosis Excess 32,10 31,51 188,64 0,24 106,38 1,19 21,00 2,61

Panel B: 1-year Trading Periods from 1997 to 2000.

Factor Type Chebyshev Laguerre Chebyshev Laguerre Chebyshev Laguerre Chebyshev Laguerre

Average (x 0.1%) 0,00 0,00 -28,00 0,00 0,00 0,00 0,90 0,01
Std. Dev. (x 0.1%) 0,38 0,33 327,00 0,38 2,10 0,45 14,00 0,36
Skewness 0,22 0,21 -5,60 -0,65 0,22 -0,11 4,70 0,07
Kurtosis Excess 1,06 0,97 61,00 0,23 1,92 0,36 38,00 -0,08

Descriptive statistics of hedging P&L's distributions are computed for trading strategies based on shape risk estimated on a 2-year time window
prior to the first trading day and then updated at each portfolio adjustment. Shape risk is alternatively evaluated by using smoothed Chebyshev
and Laguerre polynomials. Trading is performed on 8 consecutive 1-year periods, starting on March, 1 1993 and ending on February, 28 2001.
Corresponding portfolios are adjusted every business day.

1997 - 1998 1998 - 1999 1999 - 2000 2000 - 2001 

1993 - 1994 1994 - 1995 1995 - 1996 1996 - 1997 



Fig. 1: Qualitatively distinct shapes exibited by sample yield curves: downward humped (upper-left panel), upward humped (lower-left panel),
concave (upper-right panel), convex (lower-right panel).
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Fig. 2: The 5-year minus 3-month yield spread path in the period from May, 20 1999 to February, 17 2002. 
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Fig. 3: Historical volatilities at benchmark times to maturity (dots) are compared to volatility curves obtained by the leading 1, 2, 3,
and 4 yield factors (plain line) and to volatility curves resulting from the leading 1, 2, 3, and 4 shape factors (dashed curve).
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Fig. 4: Historical volatilities at benchmark times to maturity (dots) are compared to volatility curves obtained by the leading 4 shape factors
alternatively computed by using smoothed Laguerre (upper graph) and Chebyshev (lower graph) functions. Lefthand graphs show the eight
basis functions. It appears evident that the quality of volatility recovery depends on the ability of selected basis functions to uniformly span
the range of possibly yield curve variations. 
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Fig. 5: Empirical probability density functions of logarithmic P&L's stemming from trading in the period 1994-1995 (left) and 1997-1998 (right).
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