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Abstract

We study jump spillover effects between a number of country equity indices. In order to identify
the latent historical jump times of each index, we use a Bayesian approach to estimate an event
risk model on each index. We look at the simultaneous jump intensities of pairs of countries and
the probabilities that jumps in large countries cause jumps in other countries. In all cases, we �nd
signi�cant evidence of jump spillover. We also �nd that jump spillover is particularly large be-
tween countries that belong to the same regions and have similar industry structures and market
capitalizations. Most interestingly, we �nd that the sample correlations between the countries do
not capture the jump spillover effects.

Keywords: Event risk; Spillover; Systemic risk; Stochastic volatility; Jump-diffusion; Markov
Chain Monte Carlo.
JEL classi�cations: C13; C15.

1 Introduction

In the wake of events such as Black Monday, 1987, or, more recently, the attacks of September 11,

2001, that affected �nancial markets in many countries, there has been a growing interest in �nancial

economics to allow for the presence of jumps in asset pricing models. Such models are often referred

to as event risk models. A number of recent theoretical studies analyze the impact of event risk on

strategic asset allocation (see e.g. Wu, 2003; Liu et al., 2003) and it is shown that the presence of

jumps can dramatically affect optimal portfolio strategies. Other recent papers study the implications

of event risk for option pricing and their ability to explain the observed volatility smiles which became

particularly pronounced after the world wide crash of Black Monday (see e.g. Pan, 2002; Eraker et
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al., 2003). Efforts have also been made to take into account event risk in calculations of risk measures

such as Value-at-Risk (VaR) (see e.g. Duf�e and Pan, 2001; Gibson, 2001).

Most studies on event risk are, however, based on the US and relatively little focus has been di-

rected towards other equity markets and the international aspects of jumps. An empirical study of

jumps in different countries is interesting for at least two reasons. Firstly, because it can add insights

about differences in stock price behavior around the world. Secondly, and more importantly, because

it makes it possible to assess the likelihood of jump spillover; that is, to what extent jumps transmit

across borders. Jump spillover can for example have important implications for international diversi�-

cation (see e.g. Das and Uppal, 2004). If country equity indices do tend to jump simultaneously, the

international diversi�cation effect decreases since the dependence between international equity returns

increases in periods of market stress. The main purpose of this paper is to estimate an event risk model

for a number of country equity indices in order to identify the latent historical jump times of each

country which we then use to quantify the degrees of jump spillover between different markets. We

look at two forms of jump spillover. Firstly, we calculate the simultaneous jump intensities for pairs of

countries and we test whether these simultaneous jump intensities are signi�cant or not and we also

look for factors that affect them. Secondly, we perform an analysis of conditional jump spillover to

examine to what extent jumps in large markets increase the probability of jumps in other markets, or

in a weaker form, cause unusually large negative returns in other markets.

To our knowledge, the issue of international jump spillover has not been addressed in this way by

previous studies. However, the present paper does have similarities with other work. In a preliminary

paper, Foresi et al. (1999) studies the diversi�cation and contagion of jump risk. The main difference

between our studies is that we focus on the analysis of actual jump times. Foresi et al. (1999) do not

estimate any jump times or jump intensities but mainly compares predictions of theoretical results with

some calculations on international equity returns data to get an idea of the relative magnitude between

systemic and idiosyncratic jump risk. Our study is also related in spirit to the literature on contagion

(see e.g. De Bandt and Hartmann, 2000; Forbes and Rigobon, 2002). This literature examines how

large country-speci�c shocks (�nancial crises) are transmitted across borders to other countries, and

often, signi�cant evidence that �nancial crises are contagious is found. However, those studies differ

from ours again in the sense that they do not use actual estimated jumps times, but instead look

at changes in cross-market correlations, volatility spillover effects, changes in cointegration vectors

between markets, or estimate explicitly speci�ed transmission mechanisms (see Forbes and Rigobon

(2002)). Finally, this paper is to some extent related to the literature on applications of copulas to

�nance which are methods for constructing multivariate distributions that can be used to study non-
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Gaussian dependence structures between returns in the tails of the return distribution (see e.g. Hu,

2004).

To identify the historical jump times, we estimate a univariate jump-diffusion model with stochas-

tic volatility on each index. The model, which falls into the class of models proposed by Duf�e et al.

(2000), is referred to as the stochastic volatility with correlated jumps (SVCJ) model and it assumes

that jumps in returns and volatility arrive simultaneously and that the jump sizes are correlated. The

primary reason for estimating such a relatively complex model, instead of simply looking at the histor-

ically largest price movements of each index, is that we in this way can separate returns that are actually

jumps from large diffusive returns caused by periods of high volatility. Jumps in volatility allow for

the rapid changes in volatility empirically found by for instance Bates (2000), Duf�e et al. (2000),

Pan (2002), and Eraker et al. (2003), and prevent estimated jump times to cluster. One reason for

the relatively limited amount of empirical research on event risk is that the complexity of the models

makes estimation comparatively dif�cult. Standard methods such as direct maximum likelihood (ML)

and the generalized method of moments (GMM) are, if applicable at all, intractable (see e.g. Honoré,

1998). In this paper we use a relatively new approach for the estimation of event risk models based on

Markov Chain Monte Carlo (MCMC) methods. The MCMC method to estimate stochastic volatil-

ity models was proposed by Jacquier et al. (1994) and the method was extended to models with jumps

in returns and volatility by Eraker et al. (2003).1 An advantage of the MCMC method compared to

many alternative methods is that it also identi�es the latent processes of the model; the jump times,

jump sizes, and the spot volatility path, which is a merit that is crucial for our analysis.

In our empirical analysis we �nd strong evidence of international jump spillover. The estimated

simultaneous jump intensities are in general signi�cantly larger than the corresponding intensities

under the null hypothesis that the different countries jump independently of each other. We �nd that

the intensities are particularly large and signi�cant for countries within approximately the same region

and we also �nd that they are generally larger for countries with similar industry structures and market

capitalizations. Most interestingly, however, we �nd that the historical sample correlations between

the countries is not a good measure to capture the degree of jump spillover between the countries.

This implies that the dependence between the different country equity indices' jump processes is

quite different from the dependence between returns that are not jumps, implying for instance that

mean-variance investors who use these correlations may have no protection against event risk.
1Other estimation methods include, for instance, the Ef�cient Method of Moments (EMM) of Gallant and Tauchen

(1996), Simulated Maximum Likelihood (SML), the Spectral GMM (SGMM) of Chacko and Viceira (2003), and the

Implied-State GMM (ISGMM) of Pan (2002).
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In our empirical analysis of conditional jump spillover from large markets to other markets we also

�nd strong evidence of jump spillover. A large majority of the estimated conditional jump spillover

probabilities are signi�cantly larger than the corresponding probabilities under the null hypothesis of

independent jump processes. For most European countries, the lagged jump spillover effect from the

US market is stronger than the spillover effect on the same day. This may be explained by the fact

that only about 30 percent of the US and European market opening hours overlap. Of the European

countries, Germany shows the smallest overall sensitivity to jumps in larger countries, and within

North America, the jump spillover probability from the S&P to the Nasdaq and to Canada is very

strong.

The rest of the paper is organized as follows: Section 2 presents the event risk model and the

estimation method (further details on the estimation method can be found in Appendix A). Section

3 contains the empirical results. This includes a discussion of the parameter estimates, and most

importantly, the analysis of jump spillover. Section 4 concludes the paper.

2 Event Risk Model and Estimation Methodology

The SVCJ model assumes that the logarithm of market index i, Si,t , i = 1, 2, ..., N , solves the

stochastic differential equation

 d ln

(
Si,t

)

dVi,t


 =


 mi

ki
(
ji − Vi,t−

)


 dt +

√
Vi,t−


 dW Y

i,t

sV ,idW V
i,t


 +


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i,t

xV
i,t


 dNi,t , (1)

where t− is the point in time that closest precedes time t, W Y
i,t and W V

i,t are standard one-dimensional

wiener process with instantaneous correlation ri, Ni,t is a one-dimensional Poisson process with con-

stant intensity li, and xY
i,t and xV

i,t are jump sizes. The jump size of spot volatility, xV
i,t , is assumed

to be exponentially distributed with mean mV
i , and to allow for the return and spot volatility jump

sizes to be correlated, xY
i,t is assumed to be conditionally normally distributed with conditional mean

mY
i + rJ

i xV
i,t and standard deviation sY

i . The correlation between the diffusive terms is allowed for in

order to capture the important leverage effect between return and volatility. Typically this correlation

is expected to be negative which induces negative skewness in returns (see Das and Sundaram, 1999).

In what remains of this section, we will drop the subscript i.

Another possible model speci�cation would be the stochastic volatility with independently arriving

jumps (SVIJ) model, which also falls into the general class of models proposed by Duf�e et al. (2000).

The SVIJ model assumes different jump processes for returns and volatility. Although this model has

been found to �t returns data slightly better than the SVCJ model, there is, to this date, no evidence of
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signi�cant misspeci�cation of the SVCJ model. We choose to work with the SVCJ speci�cation in this

paper since in an event risk study it simpli�es the analysis, and if there are indeed jumps in volatility,

it is in some sense more intuitive to assume that major events affect both return and volatility rather

than assuming that some events affect only return and some events affect only volatility.

To estimate the SVCJ model with MCMC, equation (1) is discretized over a time interval D using

an Euler discretization. The discretization interval is one day (D = 1) and the discretized version of

the model is

 Y(t+1)D

V(t+1)D


 =


 m

a + (1/D + b)VtD


D+

√
VtDD


 eY

(t+1)D

sV eV
(t+1)D


+


 xY

(t+1)D

xV
(t+1)D


 J(t+1)D,

(2)

where Y(t+1)D = ln(S(t+1)D) − ln(StD) is the log return, J(t+1)D = 1 indicates a jump arrival which

occurs with probability Dl, the drift parameters of the volatility process have been rewritten so that

a = kj, b = −k, and eY
(t+1)D and eV

(t+1)D are standard normal stochastic variables with correlation

coef�cient r. The need for the continuous-time process to be discretized is a drawback of the MCMC

method in the sense that it can potentially introduce discretization biases when low frequency data is

used. However, in a simulation study, Eraker et al. (2003) show that the biases in MCMC estimates

are very small for daily returns. In addition, the continuous-time speci�cation�although it provides

a nice foundation to stand on�is not critical for our empirical study.

The Markov Chain Monte Carlo (MCMC) method for inference and parameter estimation is a

Bayesian and simulation based estimation method. While traditional methods treats parameters and

latent variables as unknown constants, the Bayesian approach is to treat them as random variables.

The foundation of Bayesian analysis is the joint distribution of the parameters and latent variables

conditional on the data. This joint conditional distribution, referred to as the posterior distribution,

is derived via Bayes' formula and is generally of the form

p(J, V , J , xV , xY |Y ) ∝ p(Y |J, V , J , xV , xY )p(J, V , J , xV , xY ), (3)

where Y is a T × 1 vector of observations, V , J , xV , and xY are, respectively, T × 1 vectors of latent

spot volatilities, jump times, return jumps sizes, and volatility jump sizes, J is a vector of parameters,

p(Y |J, V , J , xV , xY ) is the likelihood of the data, and p(J, V , J , xV , xY ) is the prior distribution of

the parameters and the latent variables. The Bayesian parameter point estimates of the parameters

and the latent variables are typically taken as the respective posterior means. While knowledge about

the normalizing constant is not required, the prior distribution of the parameters has to be speci�ed

unconditional of the data by the researcher (the prior distribution of the latent variables, conditional

on J, is speci�ed by the model assumptions.). It can be thought of as a natural way to impose
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non-sample information, if there is any, and to impose stationarity and non-negativity where it is

needed. If there is no non-sample information to be imposed, the prior is usually chosen so that

it is as uninformative as possible�typically with a very large variance over the relevant parameter

space�which is what we do in this paper.2

The posterior distribution of equation (3) is extremely complex and non-standard with no existing

closed form solution. Consequently, simulation-based methods have to be used to explore it. The

MCMC method, which is discussed in more detail in Appendix A, generates a sequence of draws

{J (j), V (j), J (j), xV (j), xY (j)}M
j=1, that is a Markov Chain with equilibrium distribution equal to the

posterior distribution. Using this generated sample from the posterior distribution, the point estimates

of J, V , J , xV , and xY are then simply given by their respective posterior sample means.

In this paper we are particularly interested in estimating the latent historical jump times. The point

estimate of J is

�J =
M∑

j=1
J (j).

It is important to note that this estimate will, unlike the �true� vector of jump times, not be a vector

of ones and zeros. Rather, element t, �Jt , will be the posterior probability that a jump has occurred at

time t. Following Johannes et al. (1999), a natural and simple approach to construct from �J the vector

of jump times is to assert that a jump has occurred if the estimated jump probability is suf�ciently

large; that is, greater than an appropriately chosen threshold value `, so that

�J∗t =





1 if �Jt > `,

0 if �Jt ≤ `.
(4)

In our empirical study we choose ` so that the number of inferred jump times divided by the number

of observations is roughly equal to the estimated jump intensity. For simplicity and for consistency,

we use the same value of ` for all indices and we choose ` = 0.1702 since it is the value that (it turns

out) minimizes the average distance from the actual estimated intensities.3

More details on the MCMC algorithm used to estimate the SVCJ model can be found in Appen-

dix A. Further details on the theory behind MCMC methods can be found in Johannes and Polson

(2004).
2Alternatively, it can be chosen to be diffuse which means that it is completely uninformative. Diffuse priors, however,

do not integrate to unity and they are therefore not well suited for all situations.
3The preliminary results of a forthcoming paper by the second co-author of this paper, which uses instead a multivariate

version of the SVIJ model and thus avoids the issue of specifying such a threshold value, indicate that the simultaneous

jump intensities using the approach of this paper are in fact correctly estimated.
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3 Empirical Results

In this section we present and analyze our empirical results. After a presentation of the data set, we

provide a short discussion on the parameter estimates. Then follows the analysis of jump spillover

between pairs of countries. All tables and �gures can be found Appendices C and D, respectively.

3.1 Data Set

The data is extracted from the EcoWin data base and consists of the daily log returns of N = 14

country equity indices between February 1, 1985, and April 28, 2004. The indices are selected based

on data availability for the chosen window of time and they are, except for the US for which we include

both the S&P (500) and the Nasdaq (100), the largest equity indices of Canada, UK, the Netherlands,

Sweden, France, Germany, Denmark, Italy, Norway, Hong Kong, Japan, and Australia. Descriptive

statistics for the data can be found in Table 1. We will refer to the indices by their respective country

of origin except for the US where we distinguish between the S&P and the Nasdaq.4

In our study of jump spillover, it is important to take into account that �nancial markets in different

time zones have different opening hours. The approximative opening hours for different regions are

illustrated in Figure 1. The �gure shows that the only overlap in opening hours is between North

America and Europe. We will generally assume that the S&P is the internationally leading index. For

this reason, when we examine jump spillover between countries that belong to different regions, we

look at jumps in Europe that arrive on the same or on the day after jumps in the US, while we only

look at jumps in Asia or Australia that arrive on days after jumps in the US. Due to relative ef�ciency

of the equity markets involved in our study, it is rational to assume that jumps transfer very quickly

across the markets, why we do not include any additional lead-lag effects.

It can be argued that the effects of differences in market opening hours can be avoided by using,

for example, weekly data. However, lower frequency data would smooth out the effects of jumps

and invalidate the assumption that at most one jump can occur per discretization interval. A better

alternative would instead be to use higher frequency data such as hourly returns in order to really

�nd out when in the day the jumps have occurred and how fast they are transmitted across borders.

Unfortunately, high frequency data sets that go back suf�ciently long in time are hard to obtain for

more than perhaps a few international equity indices. Consequently, our best alternative is to use daily

data, but taking into account our analysis that differences in market opening hours are present.
4To examine the quality of our estimates, we have also estimated the model on the same data sets as in Eraker et al.

(2003) and on arti�cial data sets. The results are not included in the paper but are available upon request.
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3.2 Parameter Estimates

The parameter estimates for the SVCJ model and for the different indices are presented in Table 2 for

the North American and Asian countries and Australia, and in Table 3 for the European countries. To

serve as illustrative examples, Figure 2 shows, together with the historical log returns, the estimated

jump probabilities and the estimated spot volatility paths for the S&P, the UK, and Japan. The plots

for the other countries have been omitted to save space, but are available upon request.

Since this paper is focused on the analysis of jumps, we begin by examining the estimates of the

unconditional average sizes of jumps in returns, which for each country equals mY +rJmV . It should be

noted that despite the fact that the estimate of mY is positive for some countries, the total unconditional

average jump size to return is negative for all indices. The reason is that whenever the estimate of mY

is positive, the estimate of rJ , which measures the dependency between the size of jumps in returns

and the size of jumps in volatility, is negative. An effect of the negative jumps in returns is that the

estimates of the drift parameters are strictly greater than the corresponding sample means for every

index. For example, the estimated drift parameter of the S&P is approximately 15 % larger than the

sample mean, and for Japan, the effect of jumps in returns has likely decreased the average return in

the sample by so much that it is effectively equal to zero. This implies that jumps may constitute a

relatively large component of expected return. Another implication may be that a traditional expected

return estimate may be very sensitive to whether or not the estimation window contains any jumps or

not.

The index that has the largest unconditional average size of jumps in returns is Australia where

jumps in returns are on average -5.6212 %, closely followed by Hong Kong (-5.2867 %) and the S&P

(-5.0368 %). The index that has the smallest unconditional average size of jumps in returns is Japan

where jumps in returns are on average -0.7316 %, closely followed by Denmark (-0.7568 %), the UK

(-1.1397 %), and Italy (-1.1470 %). As a simple measure of dependency between jump frequency

and jump size, we calculate the cross-sectional correlation between the estimated jump intensities and

the estimated unconditional average jump sizes of returns. This sample correlation is equal to -0.6133

which implies that countries with a high jump intensity generally have a smaller average jump size

than countries with a low jump intensity. That is, some countries experience few but large jumps

while other countries experience frequent but small jumps. The parameter l, which is the arrival

intensity of jumps, is estimated to values between l = 0.0033 for Australia and l = 0.0271 for

Denmark. So, although jumps in the Danish market are approximately seven times more frequent

than jumps in the Australian market, the average jump size of Australia is, coincidentally, about seven

times larger than the average jump size of Denmark.
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3.3 Jump Spillover

In this section we use our estimates of the historical jump times to analyze jump spillover effects. First,

we look at the simultaneous jump intensities between pairs of countries, and second, we examine the

conditional jump spillover probabilities that jumps in large countries cause jumps or unusually large

negative returns in other countries.

While this section deals with jump spillover between pairs of countries, in Appendix B we perform a

brief historical and descriptive study of the dates in our sample on which many countries have jumped

simultaneously. Many of these dates coincide with important economical or political event, which

indicate that the estimated jump times do make sense in that they seem to be consistent with the

interpretation of jumps as event risk.

3.3.1 Simultaneous Jump Intensities

We start our study of jump spillover by taking a look at the simultaneous jump intensities between

pairs of countries. We calculate the simultaneous jump intensity of two countries (indices) in a

straightforward manner simply as the number of identi�ed simultaneous jumps divided by the number

of overlapping observations. The simultaneous jump intensity of a country (index) with itself is the

number of jump times divided by the number of observations�a number which should be roughly

consistent with the respective estimate of l (for example by lying in the con�dence interval of the

corresponding estimate of l in Table 2 or 3). When the two countries are either both North American

or both non-North American, we de�ne a simultaneous jump time as a date on which we have iden-

ti�ed jumps in both countries. In the remaining cases we de�ne a simultaneous jump time as a date

on which we have estimated a jump in the North American country and a jump in the non-North

American country on the day (of trade) after. The reason for this distinction is that the opening hours

of the Asian and Australian markets do not overlap with the opening hours of the North American

markets and that most of the market opening hours of the North American markets take place after

the European markets have closed. Since the US equity market is the largest in the world, it is most

natural to assume that the S&P is the internationally leading index. In addition, in Appendix B we

�nd some evidence that there do seem to exist a lagged effect from the US market to other markets,

but not in the opposite direction.

Table 4 reports the estimated simultaneous jump intensities and whether the estimated values are

signi�cant at the 95 (*) or 99 (**) percent level. The signi�cance levels are obtained by testing if the

estimated intensities are greater than what they would be under the null hypothesis that the different

countries' jump processes are completely independent. Under the null hypothesis, the simultaneous
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jump intensity of two countries is estimated simply as the product of each country's ratio of the

number of identi�ed jumps to the number of observations.5 For example, the simultaneous jump

intensity of the S&P and the Nasdaq is under the null hypothesis equal to 0.0045 multiplied by

0.0072.

An initial observation is that the estimated simultaneous jump intensities are generally quite sig-

ni�cant, which is evidence of the existence of systemic jump spillover. Another observation is that

generally, the intensities are especially large and signi�cant between countries of approximately the

same time zones or regions. That is, between countries 1 to 3 (North American region), between

countries 4 to 11 (European region), and between countries 12 to 14 (Asian and Australian region).

For example, while, on average, the S&P and Canada jump simultaneously every 1.7 years, the UK

and France jump simultaneously every 2.3 years, and Japan and Hong Kong jump simultaneously

every 2.0 years, the S&P and UK only jump simultaneously every 6.6 years and the S&P and Japan

only jump simultaneously every 3.6 years.

To formally test for this regional effect, we run a regression of the simultaneous jump intensities

in excess of the corresponding intensities under the null hypothesis (excess simultaneous jump inten-

sities henceforth) on a constant and a dummy variable. The dummy variable is equal to one if the

corresponding simultaneous jump intensity is between two countries that belong to the same region

and equal to zero otherwise. The reason why we use the excess intensities as the dependent variable

in the regression is that we are interested in explaining the portions of the intensities that cannot be

explained by the fact that counties sometimes jump simultaneously only by accident. A motivation

for not including the null hypothesis intensities instead on the right hand side of the regression is to

avoid the bias due to the errors-in-variables problem which arises when including estimated values

as a regressor in a regression. That the left hand side of the regression contains measurement error

should not, in theory, present such a problem, but it does imply that the usual OLS standard errors

will be somewhat underestimated. Because the S&P and the Nasdaq are both indices belonging to

the same country and therefore exhibit a very high degree of jump spillover, we omit the Nasdaq from

this analysis. What remains is therefore 78 excess simultaneous jump intensity observations to be ex-

plained on the left hand side of the regression. To keep things simple, we estimate the regression with

ordinary least squares (OLS) and perform no corrections of the standard errors. The result is that both

coef�cients are highly signi�cant (see column R3 of Table 5). The t-statistic of the slope coef�cient is
5All the test statistics we use in this section can be found in Hogg and Tanis (2001). The tests take into account that

the estimated simultaneous jump intensities and the estimated conditional jump spillover probabilities are random under

both the null and the alternative hypothesis. We have also tested the simultaneous jump intensities using bootstrap methods

which resulted in even higher levels of signi�cance.
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6.0641, thus indicating that the regional factor is indeed an important factor that affects the degree of

jump spillover between two countries.

The importance of the regional factor might not be surprising. In addition to having similar market

opening hours, countries located in the same region are often similar in many more ways. They

may for example have extensive links through trade and �nance and have similar market structures.

It is therefore interesting to examine if there are other factors as well, in addition to the regional

factor, that can be used to explain the estimated simultaneous jump intensities. For this purpose,

we regress the excess simultaneous jump intensities (still excluding the Nasdaq) on a constant, the

regional dummy, and three additional factors: The �rst additional factor consists of the (absolute) size

differences between the different countries' equity markets. As proxies for the sizes of the different

countries' equity markets we use their weights in the April 11, 2002, MSCI All Country World Index

Free (ACWI) index. We include this factor in order to examine if there is a tendency for jump spillover

to be greater between, for instance, large and small countries. The second additional factor consists

of the sample correlations calculated from the historical (log) returns of the different country indices.

We include this factor in order to examine if countries whose returns are highly correlated are also

highly dependent in the sense of a high degree of jump spillover. The third additional factor consists

of the differences between the different countries' industry structures. To construct a proxy for this

factor, we �rst calculate the countries' respective exposures (betas) to the ten MSCI World industry

indices.6 As a measure of the industry differences, for every pair of countries we then calculate the

average absolute difference in exposures. We include this �nal factor to examine if a similar industry

structure affects the degree of jump spillover between two countries.7

The OLS parameter estimates of the regression of the excess simultaneous jump intensities on the

factors above are presented in column R1 of Table 5. We see that the regional effect is still signi�cant

and that there are also signi�cant negative relations with the absolute size differences and the industry

differences (especially when the sample correlations are omitted from the regression, see column R3

of Table 5), whereas there is no signi�cant relation with the sample correlations. That the relation

with the absolute size differences is negative indicates that the smaller is the difference in size between

two countries, the larger is the degree of jump spillover.8 To examine if there is any tendency that two
6We use daily return data between 02 January, 1995, and 1 November, 2004, and the industries are: Consumer Dis-

cretionary, Consumer Staples, Energy, Financials, Health Care, Industrials, IT, Materials, Telecommunications Services,

Utilities.
7A potential fourth factor that would be interesting to include are the amounts of cross-listings between the different

indices. However, since the data collection to construct this factor would be disproportionately time consuming and dif�cult,

keeping in mind that this regression study is not the main focus of the paper, we do not include such a factor.
8It should be noted that this result is somewhat sensitive to the inclusion of the S&P (US) in the regression. The weight
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large countries exhibit more jump spillover than two smaller countries, or vice versa, we include in the

regression also a dummy variable for this, but we �nd no signi�cant such relation (the results are not

reported in Table 5 but are available upon request). Similarly, the negative relation with the industry

differences indicates that countries with similar industry structures generally exhibit a higher than

average degree of jump spillover. Perhaps most interesting, however, is that the sample correlations

have no signi�cant power in explaining the simultaneous jump intensities. Even if we do obtain a

signi�cant relationship when we run a regression of the excess intensities on the sample correlations

alone (see column R4 of Table 5), the R2 in such a regression is quite low; R2 = 0.0975 compared to

R2 = 0.4366 when all factors are included. This implies that ordinary correlations are not suf�cient

to capture how different equity markets depend on each other in times of extreme event�in particular

when the effect of the regional, absolute size difference, and industry difference factors are taken into

account. An implication of this is that an investor with mean-variance preferences who disregards

event risk and who uses sample correlations to form portfolios, may be exposed to more risk than

expected because of the jump spillover and its (almost) independence with sample correlations.

3.3.2 Conditional Jump Spillover Probabilities

Next, we look at the conditional spillover probability that, given a jump in a chosen benchmark

country, other countries jump on the same or on the following day�denoted by same-day (conditional)

jump spillover and next-day (conditional) jump spillover. We examine three cases for the choice of

benchmark country: (1) S&P, (2) UK, and (3) Japan. These choices are motivated by the fact that

these are the major indices in their respective regions, and out of these, we still assume that the S&P

is the internationally leading index. For case (1), we look at the same-day jump spillover to the

remaining two North American countries and Europe and next-day jump spillover to Europe, Asia,

and Australia. For case (2), we look at the same-day jump spillover to the other European countries

and next-day jump spillover to Asia and Australia. Since the UK and the US market opening hours

overlap, there is no real motivation for looking at same-day jump spillover from the UK to the US.

Finally, for case (3), we look at the same-day jump spillover to the US, to Europe, and to Hong Kong

and Australia.

Table 6 shows the estimated same-day and next-day (conditional) jump spillover probabilities. The

same-day jump spillover probability for a country is estimated as the number of simultaneous jump

times with the benchmark country divided by the number of jump times of the benchmark country.

The next-day jump spillover probability is calculated in the same way but by using instead the number

of the US in the ACWI is by far the largest; 0.5347 compared to the second largest weight 0.0986 (the UK).
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of jumps that occur on the day after jumps in the benchmark country. The table also shows which of

these estimated probabilities that are signi�cant at the 95 or 99 percent level. The signi�cance levels

are obtained by testing for equality of the estimated spillover probabilities with the corresponding

probabilities under the null hypothesis of independent jump processes. Under the null hypothesis, the

same-day and next-day jump spillover probabilities of a country are both estimated as the number of

identi�ed jumps divided by the number of observations.

The results show that all the estimated probabilities are signi�cant, except for Japan, which, as could

be expected, does not seem to have any signi�cant effect on the North American indices. For most

of the European countries (all except for Sweden) the next-day jump spillover effect from the S&P is

greater than the same-day jump spillover effect. This may be due to fact that the largest portion of the

activity on the US market takes place when the European markets are closed; only about 30 percent

of the US and European market opening hours overlap. For the European indices, we again notice a

region effect in that the same-day jump spillover effect from the UK is larger than the one from the

S&P.9 Of the European countries, Germany shows the smallest overall sensitivity to jumps in the S&P

and the UK. Within North America, the jump spillover probability from the S&P to the other two

indices is quite strong; 77.27 % for the Nasdaq and 50.00 % for Canada.

It may be possible that although jumps in the benchmark countries do not always cause jumps

in other countries, they still affect considerably other markets. To analyze a weaker form of jump

spillover, we look at the conditional probabilities that jumps in the benchmark countries merely results

in unusually large negative returns in other countries and not necessarily jumps. For simplicity, we

de�ne an unusually large negative return as a return belonging to the lower decile of the historical

returns of each index. These probabilities are estimated in the same fashion as above and we again

test if they are greater than the corresponding probabilities under the null hypothesis of independence

between the benchmark jumps and the unusually large negative returns. In this case, the probabilities

under the null are simply equal to 10 %.

The result for this type of jump spillover is shown in Table 7. Firstly, it is easy to see that all

values are considerably larger than the corresponding values in Table 6, and at the same time, almost

the same pattern as above in terms of spillover and signi�cance is present. Secondly, despite the, on

average, stronger same-day jump spillover from the UK to the other European countries compared to

the next-day jump spillover from the S&P, in this case the next-day effect from the S&P is larger, on
9It would be interesting to perform a regression study similar to the one in the previous analysis in order to examine

factors that may help explain the estimated conditional jump spillover probabilities. However, the number of �observations�

is considerably less in this case which makes such a study hard to carry out. It would, however, perhaps be interesting to

look at the explanatory power of factors like benchmark country foreign investment and so forth.
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average, than the same-day effect from the UK. On average, about 60% of the jumps in S&P cause

strong reactions in the European markets.

4 Conclusion

In this paper we study jump spillover between a number of country equity indices. Our contribution

is twofold: Firstly, we �t a stochastic volatility jump-diffusion model to each individual index and

compare features of the different indices such as jump frequencies and jump magnitudes. This analysis

is motivated by the fact that most previous empirical research of event risk models have focused mostly

on the US markets and little is known about the impact of jumps in other markets. Secondly, we look

at jump spillover effects between countries. This is the central issue of the paper, and to our knowledge,

it has not been analyzed by previous studies.

To identify the historical jump times of the different indices, we use the stochastic volatility with

correlated jumps (SVCJ) model. This model helps us to separate out returns that are related to sudden

unexpected events (jumps) from large diffusive returns caused by periods of high volatility. We esti-

mate the model with the MCMC method of Eraker et al. (2003). The advantage of this estimation

method, compared to most other methods, is that it makes it possible to estimate the latent processes

of the model; in particular the jump times.

Our study of jump spillover begins with an analysis of the simultaneous jump intensities of pairs

of countries. We �nd that these intensities are generally quite signi�cant, and in a regression study,

we �nd that the (excess) simultaneous jump intensities are particularly large for pairs of countries that

belong to approximately the same time zones or regions and have similar market capitalizations and

industry structures. That is, two countries that belong to the same region and have similar equity

market sizes and industry structures are likely to exhibit a relatively high degree of jump spillover.

Perhaps most interestingly, however, we �nd that there is no strong relation between the historical

sample correlations and the estimated simultaneous jump intensities. The R2 in a regression of the

(excess) simultaneous jump intensities on the historical sample correlations alone is quite low and

the relation is highly insigni�cant when the other factors are included in the regression. That is,

the return correlation between two countries estimated from historical returns is not likely to carry

much information on the degree of dependence in terms of how often they jump simultaneously. For

example, this implies that an international investor with mean-variance preferences who do not take

into account jump spillover and who uses these correlations when selecting portfolios, may not even

accidentally construct any hedge against event risk. Consequently, the risk of the portfolio position
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may be much greater than what is expected since ordinary correlations tells the investor little about

the jump spillover dependencies in times of extreme events.

We end our study of jump spillover by looking at the conditional probabilities that jumps in large

markets cause jumps or large price movements in other markets. We �nd that these estimated condi-

tional jump spillover probabilities are also generally signi�cantly larger than what they would be under

the null hypothesis of no international jump spillover. Furthermore, we observe a lagged effect from

the US to the other countries in our data set. For most of the European countries, jumps in the S&P

are more likely to cause jumps in Europe, Asia, and Australia on the day after the US jump than on

the same day. This effect is likely to be the result of differences in market opening hours.
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A MCMC estimation

The MCMC method draws from the Clifford-Hammersley theorem (Hammersley and Clifford,

1970) which states that a joint distribution p(A, B|C ) is completely characterized by the two condi-

tional marginal distributions p(A|B, C ) and p(B|A, C ). This implies that a sample from the complete

posterior of equation (3) can be obtained by drawing random numbers from a set of conditional mar-

ginals, which can be derived by using Bayes' formula. The marginals are lower in dimension and

chosen so that they are as easy to sample from as possible. The MCMC algorithm used to estimate

the SVCJ model is

For j = 1, 2, ..., m, ..., M :

(1) Parameters

Draw J (j)
1 from p

(
J (j)

1 |Y ,J (j−1)
2 ,J (j−1)

3 , ...,J (j−1)
K , V (j−1), J (j−1), xV (j−1), xY (j−1)

)

...

Draw J (j)
K from p

(
J (j)

K |Y ,J (j)
1 ,J (j)

2 , ...,J (j)
K−1, V (j−1), J (j−1), xV (j−1), xY (j−1)

)

(2) Jump times For t = 1, 2, ..., T :

Draw J (j)
Dt from p

(
J (j)
Dt = 1|Y ,J (j), V (j−1), xV (j−1), xY (j−1)

)

(3) Jump sizes For t = 1, 2, ..., T :

Draw xV (j)
Dt from p

(
xV (j)
Dt |Y ,J (j), V (j−1), J (j)

Dt , x
Y (j−1)
Dt

)

Draw xY (j)
Dt from p

(
xY (j)
Dt |Y ,J (j), V (j−1), J (j)

Dt , x
V (j)
Dt

)

(4) Spot volatilities

Draw V (j)
D1 from p

(
V (j)
D1|Y ,J (j), V (j)

0 , V (j−1)
D2 , J (j), xV ,(j), xY (j)

)

...

Draw V (j)
DT from p

(
V (j)
DT |Y ,J (j), V (j)

D(T−1), V (j−1)
D(T+1), J (j), xV (j), xY (j)

)

When we run the MCMC algorithm, we set M = 100, 000 and we discard the �rst m = 20, 000

iterations as burn-in. In the cases when the conditional marginals are standard distributions that can be

easily sampled from, the corresponding MCMC draws are referred to a Gibbs steps. In the other cases

when they are unknown distributions, so called Metropolis steps are necessary. Metropolis-Hastings

algorithms are methods to generate random numbers from non-standard distributions and generally

consists of at least two steps: First a draw from a proposal density and then a draw from a uniform

distribution to decide whether to accept or reject the draw from the proposal. Whenever possible, we

choose conjugate priors.10 The (marginal) prior distributions we choose are: m ∼ N (a, A), (a, b) ∼
10A conjugate prior is a distribution under which the prior and posterior of a parameter is the same type of distribution,

but with different hyperparameters.
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N (b, B), s2
V ∼ IW(c, C ), r ∼ U (−1, 1), mV ∼ IW(d , D), mY ∼ N (e, E), s2

Y ∼ IW(f , F ),

rJ ∼ N (g, G), l ∼ b(k, K ). With these priors for the parameters, the only (marginal) posteriors

that cannot be written as standard distributions are those of s2
V , r, and VDt , t = 1, 2, ..., T . We

use an independence Metropolis-Hastings algorithm for s2
V and random walk Metropolis-Hastings

algorithms for r and VDt . Cappuccio et al. (2004) consider a novel Metropolis-Hastings algorithm in

a related setting, but we �nd that our approach works well.

The posterior of s2
V , conditional on Y , V , J , xY , xV , andJ−s2

V
, it can be showed using Bayes'

formula, is proportional to

(s2
V )T/2 exp

{
−1

2
∑T

t=1
(VtD−V(t−1)D−aD−bV(t−1)DD−xV

tDJtD−rsV (YtD−m−xY
tDJtD))2

(1−r2)s2
V V(t−1)DD

}
(s2) c+2

2 exp
{−1

2
C
s2

}
,

which is a non-standard distribution. However, in the special case when r = 0 it is a one-dimensional

inverted-Wishart distribution (which is the same thing as the inverted-gamma distribution). On

account of this, we choose the proposal density to be IW(c∗, C∗), where

c∗ = c + T ,

C∗ = C +
T∑

t=1

(VtD − V(t−1)D − aD− bVt−1D− xV
tDJtD)2

Vt−1D
,

and where c = 2.5, and C = 0.1. Since the proposal is identical to the true posterior if there is no

leverage effect, we hope that it is a reasonable approximation when r 6= 0. Indeed, when estimate the

model on the different country equity indices, those with very little leverage effect such as Denmark

have an acceptance ratio for this parameter almost equal to one, while countries like Japan which have

quite a lot of leverage, have a signi�cantly lower acceptance ratio of approximately 85 % to compensate

for the difference between the true posterior and the proposal.

The posterior of r, conditional on Y , V , J , xY , xV , and J−r, can in a similar fashion be derived as
(

1√
1−r2

)T
exp

{
− 1

2(1−r2)
∑T

t=1

�
YtD−mD−xY

tDJtD− r
sV

(VtD−V(t−1)D−aD−bV(t−1)DD−xV
tDJtD)

�2

V(t−1)DD

}
1{−1<r<1},

where 1{−1<r<1} is an indicator function that is equal to 1 when |r| ≤ 1 and 0 otherwise. Since

this distribution is not similar to any well known distribution, we choose a random walk Metropolis-

Hastings algorithm in this case. We choose the t-distribution for the random walk disturbances with

degrees of freedom and standard deviations that depend on the data set in question, usually around

6.5 to 10 and 0.015 to 0.4, respectively.
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Similarly, the posterior of VtD conditional on Y , V−VtD , J , xY , xV , and J, t = 2, ..., T − 1, is

proportional to

V−1
tD exp

{
−1

2
∑1

i=0

(�
Y(t+i)D−mD−xY

(t+i)DJ(t+i)D− r
sV

�
V(t+i)D−V(t−1+i)D−aD−bV(t−1+i)DD−xV

(t+i)DJ(t+i)D

��2

(1−r2)V(t−1+i)DD

+

�
V(t+i)D−V(t−1+i)D−aD−bV(t−1+i)DD−xV

(t+i)DJ(t+i)D

�2

s2
V V(t−1+i)DD

)}
,

which also is extremely non-standard. We therefore again use random walk Metropolis-Hastings

algorithms with t-distributed disturbances. The standard deviations have to be adjusted so that when

VtD is large, so is the standard error of corresponding the disturbance, and vice versa. For example, a

preliminary estimate of V can be obtained half way into the burn-in period, or so, according to which

the disturbance standard deviations can be adjusted. An average standard deviation that seems to work

well is 0.25, together with 6.5 degrees of freedom.

All other posteriors are standard distributions that can be sampled by using standard statistical

softwares such as the built in functions in Matlab. By Bayes' formula it can be showed that:

m|Y ,V ,J ,xY ,xV ,J−m ∼ N (a∗, A∗), where

a∗ = A∗
(

D
(1− r2)

T∑

t=1

emY ,tD − r
sV

emV ,tD
V(t−1)D

+
a
A

)
,

A∗ =

(
D2

(1− r2)

T∑

t=1 V(t−1)D
+

1
A

)−1

,

a = 0, A = 25, emY ,tD = YtD − xY
tDJtD, and emV ,tD = VtD − V(t−1)D − aD− bV(t−1)DD− xV

tDJtD.

(a, b)|Y ,V ,J ,xY ,xV ,J−(a,b) ∼ N (b∗, B∗), where g = (a b)T and

b∗ = B∗
(

B−1b +
1

(1− r2)s2
V

W TQ
)

,

B∗ =
(

B−1 +
1

(1− r2)s2
V

W TW
)−1

,

Q =




V(1)−V(0)−xV
(1)J(1)−rsV egY (1)√
V(0)D

V(2)−V(1)−xV
(2)J(2)−rsV egY (2)√
V(1)D

V(3)−V(2)−xV
(3)J(3)−rsV egY (3)√
V(2)D
...




,

W =




1√
V(0)D

√
V(0)D

1√
V(1)D

√
V(1)D

1√
V(2)D

√
V(2)D

...
...




,
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and b = 01, B = I, egY ,tD = YtD − mD − xY
tDJtD. 1 denotes a vector of ones and I denotes the

identity matrix, both with the appropriate dimension.

mV |Y ,V ,J ,xY ,xV ,J−mV
∼ IW(d∗, D∗), where

d∗ = d + 2T ,

D∗ = D + 2
T∑

t=1
xV

tD,

d = 10, and D = 20.

mY |Y ,V ,J ,xY ,xV ,J−mY
∼ N (e∗, E∗), where

e∗ = E∗
( T∑

t=1

(
xY

tD − rJxV
tD

)

s2
Y

+
e
E

)
,

E∗ =
(

T
s2

Y
+

1
E

)−1
,

e = 0, and E = 100.

s2
Y |Y ,J ,xY ,xV ,J−s2

Y
∼ IW(f ∗, F ∗),where

f ∗ = f + T ,

F ∗ = F +
T∑

t=1

(
xY

tD − mY − rJxV
tD

)2
,

f = 10, and F = 40.

mY |Y ,J ,xY ,xV ,J−rJ
∼ N (g∗, G∗), where

g∗ = G∗
(∑T

t=1
(
xY

tD − mY
)
xV

tD
s2

Y
+

g
G

)
,

G∗ =

(∑T
t=1

(
xV

tD
)2

s2
Y

+
1
G

)−1

,

g = 0, and G = 4.

l|J ∼ B(k∗, K ∗), where

k∗ = k +
T∑

t=1
JtD,

K ∗ = K + T −
T∑

t=1
JtD,

k = 2, and K = 40.

p(JtD = 1|Y , V , xY , xV ,J) is proportional to

l exp
{
−1

2

(�
YtD−mD−xY

tD− r
sV

(VtD−V(t−1)D−aD−bV(t−1)DD−xV
tD)
�2

(1−r2)V(t−1)DD + (VtD−V(t−1)D−aD−bV(t−1)DD−xV
tD)2

s2
V V(t−1)DD

)}
,
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and p(JtD = 0|Y , V , xY , xV ,J) is proportional to

(1− l) exp
{
−1

2

(�
YtD−mD− r

sV
(VtD−V(t−1)D−aD−bV(t−1)DD)

�2

(1−r2)V(t−1)DD + (VtD−V(t−1)D−aD−bV(t−1)DD)2

s2
V V(t−1)DD

)}
.

xV
tD|xV

tD>0,YtD,VtD,V(t−1)D,JtD=1,xY
tD,J ∼ T N (h, H ), where T N is the truncated normal distribu-

tion, and

h = H
(

ex,VV ,tD − rsV ex,VY ,tD
(1− r2)s2

V V(t−1)D
+

rJ
(
xV

tD − mY
)

s2
Y

− 1
mV

)
,

H =

(
1

(1− r2)s2
V V(t−1)D

+
r2

J
s2

Y

)−1

,

ex,VV ,tD = VtD − V(t−1)D − aD− bV(t−1)DD and ex,VY ,tD = YtD − mD− xY
tD.

xY
tD|YtD,VtD,V(t−1)D,JtD=1,xV

tD,J ∼ N (i, I ), where

i = I
(

ex,YY ,tD − r
sV

ex,YV ,tD
(1− r2)V(t−1)DD

+
mY + rJxV

tD
s2

Y

)
,

I =
(

1
(1− r2)V(t−1)D

+
1
s2

Y

)−1
,

ex,YV ,tD = VtD − V(t−1)D − xV
tD − aD− bV(t−1)DD and ex,YY ,tD = YtD − mD.

B Global Jumps

In this appendix we look at some of the identi�ed jump times that are shared by several countries.

Many of these simultaneous jumps can easily be related to important political or economical events,

which is in line with the interpretation of jumps as event risk. However, since it is beyond the scope

of this paper to provide a complete historical study of the background factors of jump occurrences,

these brief discussions should mainly be taken as speculations. The purpose is rather to show that the

estimated jump times do seem to make some economical sense.

October 19, 1987 This date is the well known world wide crash of Black Monday and we estimate

that all countries in our data set jumped on this day. On the Friday before Black Monday, we identify

jumps in the three North American indices, while the only non-North American index that jumped

was Sweden.11 On the day after Black Monday, we estimate jumps in six countries out of which none
11On Black Monday the DJIA 30 fell by 508 (22.6 %). Other country indices fell even more. For instance, in Hong

Kong prices fell by 46 %. On the Friday before Black Monday, the DJIA for the �rst time fell by more than 100 points

(108).
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are North American. This indicates that there was a lagged effect from the US market to the other

countries. A possible explanation for this delay is the differences in opening hours (for a full discussion

on nature of the crash of Black Monday, see e.g. Roll, 1989).

October 13, 1989 On this Friday the thirteenth, the DJIA fell by almost 200 points points, which

marked the start of the recession of 1990's and we estimate all three North American countries jumped.

We again observe a lagged effect from the US market to other countries. On the Monday that followed

this date, there were no identi�ed jumps in the US, whereas there were identi�ed jumps in most other

countries.

August 6, 1990 On this date we have estimated jumps in a total of eight countries. The underlying

trigger may have been that the UN on this date declared sanctions against Iraq following this country's

invasion of Kuwait.12

August 19, 1991 On this date Soviet leader Mikhail Gorbachev was overthrown following a military

coup which caused jumps in all indices except for the US indices. Possible explanations to this may be

geographical closeness and worries concerning the new political climate in the the Soviet Union.

October 23, 1997 On this date the Asian crises reached Hong Kong which overnight had to dra-

matically raise its interest rates in order to protect its currency. This resulted in a 10 % fall in the

Hong Kong stock market index which had substantial international effects.

October 27, 1997 On this Monday, all trading on the NYSE came to a halt twice and the DJIA

plunged a total of a record breaking 554 points.13 This crash is believed to mostly be a consequence

of the Asian �nancial crises. Again we see a delayed effect from the US to the other indices in that we

identify jumps the day after in six non-North American indices.

August 11, 1998 On this day the Russian market collapsed, which increased the fear of a �nancial

meltdown of the Russian and Asian markets. Surrounding this date there are several other global

jumps that also are likely to have been related to the �nancial situation in Russia.

January 4, 2000 On this date US President Bill Clinton reappointed US Federal Reserve Chairman

Alan Greenspan for a fourth term. On account of fears of increases in the interest rate, the US and
12On the date of the invasion we estimate jumps in three European countries together with Japan
13As a consequence of Black Monday, in 1988 the NYSE introduced the so called circuit-breaker rules whereby all trading

stops for one hour as soon as the DJIA drops by more than 550 points.
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European markets responded negatively.

March 14, 2000 This date was approximately three month after the reappointment of US Federal

Reserve Chairman Alan Greenspan and investors were surprised by, and responded negatively to re-

ports of increased US in�ation. The reports, among other issues, again raised concerns regarding the

risk of interest rate increases. The Asian and Australian markets followed the nosedives taken by the

US market and dropped largely on the Monday of April 14.

September 11, 2001 This is the date of the terrorist attacks to the World Trade Center and the

Pentagon. The events took place before the US security markets opened, and therefore, the effects of

the events did not show up as jump times in the US markets until they reopened on September 17.

The Asian and Australian markets were also closed at the time of the events, why the jump in Japan

occurs on September 12. The European markets, on the other hand, were opened at the time of the

events, why there were jumps in these countries on September 11.

March 11, 2004 This �nal date of our study of simultaneous jump times was the day of the bomb-

ings of the central train station in Madrid. Spain is not included in this particular study but we

estimate that three other European countries jumped on this day.
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C Tables

Table 1: Descriptive Statistics
Descriptive statistics of the country equity indices included in our study. The data consists of daily percentage
log returns for each country equity index from February 1, 1985, to April 28, 2004. The mean returns and
standard deviations have been annualized through multiplication by 252 and

√
252, respectively.

Mean Std. Dev. Skewness Kurtosis Min Max Sample Size
S&P 9.5004 17.4651 -2.0522 46.2513 -22.8997 9.0952 4858
Nasdaq 12.726 29.4456 -0.0842 9.6428 -16.3460 17.2030 4856
Can 5.9976 13.8426 -1.1929 20.3630 -11.7948 8.6459 4849
UK 6.6276 15.0760 -0.9387 14.6655 -11.9142 5.6976 4967
Ger 8.2404 23.4879 -0.4566 8.5149 -13.7099 7.5527 4822
Swe 11.4156 20.7051 -0.1487 8.4220 -9.1437 9.8116 4821
Fra 8.6940 21.3861 -0.2830 7.0183 -9.8945 7.9658 4856
Den 8.3160 13.5886 -0.4989 8.3345 -7.7846 4.7633 4801
Net 6.9552 21.5036 -0.2834 11.0968 -12.7880 11.1785 4875
Nor 8.2152 19.5828 -1.4677 28.1679 -21.2188 10.4809 4824
Ita 8.4672 20.2273 -0.5312 7.1638 -10.0217 6.7361 4832
HK 11.5416 27.9264 -3.2788 76.4680 -40.5422 17.2471 4774
Aus 7.6356 15.0887 -6.2953 179.3222 -28.7585 6.0666 4939
Japan 0.0000 22.5116 0.0318 8.1657 -12.6558 12.4301 4759
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Table 5: Regression Results
OLS parameter estimates of regressions of the simultaneous jump intensities (the off-diagonal elements in Ta-
ble 4 excluding the Nasdaq) in excess over the corresponding intensities under the null hypothesis of no jump
spillover (the diagonal elements in Table 4 pairwise multiplied together) on a number of factors. The �rst re-
gression, regression R1, is unconstrained, whereas in the remaining regressions, one or more factors have been
excluded by asuming that the corresponding slope coef�cients are equal to 0. Reported in parenthesis are the
t-statistics calculated using the usual OLS standard errors without any corrections.

R1 R2 R3 R4
Constant 0.0015 ( 8.3351) 0.0013 (12.9712) 0.0011 (16.3739) 0.0009 (5.6733)
Regional Dummy 0.0007 ( 4.8496) 0.0006 ( 6.6407) 0.0006 ( 6.0641)
Abs. Size Diff. -0.0006 (-1.8938) -0.0007 (-2.6956)
Correlations -0.0005 (-0.9850) 0.0011 (2.8835)
Industry Diff. -0.0003 (-2.5666) -0.0002 (-2.4420)
R2 0.4366 0.4295 0.3232 0.0975

Table 6: Conditional Jump Spillover Probabilities
Estimated jump spillover probabilities from chosen benchmark countries to other countries. For a given non-
benchmark country, the jump spillover probability is estimated as the number of the country's jumps that occur,
depending on which is meaningful, either simultaneously as, or on the day following a benchmark country
jump, divided by the number of jump times of the benchmark country. (∗∗) denotes a one-sided signi�cance at
the 99 percent level and (∗) denotes a one-sided signi�cance at the 95 percent level.

Benchmark
S&P UK Japan

Same-Day Next-Day Same-Day Next-Day Same-Day
S&P 0.0161
Nasdaq 0.7727∗∗ 0.0161
Can 0.5000∗∗ 0.0161
FTSE 0.1364∗∗ 0.1364∗∗ 0.0968∗∗
Ger 0.0455∗ 0.1364∗∗ 0.1579∗∗ 0.0806∗∗
Swe 0.1818∗∗ 0.1364∗∗ 0.2368∗∗ 0.0484∗∗
Fra 0.0909∗∗ 0.1364∗∗ 0.2105∗∗ 0.0645∗∗
Den 0.2727∗∗ 0.3182∗∗ 0.2632∗∗ 0.1452∗∗
Net 0.0909∗∗ 0.1364∗∗ 0.2632∗∗ 0.1290∗∗
Nor 0.0909∗∗ 0.3182∗∗ 0.1579∗∗ 0.0806∗∗
Ita 0.0909∗∗ 0.1818∗∗ 0.1579∗∗ 0.0968∗∗
HK 0.3182∗∗ 0.0526∗∗ 0.1452∗∗
Aus 0.2727∗∗ 0.0526∗∗ 0.1129∗∗
Nikkei 0.2273∗∗ 0.0789∗∗
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Table 7: Conditional Probabilities of Spillover from Jumps to Return
Estimated probabilities that jumps in the chosen benchmark countries translate int unusually lare negative
returns in other countries. We de�ne an unusually large negative return of a given country as a historical return
that belongs to the lowest decile of that country's data set. For a given non-benchmark country, the probability
is estimated as the number of the country's unusually large negative returns that occur, depending on which
is meaningful, either simultaneously as, or on the day following a benchmark country jump, divided by the
number of jump times of the benchmark country. (∗∗) denotes a one-sided signi�cance at the 99 percent level
and (∗) denotes a one-sided signi�cance at the 95 percent level.

Benchmark
S&P UK Japan

Same-Day Next-Day Same-Day Next-Day Same-Day
S&P 0.1774∗
Nasdaq 0.8636∗∗ 0.1452
Can 0.9091∗∗ 0.2258∗∗
FTSE 0.4091∗∗ 0.6818∗∗ 0.3548∗∗
Ger 0.3636∗∗ 0.3182∗∗ 0.5000∗∗ 0.2903∗∗
Swe 0.3636∗∗ 0.5909∗∗ 0.5789∗∗ 0.3226∗∗
Fra 0.5000∗∗ 0.4545∗∗ 0.5263∗∗ 0.3226∗∗
Den 0.4545∗∗ 0.7273∗∗ 0.3684∗∗ 0.2581∗∗
Net 0.4091∗∗ 0.6364∗∗ 0.5526∗∗ 0.4194∗∗
Nor 0.4545∗∗ 0.7727∗∗ 0.3684∗∗ 0.3710∗∗
Ita 0.3182∗∗ 0.5000∗∗ 0.4737∗∗ 0.3548∗∗
HK 0.5909∗∗ 0.2632∗∗ 0.3226∗∗
Aus 0.6364∗∗ 0.2368∗∗ 0.2903∗∗
Nikkei 0.5000∗∗ 0.2368∗∗
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Figure 1: Approximate market opening hours in North America, Europe, and Asia and Australia.
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Figure 2: Historical percentage log returns together with estimated historical jump probabilities
and estimated annualized historical percentage spot volatilities for the S&P, the UK, and Japan.
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