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Abstract 
 

Recent work finds that nominal prices influence investor behavior. Why prices matter 
to investors, however, is a question that is as of yet unanswered. We provide evidence 
that investors suffer from a nominal price illusion in which they overestimate the 
“room to grow” for low-priced stocks relative to high-priced stocks. Investor 
expectations of future skewness increase drastically on days that a stock undergoes a 
split to a lower nominal price. However, in practice future physical skewness 
decreases. In the cross-section of stocks, we find that investors overweight the 
importance of price in their skewness expectations. Asset pricing implications of our 
findings are borne out in the options market. A zero-cost option portfolio strategy that 
exploits skewness overestimation for low-priced stocks relative to high-priced stocks 
earns economically and statistically significant returns.  
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1. Introduction 

The level of a firm's stock price is arbitrary in that it can be manipulated by the 

firm via altering the number of shares outstanding. Nevertheless, it has become clear 

that nominal prices influence investor behavior. For example, Gompers and Metrick 

(2001), Dyl and Elliot (2006), Kumar and Lee (2006), and Kumar (2009) provide 

evidence suggesting that individuals hold lower-priced stocks than institutions. 

Schultz (2000) documents an increase in the number of small shareholders following 

a split, while Fernando, Krishnamurthy and Spindt (2004) find that IPO offer price 

plays a strong role in determining investor composition. Green and Hwang (2009) 

find particularly strong evidence that investors categorize stocks based on price. They 

show that similarly priced stocks move together; after a stock split, splitting stocks 

experience increased comovement with low-priced stocks, and decreased 

comovement with high-priced stocks. 

Recent work finds evidence that firms are well aware of the importance of 

nominal prices to investor perceptions, and frequently engage in active management 

of share price levels in an effort to cater to investor demand. Despite the lack of a 

rational explanation, Weld, Michaely, Thaler, and Benartzi (2009) find that firms have 

proactively managed share prices to stay in a relatively constant nominal range since 

the Great Depression. Baker, Greenwood, and Wurgler (2009) find that investors have 

time-varying preferences for stocks of different nominal price levels, and that firms 

actively manage their share price levels to maximize firm value by catering to these 

time-varying investor preferences. Dyl and Elliot (2006) also find evidence that firms 

manage share prices to appeal to the firm's investor base in an effort to increase the 

value of the firm. The rationale for investor focus on nominal prices is not well 
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understood, as past work has focused on the implications of these preferences while 

only hypothesizing about the potential underlying drivers. In short, while the past 

research has shown that nominal prices clearly influence the behavior of investors, 

why prices matter to investors is an as of yet unanswered question. 

The lack of empirical evidence has not dissuaded speculation regarding why 

investors are influenced by nominal prices. For example, Kumar (2009) states that “as 

with lotteries, if investors are searching for ‘cheap bets’, they are likely to find 

low-priced stocks attractive.” Green and Hwang (2009) hypothesize that “investors 

may perceive low-priced stocks as being closer to zero and farther from infinity, thus 

having more upside potential.” While Baker, Greenwood, and Wurgler (2009) state 

that “One question that the results raise, and that we leave to future work, is why 

nominal share prices matter to investors...Perhaps some investors suffer from a 

nominal illusion in which they perceive that a stock is cheaper after a split, has more 

‘room to grow’, or has ‘less to lose’.” 

In this paper, we provide evidence that investors exhibit psychological biases in 

the manner in which they relate nominal prices to expectations of future return 

patterns.  Specifically, we find evidence that investors suffer from the illusion that 

low price stocks “have more upside potential.” In doing so, we identify one potential 

driver of investor demand shifts that have been shown to lead to supply responses 

from corporations. 

Our results suggest that investors view low-priced stocks as being “cheap”. 

Following a split to a lower price, investor expectations of skewness drastically 

increase. In practice, however, future physical skewness decreases following splits. 

We find similar evidence of investor expectational errors following reverse splits. On 
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the day of a stock price increase due to a reverse split taking effect, expectations of 

future skewness drastically decrease. In contrast to investor expectations, future 

physical skewness actually increases. Evidence from the cross-section of stocks 

further supports the view that investors suffer from a nominal price illusion. We find 

that in forming expectations of future skewness, investors overweight the importance 

of price relative to its observed relationship with physical skewness or 

model-predicted expected skewness. Evidence from options trading also suggests that 

investors exhibit increased optimism toward low-priced stocks relative to high-priced 

stocks, and take lottery-like bets in low-priced stocks to a greater extent than 

high-priced stocks. Finally, we find that investor nominal price biases have asset 

pricing implications. We document that, consistent with investors overestimating the 

upside potential for low relative to high-priced stocks, abnormal returns accrue to a 

zero-cost strategy that exploits investor overestimation of upside potential for 

low-priced relative to high-priced stocks.  

Empirically, we rely on the options market to extract investor beliefs regarding 

nominal prices. A key insight of our analysis is the use of option-implied risk-neutral 

skewness (RNSkew), which is a market-based ex-ante measure of investors' 

expectations. By utilizing risk-neutral skewness extracted from option prices, we are 

able to circumvent the need for a long time series of returns to estimate skewness; 

instead we can assess how market expectations of an asset's future skewness change 

on a daily basis. 

We first examine how investor beliefs regarding future skewness change on the 

day that a stock splits to a lower price level. Multiple potential motivations for stock 

splits have been suggested, including signaling (Brennan and Copeland (1988), 
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McNichols and Dravid (1990), and Ikenberry, Rankine, and Stice (1996)), and 

liquidity arguments (Muscarella and Vetsuypens (1996), and Angel (1997)). However, 

splits do not seem to be correlated with future corporate profitability (Lakonishok and 

Lev (1987), and Asquith, Healy, and Palepu (1989)), nor is it clear that they increase 

liquidity (Conroy, Harris and Benet (1990), Schultz (2000), and Easley, O’Hara and 

Saar (2001)). Instead, the prevailing view is that firms split their shares to return 

prices to a normal trading range (Baker and Gallagher (1980), Lakonishok and Lev 

(1987), Conroy and Harris (1999), Dyl and Elliot (2006), and Weld, Michaely, Thaler, 

and Benartzi (2009)). Thus, stock splits provide a clean laboratory to examine the 

effect of nominal prices on investor expectations.  

  On the day of a split to a lower price we find a greater than 40% increase in 

skewness expectations. In sharp contrast to increases in expected skewness, we find a 

substantial physical skewness decrease following stock splits. This is not surprising 

given that splits occur after a long run-up in price, and therefore periods of high past 

skewness, which makes the observed expected skewness increase all the more 

surprising. Importantly, we find no such increase in RNSkew on the day of the stock 

split announcement. The increase of RNSkew around the ex-date rather than the 

announcement date is consistent with investors reacting to the change in stock price, 

and inconsistent with an informational signaling story. We also examine reverse splits 

and find supportive evidence among this smaller sample; on the date of a reverse split 

RNSkew decreases drastically, but this decrease is not accompanied by a decrease in 

physical skew. The evidence is consistent with investors assigning greater upside 

potential (and/or lower downside potential) to stocks trading at lower prices. 
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We complement the split results by undertaking a second, separate, test of the 

hypothesis that investors suffer from nominal price biases. To do so, we examine the 

cross-section of all stocks. We find that while there is a strong cross-sectional inverse 

relationship between price and physical skewness, there is a much stronger inverse 

relationship between price and RNSkew. That is, investors overweight the importance 

of price as a factor in determining expectations of skewness. Taken together, the 

evidence supports the idea that investors overestimate the lottery-like properties of 

low-priced stocks. 

Utilizing option open interest and volume data, we also find evidence that 

investors display increased optimism toward low-priced stocks. Specifically, the ratio 

of call to put open interest and volume is substantially higher for low-priced stocks 

than it is for high-priced stocks. While past work has shown investor preferences for 

lottery-like assets (Barberis and Huang (2008), Kumar (2009), Boyer, Mitton and 

Vorkink (2010), Boyer and Vorkink (2011), and Bali and Murray (2012)), we build 

upon this evidence by showing that investors also have a preference for utilizing the 

leverage benefits options provide to take lottery-like bets on these lottery-like stocks. 

We next explore the asset-pricing implications of investor biased perceptions 

regarding nominal prices. We have already found that investor errors in assessing 

expected future skewness are manifested in option prices. The overestimation of 

expected skewness for low-priced stocks relative to high-priced stocks that we 

observed in option prices suggests the potential overpricing of a portfolio of OTM 

calls relative to OTM puts on low-priced stocks relative to similar portfolios of 

options for high-priced stocks. Following Bollen and Whaley (2004) and Goyal and 

Sarreto (2009) we estimate the returns to delta-hedged portfolios, and find that the 
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relative performance between call options and put options decreases when the 

underlying stock price decreases. The results are consistent with relative investor 

overestimation of skewness for low-priced stocks leading to relatively larger 

overpricing of call options relative to puts on low-priced stocks as compared to 

high-priced stocks. Overall, the evidence is consistent with investors suffering from a 

nominal price illusion in which they overestimate the “cheapness” or “room to grow” 

of low-priced stocks relative to high-priced stocks. Our evidence also suggests that 

this nominal price bias has asset-pricing implications. 

The paper proceeds as follows.  Section 2 discusses methodology, and introduces 

the data. Section 3 presents the stock split analysis. Section 4 finds evidence of 

investor nominal price biases in the cross-section of stocks. Section 5 examines option 

trading. Section 6 assesses asset-pricing implications of investor nominal price bias, 

and Section 7 concludes. 

2. Risk-neutral Skewness and Data 

2.1 Risk-neutral skewness 

In order to examine whether nominal share price is systematically related to 

investors’ misperception of skewness, we need measures of both investor expected 

skewness as well as an unbiased measure of skewness. We use risk-neutral skewness 

implied from option prices to capture investor expectations of skewness and use 

realized skewness as a measure of unbiased expected skewness.1 Realized skewness 

(Skew) is calculated using daily return data over a one year period. We use the 

                                                             
1 We also adopt two other methods to calculate unbiased measures of expected skewness. We discuss 
these measures in section 4. 
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model-free methodology of Bakshi, Kapadia, and Madan (2003) 2  to measure 

risk-neutral skewness (RNSkew).  

Risk-neutral skewness is a prominent variable in our analysis, utilized to capture 

changing investor expectations of asymmetry in return distributions.  Because the 

option prices from which risk-neutral moments are extracted are updated daily, they 

reflect an up-to-date measure of investor ex-ante expectations. 

Bakshi, Kapadia, and Madan (2003) show that the risk neutral skewness is 
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2 The model-free risk neutral measure of Bakshi, Kapadia and Madan (2003) has been widely used in 
the literature (Dennis and Mayhew (2002), Han (2008), Bali and Murray (2012), Chang, Christoffersen, 
and Jacobs (2012), Conrad, Dittmar and Ghysels (2012), Friesen, Zhang and Zorn (2012), and Rehman 
and Vilkov (2012)). 
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Ideally, , ( , )i tV t τ , , ( , )i tW t τ and , ( , )i tX t τ should be calculated based on a continuum 

of European options with different strikes. However, in reality, only a limited number 

of options are available for each stock/expiration combination and individual equity 

options are not European. To accommodate the discreteness of options strikes, we 

follow Dennis and Mayhew (2002) to estimate the integrals in expressions (2) to (4) 

using discrete data3.  

Price per se should not be mechanically related to RNSkew, since RNSkew is 

homogeneous of degree zero with respect to the underlying price, that is, altering the 

underlying price will increase or decrease the numerator and denominator of equation 

(1) by the same proportion. However, options for stocks with different price may have 

different strike structures, potentially imposing a systematic bias to the calculation of 

RNSkew.  

Dennis and Mayhew (2002) examine two potential sources of bias in RNSkew 

estimation. The first arises due to the use of discrete strike prices, and the second 

arises from the potential asymmetricy in the domain of integration.Dennis and 

Mayhew (2002) show that the bias in RNSkew is negative and increasing in absolute 

magnitude when the relative option strike interval (option strike increment/underlying 

                                                             
3 We thank Patrick Dennis for providing us the code. 
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stock price) increases. 4  In practice, standard stock option strike prices are in 

increments of $2.50 for strikes  at or below $25, $5.00 for strikes above $25 but 

below $200, and $10 for strikes above $200. However, Dennis and Mayhew (2002) 

show that the bias in RNSkew induced by option strike interval is quite small. The 

bias is approximately -0.01, -0.05 and -0.07 when the relative option strike intervals 

(option strike incremental/underlying stock price) are 2%, 5% and 10%, respectively.  

Dennis and Mayhew (2002) also investigate the potential bias arising due to an 

asymmetric domain of integration. They show that RNSkew will be biased downward 

when there is a lesser number of OTM puts relative to OTM calls and will be biased 

upward when there is a greater number of OTM puts relative to OTM calls. However, 

Dennis and Mayhew (2002) show that the bias is essentially zero if there are at least 

two OTM puts and two OTM calls. As a result, we require at least two OTM put 

options and at least two OTM call options. Finally, we standardize RNSkew to 30 days 

by linearly interpolating the skewness of the option with expiration closest to, but less 

than 30 days, and the option with expiration closest to, but greater than 30 days. If 

there is no option with maturity longer than 30 days (shorter than 30 days), we choose 

the longest (shortest) available maturity.5 

2.2 Data 

IvyDB’s OptionMetrics database provides data on option prices, volume, open 

interest, and Greeks for the period from January 1996 to December 2011. IVs and 

Greeks are calculated using the binomial tree model by Cox, Ross and Rubinstein 

                                                             
4 Dennis and Mayhew (2002) use simulations to evaluate the bias of option discreetness. Specifically, 

they choose the underlying stock price to be $50 and evaluate the magnitude of bias induced by option 

strike increments from $1 to $5.  
5 All results are robust to the use of 60 day or 100 day skewness. 
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(1979). We include options on all securities classified as common stock. To minimize 

the impact of data errors, we remove options missing best bid or offer prices, as well 

as those with bid prices less than or equal to $0.05. We also remove options that 

violate arbitrage bounds, options with special settlement arrangement, and options for 

which we can’t calculate RNSkew or Skew.6 The mid-quote of the best bid and best 

offer is taken as the option price. Data on stocks is from Center for Research in 

Security Prices (CRSP). We obtain data on stock splits from the CRSP distribution 

file. We define stock splits as events with a CRSP distribution code of 5523. Regular 

splits are splits with a split ratio of at least 1.25 to 1, and reverse splits are those with a 

ratio below 1. Finally, we obtain company accounting information from Compustat.   

For both the large cross-sectional sample (all optionable stocks) and the stock split 

sample, we only include observations for which we are able to calculate RNSkew. The 

full stock sample includes 263,571 firm-month observations. 7 The regular split 

sample has 2,094 observations, and the reverse split sample has 158 observations. To 

mitigate the effect of outliers, we winsorize all continuous variables at the 1% level. 

Table 1 shows the summary statistics for the three different samples.8 The average 

pre-split price of the regular splits is 76.006 which is more than double the price of an 

average optionable stock. The average split ratio is 1.975. The average post-split stock 

price is 38.5204. The average pre-split price of a stock undergoing a reverse split is 

                                                             
6 OptionMetrics defines an option as having a standard settlement if 100 shares of the underlying 
security are to be delivered at exercise and the strike price and premium multipliers are $100 per tick. 
For options with a non-standard settlement, the number of shares to be delivered may be different from 
100, and additional securities and/or cash may be required.  
7 Among the 263,571 observations, only 2,027 observations have stock prices less than $5. The results 
are robust to the exclusion of these observations.  
8 Please refer to Table A1 in the Appendix for detailed definitions of all variables.  
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6.868, which is much lower than the average stock price. The average split ratio is 

0.240, resulting in an average post-split price of 24.307. 

Not surprisingly, relative to the large sample, regular splits are larger, have higher 

valuation ratios (lower B/M), and higher past performance (momentum), while 

reverse splits are smaller, have lower valuation ratios, and lower past performance. 

Furthermore, regular splits have slightly lower past volatility than the larger sample, 

while the past volatility of reverse splits is much higher than the  average optionable 

stock.  

The average RNSkew for the full sample, regular splits and reverse splits are-0.528, 

-0.687 and 0.431, respectively. Future physical skewness (Skew) of these three groups 

of stocks is 0.277, 0.172 and 1.106, respectively. The pattern of RNSkew across the 

three groups is generally consistent with the view that price is negatively related to the 

expected skewness, however, Skew exhibits no clear pattern. We begin our analysis 

by focusing on stock splits, in order to examine the effects of large, exogenous price 

changes in a relatively clean setting. 

[Insert Table 1 here] 

3. Nominal price and skewness: sample of split stocks 

In this section we examine investor nominal-price driven biases by utilizing a 

setting where nominal prices changes are seemingly exogenous to changes in 

expectations of future return distributions. To do so, we examine the effect of stock 

splits on investor skew expectations.  

The prevailing view in the literature is that stock splits are motivated by an effort 

to return prices to a normal trading range (Baker and Gallagher (1980), Lakonishok 

and Lev (1987), Conroy and Harris, (1999), Dyl and Elliot (2006), and Weld, 
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Michaely, Thaler, and Benartzi (2009)).9 Because stock splits do not change firm 

fundamentals, they provide a clean environment to examine the effect of nominal 

changes in price on investor expectations.  

[Insert Figure 1 here] 

Figure 1 provides a preview of the main split results. RNSkew is plotted against 

days relative to ex-date. Figure 1 shows the behavior of RNSkew in the period around 

the ex-date. It is clear that RNSkew increases at the date when price is adjusted 

downward (regular splits), and it decreases when price is adjusted upward (reverse 

splits). It is interesting to note that as price declines in the months leading up to a 

reverse split, RNSKew also exhibits an increasing pattern. From Figure 1, it is evident 

that stocks undergoing splits see large jumps in RNSkew on the ex-date, while those 

undergoing reverse splits see large decreases in RNSkew that occur precisely on the 

ex-date. 

3.1 Skewness around regular splits 

Panel A of Table 2 examines whether risk neutral skew expectations are affected 

by split-induced changes in nominal price. Panel A1 explores changes in risk neutral 

skew around the ex-date. The results indicate that investor expectations are greatly 

affected by the nominal change in price. RNSkew increases by 0.31 on the day of the 

stock split. The effect is statistically significant, and persists in the weeks and months 

after the split. That investors respond so immediately to a split-induced change in 

                                                             
9 Past work does not find evidence that splits are motivated by factors correlated with firm 

fundamentals. For example, signalling and liquidity motives do not seem to be correlated with the 

decision to split (see Lakonishok and Lev(1987), and Asquith, Healy, and Palepu (1989) for evidence 

against splits as a signalling mechanism, and Conroy, Harris and Benet (1990), Schultz (2000), and 

Easley, O’Hara and Saar (2001) for evidence disputing liquidity arguments as driving split decisions). 
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price is not unexpected. Schultz (2000) finds a large and immediate increase in small 

shareholders at the ex-date, as he documents an increase in net small trade buy 

volume from slightly above zero in the day prior to the split to about two million 

shares on the ex-date. 

[Insert Table 2 here] 

As previously mentioned, past work has found that splits do not seem to be 

motivated by factors correlated with firm fundamentals. To further verify that our 

results reflect a response to the change in price, rather than a change in fundamentals, 

we examine whether there is also a skewness change at the announcement date. If 

splits signal changes in fundamentals and the change in RNSkew is driven by this 

change in investors’ information set, then we should expect to see an effect at the 

announcement date rather than the ex-date. Panel A2 shows that this is not the case. 

Indeed, we see no effect on the date of the announcement. There is some increase in 

RNSkew beginning on the day after announcement, but the magnitude is much 

smaller than the change at the actual date of the split. Rather, RNSkew reaches its 

max on the day of the ex-date.10 The evidence suggests that nominal changes in price 

levels around stock splits affects investor expectations regarding future return 

distribution. 

The lack of change in perception on the announcement day suggests that changes 

in investor expectations are not driven by expectations of changes in fundamentals. 

We nevertheless, assess whether physical skew does change in the period following 

                                                             
10 In unreported results, we examine the change of RNSkew around the announcement date separately 
for options with maturity before the ex-date and options with maturity after the ex-date. We find that 
RNSkew does not change around the announcement date if the options used to calculate RNSkew will 
expire before the ex-date. This finding also suggests that the RNSkew change around stock splits is not 
driven by release of new information.  
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splits. A priori, expectations of post-split increases in skew seem especially hard to 

rationalize given that splits occur after a run-up in stock price, and therefore a period 

of above-average skewness.  

To further ensure that the change in physical skewness that we observe post-split 

does not reflect a change in fundamentals, we compare splitting firms to a matched 

sample of non-splitting firms. The matching firms are similar in that they’ve 

experienced a similar price run-up, and are of similar size, book-to-market, and 

similar past skewness. A detailed discussion of the matching procedure is documented 

in the table description.11 These are firms that can reasonably be expected to have 

equal expectations ex-ante of undergoing a split. After matching, our sample firms 

reduce to 1,528. This is mainly driven by missing Compustat or CRSP data. 

The last row of Panel B in Table 2 displays the change in physical skew. In 

contrast to the expected increase in skewness, physical skewness actually decreases in 

the period after the split. The decrease is substantial, with daily skewness in the year 

following a split decreasing by over 50% (from 0.378 to 0.151) relative to the year 

leading up to the split. That physical skewness actually decreases following splits, 

makes the evidence of investor biased expectations of increased upside potential for 

recently split stocks all the more compelling. 

Alleviating the concern that split stocks undergo a change in fundamentals, we 

find no difference in future skewness between the split and the matched sample. The 

lack of a difference in skewness provides evidence that the post-split decrease in 

skewness is not an unpredictable artifact of the split. The findings strengthen our 

                                                             
11 The results are similar if we vary the matching method.  
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argument that investor nominal price biases lead them to attribute irrationally high 

skewness to low-priced stocks relative to high-priced stocks. 

3.2 Skewness around reverse splits 

 [Insert Table 3 here] 

As an additional test of our hypothesis we examine what happens when firms 

undergo reverse splits. The results are reported in Table 3. Despite a much smaller 

sample size, the results are quite clear. Consistent with nominal prices affecting 

investor expectations, we find that RNSkew drastically decreases on the day that 

prices increases due to a reverse split taking effect (Panel A of Table 3).12 Panel B of 

Table 3 confirms that the physical skewness changes do not reflect the risk neutral 

changes in expectations. In fact, we find that in contrast to the observed decrease in 

risk-neutral skewness, physical skewness increases substantially in the year following 

a reverse split. 

3.3 Robustness 

 Importantly, stock splits are handled in such a way that they do not have 

microstructure implications for the options market. Historically, when splitting stock 

split occurs, the option contracts were adjusted accordingly by the split factor. 

Effective September 4, 2007, The Options Clearing Corporation (OCC) adopted a 

new rule to govern the post-split administration of options contracts. Rather than 

decreasing the option strikes by the split factor, the new rule leaves the option 

contracts untouched, and instead recalculates the stock price to the hypothetical price 

it would trade had the split not occurred (for details of the rule, please refer to the 

                                                             
12 We are not able to compare the RNSkew change around the announcement date, as the 

announcement dates in CRSP are missing for most reverse splits.  
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information Memos 22687, 22232, 23211, 23348 and 23484 of OCC). The empirical 

findings we document are robust in both the pre and post-rule-change periods. Figure 

2 shows the effect of splits on RNSkew on the subsample of splits occurring after 

September 4, 2007. The results for both regular and reverse splits are consistent with 

the results over the entire sample period, suggesting that the relationship between 

RNSkew and price is not driven by options market microstructure concerns. 

In summary, we find sharp changes of RNSkew precisely at the date that a stock 

splits to a lower price. In stark contrast to investor expectations of post-split skewness 

increases, we find a drastic decrease in physical skewness following a split. The 

evidence is further strengthened by consistent results among the smaller sample of 

stocks undergoing reverse splits. The evidence is consistent with nominal prices 

biasing investor expectations of future return distributions.  

4. Nominal price and skewness: all optionable stocks 

4.1 Characteristics of stocks with different nominal prices 

In this section we undertake a second test of the hypothesis that investors suffer 

from nominal price illusions. We do so by examining the entire cross-section of 

stocks. We first explore the relationship between nominal price and skewness in the 

cross-section of stocks, and then examine whether this is consistent with the 

relationship between price and RNSkew that investors price into options. As we are 

interested in isolating only the effect of nominal price on investor behavior, we first 

examine how price is correlated with firm characteristics. Table 4 reports the 

summary statistics of stocks that are sorted into price quintiles based on end-of-month 

prices.  
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On average, our sample stocks have a large dispersion in stock prices. The average 

stock price for the lowest quintile is 10.632 while the average price of the highest 

quintile is 68.359. We examine how a number of variables differ for stocks of 

different price levels. Relative to high priced stocks, low priced stocks are smaller, 

have higher betas, lower book-to-market ratios, worse past performance and are more 

likely to list on NASDAQ. Table 4 also shows that low priced stocks have higher past 

volatility, lower past skewness, and slightly higher turnover.  

[Insert Table 4 here] 

Our first measure of unbiased skewness is physical skewness. We also utilize a 

measure of expected skewness (E(Skew)) first introduced by Boyer, Mitton, and 

Vorkink (2010) that incorporates all relevant past information to best form a future 

prediction of skewness. E(Skew) is a forward looking measure of skewness 

constructed following the methodology of Boyer, Mitton, and Vorkink (2010). This 

methodology utilizes the parameters from a cross-sectional regression of skewness on 

lagged skewness, volatility, momentum, turnover, size, industry, and NASDAQ 

affiliation in order to estimate expected skewness.13 

The last rows of Table 4 examine the relationship between price and our main 

measures of skewness. Both future realized skewness and expected skewness from the 

model of Boyer, Mitton, and Vorkink (2010) are decreasing in nominal stock price. 

However, the magnitude of the cross-sectional relationship between each of these 

measures and price is much smaller than that between price and investor expectations 

reflected in RNSkew. Unconditionally, the variance of realized skew is actually larger 

than that of the RNSkew measure (Table 1), however, conditional on price, the 

                                                             
13 The details of the methodology will be discussed in the empirical sections.  
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difference in RNSkew between the top and bottom price quintiles is more than twice 

that of the difference for future realized skew and E(Skew). The strength of the 

univariate relationship between price and RNSkew provides preliminary evidence that 

investors perceive the relationship between price and future skewness to be much 

stronger than the true ex-post relationship realized in the data, as well as much 

stronger than is predicted by a rational model of expected skewness that incorporates 

all relevant current and past information available. While the univariate evidence is 

consistent with the notion that investors overweight the informativeness of price when 

predicting future skewness, we next employ a multivariate analysis to control for 

other factors and firm characteristics potentially correlated with both skewness and 

price. 

4.2 Nominal price and skewness: Fama-MacBeth regression 

We use Fama-MacBeth regressions to analyze the cross-sectional relationship 

between our various skewness measures and price, while controlling for variables that 

the past literature has found to be important in explaining skewness. As in Dennis and 

Mayhew (2002), we use stock Beta to control for systematic risk. Beta is calculated 

following Fama and French (1992). For each month, we use the past 60 months’ 

excess return data and CRSP value-weighted monthly excess market return to 

calculate beta. Implied volatility (IV) contains additional information beyond past 

volatility in forecasting future return distribution (Goyal and Sarreto, 2009) and has 

been shown to be positively correlated with RNSkew (Dennis and Mayhew, 2002). We 

thus also include IV in our model. We follow the past literature and use IV calculated 

from at the money options (ATM). Following Bollen and Whaley (2004), ATM 
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options are defined as call options with delta higher than 0.375 and not higher than 

0.625 and put options with delta higher than -0.625 and not higher than -0.375.14 

The leverage effect predicts that after a decrease in equity value, a levered firm’s 

leverage will increase, resulting in increased volatility after decreases in equity value 

that are larger than the decreases in volatility that occur after increases in equity value. 

This asymmetry implies that the implied volatility of out-of-money put is higher than 

the implied volatility of out-of-money calls. While existing empirical findings do not 

support the leverage effect (Dennis and Mayhew, 2002; Bakshi, Kapadia and Madan, 

2003), we nevertheless include leverage in the model.  

We also control for firm size, book-to-market, past volatility, past skewness, 

turnover, momentum, and a dummy variable indicating whether a firm is listed on 

NASDAQ. The inclusion of firm size, book-to-market, momentum and turnover is 

motivated by Chen, Hong and Stein (2001) who find that each of these variables is 

negatively correlated with future skewness.15 We also include past skewness and past 

volatility in the model, as Boyer, Mitton, and Vorkink (2010) show that skewness is 

persistent and highly positively correlated with return volatility. Finally, following 

Boyer, Mitton, and Vorkink (2010) we include a dummy variable for NASDAQ firms. 

We also include industry fixed effects to control industry heterogeneity. Industry 

definitions are based on Fama-French 48 industry classification scheme.  

 [Insert Table 5 here] 

                                                             
14 Our results are robust to defining ATM as options with a ratio of strike to stock price between 0.975 
and 1.025 (as in Goyal and Sarreto, 2009).  
15 Boyer, Mitton and Vorkink (2010) find that allowing for a nonlinear relationship between firm size 
and skewness can fit the data better. They do so by using two dummy variables indicating small firms 
and medium-sized firms based on the NYSE breakpoints. Our results are similar if we adopt their 
non-linear methodology. 
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Table 5 reports the results of monthly Fama-MacBeth regressions of our different 

measures of skewness regressed on the beginning of period independent variables.16  

Standard errors are corrected for heteroskedasticity and autocorrelation up to 12 lags. 

We examine RNSkew, Skew, RN skew gap (RNSkew-Skew), and the RN expected skew 

gap (RNSkew-E(Skew)) separately. For each dependent variable, we analyze three 

different models: a univariate specification that includes only log nominal price, a 

multivariate specification including all control variables, and finally a multivariate 

specification that includes industry fixed effects.  

As expected, the first six columns of the table show that there is a strong inverse 

relationship between price and both RNSkew and Skew. However, regardless of 

specification, the relationship is more than twice as strong for RNSkew as it is for 

Skew. The remaining columns show that the difference in this relationship is 

statistically and economically significant for RNSkew relative to Skew and the E(Skew) 

measure of Boyer, Mitton, and Vorkink (2010). The multivariate results confirm the 

earlier univariate results. In short, investor expectations of future return distribution 

asymmetry are biased, as they allow price to play an irrationally large role in the 

shaping of their perceptions. 

Consistent with the finding of Dennis and Mayhew (2002) RNSkew is negatively 

related to beta. Beta is also negatively related to Skew. The difference in the effect of 

beta is not statistically significant. Most of the control variables enter the RNSkew and 

Skew specifications with the same signs. This is true for beta, size, IV, momentum, 

ILLIQ, and the NASDAQ dummy.  A couple of the variables enter significantly and 

in a consistent direction in explaining both the RN skew gap and the RN expected skew 

                                                             
16 All the results hold if we lag the independent variables by one month.  
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gap. Specifically, low book-to-market, low leverage, low past skew, high IV stocks 

have higher RNSkew than can be justified based on expected skew or future realized 

skew. 

Finally, we compare RNSkew to a hypothetical measure of RN Skew constructed 

from index options. Bakshi, Kapadia and Madan (2003) show that risk neutral 

skewness can also be derived without the use of options traded on the firm, but 

instead from a combination of market risk neutral skewness and physical distribution 

attributes of the stock. Bakshi, Kapadia, and Madan (2003)17 show that when the 

stock return follows a single-factor model of the form i i i m ir rα β ε= + + ,  

2
3/2 3/2

2(1 ) (1 )i m
i m

i m

V IVRNSkew RNSkew RNSkew
IV V
ε

ε
ε

β
β

− −= + + + ,           (5) 

where iRNSkew , mRNSkew , and RNSkewε are the risk-neutral skewness of stock i, 

risk-neutral skewness of the market, and the risk-neutral skewness of idiosyncratic 

return of stock i (i.e. ε ). mIV andVε are the risk-neutral variance of the market, and 

the risk-neutral variance of stock i. 

From Equation (5), we can construct a hypothetical RNSkew measure 

(RNSkewhypothetical) that does not use information contained in a firm’s own options, 

but instead is derived from the market risk-neutral skewness, and the firm’s implied 

volatility, beta, and idiosyncratic volatility. If investor expectations are not affected by 

nominal price, we should expect that the difference between the real RNSkew and the 

hypothetical RNSkew will not be systematically related to nominal price.  

                                                             
17 For details, please refer to Theorem 3 in Bakshi, Kapadia, and Madan (2003).  
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In order to calculate RNSkewhypothetical, we need proxies for mRNSkew , mIV , beta, 

risk-neutral idiosyncratic skewness and risk-neutral idiosyncratic variance. mRNSkew

and mIV are calculated based on the S&P 500 index options. Since the idiosyncratic 

return component requires no measure-change conversions, RNSkewε and Vε are the 

same under both the physical measure and the risk neutral measure. Beta is estimated 

following Fama and French (1992). In the empirical analysis, we use two different 

methods to estimate idiosyncratic skewness and idiosyncratic variance. First, we 

predict idiosyncratic skewness and idiosyncratic variance following the method from 

Boyer, Mitton, and Vorkink (2012). Second, we use past realized idiosyncratic 

skewness and idiosyncratic variance to proxy for expected idiosyncratic skewness and 

idiosyncratic variance. Realized idiosyncratic skewness and idiosyncratic variance are 

calculated using daily return from the past one year. 

In Table 6 we examine the relationship between our current measure of risk 

neutral skewness extracted from options in the actual underlying stock, and the 

hypothetical risk neutral skew measure. Comparing our risk neutral skew measure to 

another risk neutral skew measure, rather than the physical skewness or expected 

skew measures used before does not change the results. Consistent with the results in 

Table 5, the results in Table 6 show that investors overweight price in their 

assessment of skewness expectations. The economically and statistically significant 

negative coefficients on the price variable in the RNSkew-Skew, RNSkew-E(Skew) 

regressions in Table 5, as well as the negative coefficients on the price variable in 

Table 6 confirm our main hypothesis; investors perceive the relationship between 

price and future skewness to be much stronger than the relationship documented 

between price and realized skewness, or E(Skew), or RNSkewhypothetical. The results 
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are consistent with investors suffering from nominal-price driven biases in which they 

overestimate the extent to which low-priced stocks have more room to grow relative 

to high-priced stocks, leading to investors overweighting the importance of price 

when forming expectations of future skewness.  

 [Insert Table 6 here] 

5. Nominal price and option trading 

Mitton and Vorkink (2007), and Barberis and Huang (2008) incorporate investor 

preferences for skewness into models explaining stock returns, while Kumar (2009) 

finds empirical evidence that retail investors prefer stocks with lottery features. The 

evidence presented thus far is consistent with low-priced stocks possessing attributes 

of lottery-like goods, and with investors perceiving them as such, and indeed, of 

overestimating these lottery-like qualities. We next provide evidence that investors 

exhibit increased optimism, as well as gambling-like behavior toward these 

lottery-like assets. We do so by examining the ratio of call to put volume and open 

interest. The ratio of call to put option trading volume is commonly believed to be a 

sentiment measure, with more call option trading volume indicating optimism (for 

example, Lemmon and Ni (2010)). If price does affect investor perceptions of upside 

potential, we should expect to see a negative correlation between stock price and the 

call-put volume ratio. Option volume reflects both option writing and position closing. 

Open interest measures the total existing position, and thus can potentially better 

measure the view of the investors. Thus, we also examine the relationship between 

nominal price and the call to put open interest ratio.  

We define our volume ratio (VolRatio) and open interest ratio (OIRatio) as 

VolRatio=log (1+ volume of call options)-log (1+ volume of put options),  
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and OIRatio=log (1+ options interests of call options)-log (1+ options interests of put 

options). We add one to deal with the cases of zero trading volume or open interest.  

 [Insert Table 7 here] 

The results in Table 7 show that price is strongly negatively related to the 

call-to-put volume ratio and open interest ratio. The evidence is consistent with 

investors perceiving low-priced stocks to be more lottery-like and with investors 

possessing more optimistic perceptions of the upside potential of low-priced stocks 

relative to high-priced stocks. We next examine the asset-pricing implications of 

investor biases regarding nominal prices. 

6. Asset Pricing Implications 

Biased beliefs regarding the upside potential of low relative to high-priced stocks 

will also have asset pricing implications. If investors overestimate the skewness of 

low-priced relative to high-priced stocks, a potential implication is that relative to put 

options, call options will be more overvalued for low-priced stocks than for 

high-priced stocks. This will particularly be the case for OTM options. To test this 

hypothesis we construct delta-hedged put and call portfolios and examine whether 

differences in call and put portfolio returns are systematically related to underlying 

stock price. Our methodology and analysis largely follows that of Goyal and Sarreto 

(2009).  

Portfolios are formed on the expiration Friday (or Thursday if Friday is a public 

holiday) of the month, and the option portfolio strategies are initiated on the first 

trading day (typically a Monday) after the expiration Friday of the month. On each 

portfolio formation day, we choose only the put and call options expiring within one 

month, and all stocks with available options are sorted into quintiles based on the 
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stock price on the portfolio formation day. For each option series, we construct 

delta-hedged portfolios and hold them until option expiration. All the portfolios are 

equal weighted. As in Goyal and Saretto (2009), we use the absolute position value as 

the reference beginning price to calculate delta-hedged portfolio return. Specifically, 

the formula we use to calculate the delta-hedged call return and the delta-hedged put 

return are.18  
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The results are reported in Table 8. We report the returns for the delta-hedged call 

and delta-hedged put portfolios by price quintile. Relative to ATM and ITM options, 

OTM options better reflect investors’ view on skewness. Thus, we focus on the OTM 

options. As a comparison, we also report the results for ATM options.  

We define option moneyness following Bollen and Whaley (2004). ATM options 

are defined as call options with delta higher than 0.375 and not higher than 0.625 and 

put options with delta greater than -0.625 and not greater than -0.375. OTM options 

are call options with delta above 0.02 and not greater than 0.375 and put options with 

delta greater than -0.375 and not greater than -0.02. Options with absolute delta below 

0.02 are excluded due to the distortions caused by price discreteness. 

 [Insert Table 8 here] 

Table 8 reports the results of delta-hedged portfolio return analysis. We report the 

average returns for call portfolios, put portfolios and the difference between put and 

                                                             
18 We consider stock splits and use the adjustment factor given by OptionMetrics to do the adjustment. 
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call portfolios (Put-Call). Besides reporting the raw return of the delta-hedged option 

portfolios, similar to Goyal and Sarreto (2009), we also report the risk-adjusted 

returns using model (8).  

'
,put t call t tR R Fα β ε− = + +                                     (8) 

To obtain risk-adjusted returns, we regress the Put-Call returns on a linear pricing 

model consisting of the three Fama-French factors and the momentum factor,19 and an 

aggregate factor reflecting the average Put-Call return of S&P 500 index options. The 

average Put-Call return of S&P 500 index options may capture the compensation to 

jump risk (Pan, 2002). We use the same method (Equation (6) and (7)) to calculate the 

average Put-Call return of S&P 500 index options by moneyness. The Put-Call index 

option returns will be matched to the Put-Call individual stock option returns with the 

same moneyness. The intercept from the regression can be interpreted as mispricing 

relative to the factor model. We will refer to the adjusted return as the five-factor 

adjusted return.  

Panel A of Table 8 reports the results on OTM options. Both delta-hedged call 

option return and delta-hedged put option return increases when the underlying stock 

price increases. From the lowest price quintile to the highest price quintile, the 

average return of the call portfolio increases by 2.856% from -3.844% to -0.988%, 

and the average return of the put portfolio increases by 1.506% from -2.915% to 

-1.409%. The increase in return of both put and call option portfolio suggests that 

investors may overestimate both the upside and also the downside of the low-priced 

                                                             
19 We compound the daily factor return to get monthly factor returns to match the timing of the option 
strategy.  
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stocks relative to the high-priced stocks, though the upside substantially more than the 

downside.  

More importantly, put-call return difference decreases from 0.929% in the lowest 

price quintile to -0.421% in the highest price quintile. The five-factor adjusted 

Put-Call return decreases from 1.142% in the lowest price quintile to 0.117% in the 

highest price quintile. The Put-Call high minus low portfolio raw return and the 

five-factor adjusted return is 1.350% and 1.025%, respectively. Both are statistically 

significant at 1% level. We also find supportive evidence from the ATM options. For 

ATM options, the raw and five-factor adjusted return of the Put-Call portfolio 

decreases as a function of the underlying stock price. The magnitude of the change of 

OTM Put-Call portfolio return is larger than that of the ATM options, consistent with 

the view that skewness misperception most greatly affects the price of the OTM 

options.20  

7. Conclusions 

 The findings provide the first evidence that investors link nominal share price to 

return skewness and systematically overestimate the skewness of low-priced stocks 

relative to high-priced stocks. The evidence presented is consistent with investors 

suffering from the illusion that low-priced stocks “have more upside potential.” 

We also find that investors take lottery-like bets on low-priced stocks. Investor 

overweighting of nominal prices in assessing return distribution expectations also has 

                                                             
20 Note that our results are not driven by directional exposure to the underlying stocks. Within a given 
moneyness category and option type (call vs. put), delta-hedged option strategies across different price 
groups have similar level of exposure to the underlying stocks. Furthermore, when the underlying 
stocks are sorted into the same price groups, their performance exhibits no patter across quintiles. 
Specifically, the average return of stocks sorted by nominal price is 0.909%, 1.036%, 0.929%, 0.863% 
and 0.863% from the lowest price quintile to the highest quintile.  
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asset-pricing implications. We find that options of low-priced stocks are more 

overvalued than options of high-priced stocks.  

Firms have long engaged in the costly management of share price through stock 

splits, despite nominal prices lacking real economic content. Recent work provides 

further evidence that investors view stocks of similar price as sharing similar 

attributes. Green and Hwang (2009) find that investors categorize stocks by nominal 

price, while Baker, Greenwood, and Wurgler (2009) find that firms exploit the fact 

that nominal prices matter to investors by increasing the supply of low-priced 

securities when investors are willing to pay a premium for them. While it is clear that 

nominal prices matter to investors, it has thus far been less clear why prices matter. 

We provide the first empirical insight into why prices matter to investors. Specifically, 

we find evidence that is consistent with the notion that investors view low-priced 

stocks as “cheap” assets with “more room to grow”.  
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Appendix 

A1. Definitions of variables 

Variable name Descriptions 
Price Stock price at the end of month t 
Log (Price) Natural log of stock price at the end of month t 
Beta Calculated using monthly return data over the past 5 years, following Fama 

and French (1992) 
Log (Size) Size is the product of stock price and the number of shares outstanding, 

calculated at the end of month t 
Log (BM) Book-to-Market is the ratio between book value of common equity and 

market value of common equity, and is matched to the CRSP data 
following Fama and French (1992) 

Leverage Leverage is the ratio of total liability divided by total assets, and is matched 
to the CRSP data following Fama and French (1992) 

Past Volatility Volatility is calculated using past daily returns over the past year. Daily 
standard deviation is annualized by multiplying by the square root of 252.  

Past Skewness Skewness is calculated using daily returns over the past year 
Volume  Natural log of total number of traded in month t 
Momentum Momentum is the cumulative return from month t-12 to month t-1.  
ILIIQ The illiquidity measure of Amihud (2002) 
NASDAQ A dummy variable equal to 1 if the firm is listed in NASDAQ, and 0 

otherwise.  
IV Implied volatility, calculated from ATM options.  
RNSkew Risk-neutral skewness implied from option prices, calculated following 

Bakshi, Kapadia and Madan (2003).  
Skew Future skewness, calculated using future one year daily returns 
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Figure 1. RNSkew around stock splits 
This figure shows the RNSkew around the stock splits (the dotted line is for reverse splits and the solid line is for the regular 
splits). The x-axis is trading days relative to the ex-date, and the y-axis is the average RNSkew. Day 0 is the ex-date. RNSkew is 
calculated following Bakshi, Kapadia and Madan (2003). The method is detailed in the text. The sample period is from January 
1996 to December 2011.  
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Figure 2. RNSkew around stock splits: new rule period 
This figure shows the RNSkew around the stock splits (the dotted line is for reverse splits and the solid line is for the regular 
splits). The x-axis is trading days relative to the ex-date, and the y-axis is the average RNSkew. Day 0 is the ex-date. RNSkew is 
calculated following Bakshi, Kapadia and Madan (2003). The method is detailed in the text. The sample period is from September 
4, 2007 to December 2011.  
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Table 1. Summary statistics 
This table reports summary statistics for three different samples. “All optionable stocks” includes all the stocks on which we can 
calculate RNSkew and Skew. Regular splits and reverse splits are the split stocks that are also covered by OptionMetrics. Regular 
splits and reverse splits are defined as splits with split ratio greater than 1.25-to-1 and lower than 1-to-1, respectively. Beta is 
calculated following Fama and French (1992), that is, for each month, we use the past 60 months’ monthly excess return data and 
CRSP value weighted excess market return to calculate Beta. B/M is the ratio between book value of common equity and market 
price. Leverage is the ratio between total liability and total assets. Volatility and Skewness are calculated using the 1 year’s daily 
returns. We reach annualized volatility by multiplying daily standard deviation by the square root of 252. Volume is the total 
number of shares traded from the last month. ILLIQ is measured following Amihud (2002). Both Volume and ILLIQ are 
measured in natural log. Momentum is the cumulative return from month t-12 to month t-1. We also report the implied volatility 
(IV), RNSkew and future skewness (Skew). IV is directly from OptionMetrics. We calculate IV from the options that are at the 
money. RNSkew is calculated following Bakshi, Kapadia and Madan (2003) and is detailed in the paper. Skew is calculated using 
daily data from month t+1 to month t+12. The sample period is from January 1996 to December 2011. 

  
All optionable stocks 

(N=263,571) 
Regular Splits 

(N=2,094) 
Reverse Splits 

 (N=158) 
Variables Mean STDEV Mean STDEV Mean STDEV 
Price 32.629 29.992 76.006 84.985 6.868 13.257 
Log (Price) 3.256 0.665 4.188 0.491 0.493 1.723 
Beta 1.344 0.895 1.299 1.099 2.109 1.565 
Log (Size) 14.435 1.515 15.045 1.337 12.043 2.458 
Log (BM) -1.179 0.866 -1.725 0.931 -0.079 1.331 
Leverage 0.210 0.199 0.185 0.191 0.237 0.227 
Past Volatility 0.518 0.257 0.486 0.270 1.064 0.594 
Past Skewness 0.233 1.032 0.425 0.856 0.693 1.584 
Volume 11.845 1.382 12.224 1.313 10.447 1.918 
Momentum 0.222 0.694 1.266 2.239 -0.422 0.777 
ILLIQ -18.512 2.015 -19.062 1.780 -15.867 2.684 
NASDAQ 0.616 0.486 0.691 0.462 0.813 0.392 
IV 0.499 0.235 0.504 0.260 0.850 0.425 
RNSkew -0.528 0.844 -0.687 0.925 0.431 0.922 
Skew 0.277 1.271 0.172 1.114 1.106 1.570 
Price after split NA NA 38.504 18.645 24.307 36.647 
Split ratio NA NA 1.975 1.161 0.240 0.193 
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Table 2. RNSkew around regular stock splits 
Regular stock splits are events with a CRSP distribution code of 5523 and the split ratio greater than 1.25-for-1. RNSkew is 
calculated following Bakshi, Kapadia and Madan (2003) and is detailed in the paper. Panel A and Panel B report the change of 
RNSkew and physical skewness around splits (comparing to matched sample), respectively. For RNSkew, we report the change of 
RNSkew around the ex-date and around the announcement date. We report the average RNSkew before and after the event, and 
also the difference between them. We use the paired t-test to gauge the statistical significance. Different windows are chosen. For 
example, for (-3, 0) the Before column displays RNSkew day -3 relative to the event date, and the after column displays RNSkew 
on day 0 relative to the event date (ie the date of the event). For each given window, we require RNSkew of a given stock can be 
measured both before and after the event. For each split stock, we require the matched stock and the split stock to be in the same 
size quintile, BM quintile, momentum quintile and skewness quintile. We also require that the skewness difference between the 
matched stock and the split stock is lower than 0.25. If more than one stock satisfies the above criteria, we choose the one with the 
smallest price difference with the split stock. All the information used for matching is available at the time of split. B/M is the 
ratio between book value of common equity and market price. Momentum is the cumulative return from month t-12 to month t-1. 
Size is equal to the log market capitalization at the end of month t. Pre-matching skewness is calculated using daily return from 
month t-11 to month t, and post-matching skewness is calculated using daily return from month t+1 to month t+12. The sample 
period is January 1996 to December 2011. 

Panel A. RNSkew change  
  Window N Before After Change t 
Panel A1. Ex-date 

 (-10, 0) 2042 -0.694 -0.382 0.312*** 5.09 

 (-5, 0) 2054 -0.667 -0.381 0.286*** 4.76 

 (-3, 0) 2066 -0.668 -0.38 0.288*** 4.84 

 (-1, 0) 2082 -0.684 -0.381 0.303*** 5.08 

 (-1, 1) 2081 -0.684 -0.452 0.232*** 9.06 

 (-1, 3) 2079 -0.684 -0.455 0.228*** 8.87 

 (-1, 5) 2078 -0.683 -0.499 0.184*** 8.02 

 (-1, 10) 2069 -0.683 -0.487 0.197*** 8.22 
Panel A2. Announcement 

 (-10, 0) 1775 -0.828 -0.828 0.000 0.00 

 (-5, 0) 1827 -0.821 -0.819 0.002 0.10 

 (-3, 0) 1846 -0.84 -0.819 0.021 1.00 

 (-1, 0) 1869 -0.834 -0.815 0.018 1.06 

 (-1, 1) 1841 -0.83 -0.791 0.039* 1.95 

 (-1, 3) 1772 -0.834 -0.764 0.070*** 3.40 
  (-1, 5) 1717 -0.837 -0.716 0.121*** 5.41 
 (-1, 10) 1490 -0.843 -0.692 0.151*** 5.76 
Panel B. Physical skewness change: Matched sample analysis (N=1,528) 
  Before After 
  Treated Matched Dif. t Treated Matched Dif. t 
Log (BM) -1.759 -1.75 -0.010 -0.53      Log (Price) 4.101 3.95 0.151*** 18.79     Momentum 1.271 1.128 0.143** 2.36     Size 14.946 14.963 -0.017 -0.93     Skew 0.378 0.382 -0.004 -1.12 0.151 0.208 -0.058 -1.27 
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Table 3. RNSkew around reverse stock splits 
Reverse stock splits are events with a CRSP distribution code of 5523 and the split ratio lower than 1-for-1. RNSkew is calculated 
following Bakshi, Kapadia and Madan (2003) and is detailed in the paper. Panel A and Panel B report the change of RNSkew and 
physical skewness around splits (comparing to matched sample), respectively. For RNSkew, we report the change of RNSkew 
around the ex-date and around the announcement date. We report the average RNSkew before and after the event, and also the 
difference between them. We use the paired t-test to gauge the statistical significance. Different windows are chosen. For example, 
for (-3, 0) the Before column displays RNSkew day -3 relative to the event date, and the after column displays RNSkew on day 0 
relative to the event date (ie the date of the event). For each given window, we require RNSkew of a given stock can be measured 
both before and after the event. For each split stock, we require the matched stock and the split stock to be in the same size 
quintile, BM quintile, momentum quintile and skewness quintile. We also require that the skewness difference between the 
matched stock and the split stock is lower than 0.25. If more than one stock satisfies the above criteria, we choose the one with the 
smallest price difference with the split stock. All the information used for matching is available at the time of split. B/M is the 
ratio between book value of common equity and market price. Momentum is the cumulative return from month t-12 to month t-1. 
Size is equal to the log market capitalization at the end of month t. Pre-matching skewness is calculated using daily return from 
month t-11 to month t, and post-matching skewness is calculated using daily return from month t+1 to month t+12. The sample 
period is January 1996 to December 2011. 

Panel A. Change of RNSkew 

  Window N Before After Change t 

 
(-10, 0) 155 0.214 -0.068 -0.283*** -3.61 

 
(-5, 0) 157 0.317 -0.073 -0.391*** -5.30 

 
(-3, 0) 157 0.28 -0.073 -0.354*** -4.87 

 
(-1, 0) 158 0.438 -0.076 -0.514*** -7.60 

 
(-1, 1) 154 0.447 -0.063 -0.509*** -7.40 

 
(-1, 3) 154 0.447 -0.073 -0.520*** -7.40 

 
(-1, 5) 152 0.435 -0.027 -0.462*** -6.11 

 
(-1, 10) 147 0.449 -0.035 -0.484*** -6.72 

Panel B. Change of physical skewness (N=69) 

  Before After 

  Treated Matched Dif t Treated Matched Dif t 
Log (BM) -0.492 -0.501 0.009 0.05      
Log (Price) 0.863 1.167 -0.304*** -4.01     
Momentum 0.013 -0.114 0.127 1.28     
Size 13.013 12.181 0.832*** 4.93     
Skew 0.57 0.556 0.014 0.79 1.013 0.749 0.265 0.92 
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Table 4. Summary statistics: by price quintiles 
This table reports summary statistics for the main variables of interest, sorted based on price at month t-1. Beta is calculated 
following Fama and French (1992), that is, for each month, we use the past 60 months’ monthly excess return data and CRSP 
value weighted excess market return to calculate Beta. B/M is the ratio between book value of common equity and market price. 
Leverage is the ratio between total liability and total assets. Volatility and Skewness are calculated using the 1 year’s daily returns. 
We reach annualized volatility by multiplying daily standard deviation by the square root of 252. Volume is the total number of 
shares traded from the last month. ILLIQ is measured following Amihud (2002). Both Volume and ILLIQ are measured in natural 
log. Momentum is the cumulative return from month t-12 to month t-1. We also report the implied volatility (IV), RNSkew and 
future skewness (Skew). IV is directly from OptionMetrics. We calculate IV from the options that are at the money. RNSkew is 
calculated following Bakshi, Kapadia and Madan (2003) and is detailed in the paper. Skew is calculated using daily data from 
month t+1 to month t+12. E(Skew) is the expected future physical skewness, calculated following Boyer, Mitton and Vorkink 
(2010). The sample period is from January 1996 to December 2011. 

Price Portfolio Lowest 2 3 4 Highest 
Price 10.632 18.486 26.864 38.812 68.359 
Log (Price) 2.321 2.900 3.275 3.643 4.142 
Beta 1.821 1.446 1.290 1.136 1.025 
Log (Size) 13.154 13.849 14.394 14.985 15.793 
Log (BM) -0.985 -1.039 -1.177 -1.278 -1.402 
Leverage 0.200 0.209 0.206 0.214 0.221 
Past Volatility 0.694 0.552 0.498 0.445 0.401 
Past Skewness 0.215 0.179 0.231 0.243 0.294 
Volume 11.475 11.557 11.778 12.017 12.386 
Momentum -0.007 0.138 0.227 0.306 0.440 
ILLIQ -16.871 -17.844 -18.501 -19.210 -20.095 
NASDAQ 0.785 0.693 0.634 0.544 0.425 
IV 0.681 0.530 0.476 0.426 0.383 
RNSkew 0.026 -0.342 -0.645 -0.768 -0.909 
Skew  0.492 0.341 0.233 0.193 0.126 
E(Skew) 0.474 0.329 0.251 0.184 0.103 
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Table 5. The relationship between nominal price and skewness: Fama-MacBeth regressions 
For each month, the following cross-sectional regression is run.  

, 1 , , ,( )i t t i t i t i tDV Log Price Xα β ε= + + + , 
where DV is one of the followings: RNSkew, Skew, RNSkew-Skew and RNSkew-E(Skew). RNSkew is calculated following 
Bakshi, Kapadia and Madan (2003) and is detailed in the paper. Skew is calculated using daily data from month t+1 to month t+12. 
E(Skew) is a forward looking skewness measure constructed following the method of Boyer, Mitton, and Vorkink (2010).  
The independent variables include price, log price, beta, log of firm market capitalization, log of B/M, Leverage, past volatility, 
past skewness, implied volatility, volume, ILLIQ, momentum and a NASDAQ dummy indicating listing exchange. Beta is 
calculated following Fama and French (1992), that is, for each month, we use the past 60 months’ monthly excess return data and 
CRSP value weighted excess market return to calculate Beta. B/M is the ratio between book value of common equity and market 
equity. Leverage is the ratio of total liabilities to total assets. Volatility and Skewness are calculated using the past one year daily 
returns. Annualized volatility is calculated by multiplying daily standard deviation by the square root of 252. Volume is the total 
number of shares traded from the last month. ILLIQ is measured following Amihud (2002). Both Volume and ILLIQ are 
measured in natural log. Momentum is the cumulative return from month t-12 to month t-1). IV is directly from OptionMetrics. 
We calculate IV from options that are at the money. ATM options are defined as call options with delta higher than 0.375 and not 
higher than 0.625 and put options with delta higher than -0.625 and not higher than -0.375. The sample period is from January 
1996 to December 2010. Reported t-statistics are Newey-West adjusted with 12 lags.  
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  RNSkew   Skew   RNSkew-Skew   RNSkew-E(Skew) 
Log (Price) -0.529*** -0.309*** -0.309***   -0.203*** -0.080*** -0.086***   -0.326*** -0.229*** -0.222*** 

 
-0.327*** -0.205*** -0.196*** 

 
(-19.29) (-9.38)  (-9.80)  

 
(-8.26) (-2.58) (-2.81) 

 
(-9.35) (-5.49) (-5.20) 

 
(-8.96) (-6.66) (-6.03) 

Beta 
 

-0.001 -0.012** 
  

-0.004 -0.017 
  

0.002 0.004 
  

0.012 0.012 

  
(-0.19) (-2.13) 

  
(-0.19) (-0.97) 

  
(0.12) (0.28) 

  
(0.55) (0.71) 

Size 
 

-0.056*** -0.061*** 
  

-0.542*** -0.570*** 
  

0.486*** 0.509*** 
  

-0.047*** -0.040*** 

  
(-5.83) (-6.83) 

  
(-6.23) (-6.60) 

  
(5.74) (5.93) 

  
(-2.67) (-2.77) 

BM 
 

-0.030*** -0.032*** 
  

0.016 0.006 
  

-0.046*** -0.038*** 
  

-0.065*** -0.069*** 

  
(-7.26) (-6.94) 

  
(1.09) (0.45) 

  
(-3.04) (-2.64) 

  
(-3.97) (-4.62) 

Leverage 
 

-0.142*** -0.163*** 
  

0.101* 0.045 
  

-0.243*** -0.208*** 
  

-0.350*** -0.328*** 

  
(-5.57) (-7.96) 

  
(1.74) (0.94) 

  
(-5.18) (-4.87) 

  
(-9.02) (-7.98) 

Past Volatility 
 

-0.139 -0.129 
  

0.263** 0.305** 
  

-0.402** -0.434** 
  

-0.201 -0.225 

  
(-1.38) (-1.48) 

  
(1.99) (2.47) 

  
(-1.97) (-2.45) 

  
(-1.34) (-1.65) 

Past Skew 
 

-0.007 -0.006 
  

0.036*** 0.032*** 
  

-0.043*** -0.038*** 
  

-0.067*** -0.031*** 

  
(-1.35) (-1.33) 

  
(6.33) (5.17) 

  
(-5.81) (-5.11) 

  
(-7.49) (-3.26) 

IV 
 

0.955*** 0.928*** 
  

0.657*** 0.650*** 
  

0.298*** 0.278*** 
  

0.702*** 0.699*** 

  
(22.95) (27.36) 

  
(7.25) (7.51) 

  
(3.55) (3.23) 

  
(7.79) (8.03) 

Volume 
 

-0.019*** -0.017*** 
  

0.086*** 0.098*** 
  

-0.106*** -0.115*** 
  

-0.002 -0.008 

  
(-2.55) (-2.50) 

  
(3.99) (4.96) 

  
(-5.12) (-5.87) 

  
(-0.25) (-0.95) 

Momentum 
 

-0.127*** -0.133*** 
  

-0.103*** -0.092*** 
  

-0.025 -0.041* 
  

-0.021 -0.038* 

  
(-8.32) (-10.45) 

  
(-6.25) (-6.27) 

  
(-0.95) (-1.93) 

  
(-0.92) (-1.84) 

ILLQ 
 

-0.01* -0.01* 
  

-0.44*** -0.45*** 
  

0.43*** 0.44*** 
  

-0.01* -0.01** 

  
(-1.72) (-1.88) 

  
(-7.22) (-7.21) 

  
(6.91) (6.90) 

  
(-1.91) (-1.99) 

NASDAQ 
 

-0.046*** -0.040*** 
  

-0.040** -0.051** 
  

-0.006 0.012 
  

-0.012 0.022 

  
(-5.77) (-5.19) 

  
(-2.08) (-2.48) 

  
(-0.30) (0.52) 

  
(-0.52) (0.84) 

Constant 1.178*** 1.043*** 1.103*** 
 

0.930*** -1.377*** -1.265*** 
 

0.248** 2.420*** 2.368*** 
 

0.246** 0.248 0.098 

 
(15.37) (4.97) (5.73)   (10.36) (-6.16) (-5.26)   (2.49) (7.47) (7.62) 

 
(2.17) (0.75) (0.33) 

Industry FE No No Yes   No No Yes   No No Yes   No No Yes 
Adj-R2 0.197 0.292 0.333 

 
0.017 0.115 0.157 

 
0.026 0.127 0.169 

 
0.08 0.184 0.312 

Obs. 180 180 180   180 180 180   180 180 180   167 167 167 
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Table 6. The relationship between nominal price and Adjusted skewness gap: Adjusted based on BKM (2003) 
For each month, the following cross-sectional regression is run.  

, 1 , , ,(Pr )i t t i t i t i tDV Log ice Xα β ε= + + + , 
where DV is: (RNSkew-RNSkewhypothetical) 
RNSkew is calculated following Bakshi, Kapadia and Madan (2003) and is detailed in the paper. The methodology to calculate 
RNSkewhypothetical is detailed in the appendix. The independent variables include price, log price, beta, log of firm market 
capitalization, log of B/M, Leverage, past volatility, past skewness, implied volatility, volume, momentum, ILLIQ and a 
NASDAQ dummy indicating listing exchange. Beta is calculated following Fama and French (1992), that is, for each month, we 
use the past 60 months’ monthly excess return data and CRSP value weighted excess market return to calculate Beta. B/M is the 
ratio between book value of common equity and market equity. Leverage is the ratio of total liabilities to total assets. Volatility 
and Skewness are calculated using the past one year daily returns. Annualized volatility is calculated by multiplying daily 
standard deviation by the square root of 252. Volume is the total number of shares traded from the last month. ILLIQ is measured 
following Amihud (2002). Both Volume and ILLIQ are measured in natural log. Momentum is the cumulative return from month 
t-12 to month t-1). IV is directly from OptionMetrics. We calculate IV from options that are at the money. ATM options are 
defined as call options with delta higher than 0.375 and not higher than 0.625 and put options with delta higher than -0.625 and 
not higher than -0.375. The sample period is from January 1996 to December 2010. Reported t-statistics are Newey-West adjusted 
with 12 lags. 

  (RNSkew-RNSkewhypothetical) method 1   (RNSkew-RNSkewhypothetical) method 2 
Log (Price) -0.606*** -0.412*** -0.412***   -0.548*** -0.301*** -0.303*** 

 
(-16.04) (-13.20) (-13.52) 

 
(-14.23) (-9.33) (-9.96) 

Beta 
 

0.232*** 0.221*** 
  

0.364*** 0.349*** 

  
(6.00) (5.69) 

  
(12.55) (12.12) 

Size 
 

-0.030** -0.024* 
  

-0.021 -0.027** 

  
(-2.12) (-1.88) 

  
(-1.61) (-2.11) 

BM 
 

0.103*** 0.116*** 
  

0.001 -0.001 

  
(6.89) (8.30) 

  
(0.10) (-0.21) 

Leverage 
 

-0.215*** -0.162*** 
  

-0.145*** -0.142*** 

  
(-8.07) (-5.93) 

  
(-4.15) (-4.81) 

Past Volatility 
 

-0.555*** -0.561*** 
  

-0.908*** -0.904*** 

  
(-3.81) (-4.23) 

  
(-9.00) (-9.81) 

Past Skew 
 

-0.027** -0.026** 
  

-0.757*** -0.757*** 

  
(-2.51) (-2.50) 

  
(-35.84) (-35.53) 

IV 
 

0.806*** 0.796*** 
  

0.771*** 0.753*** 

  
(8.82) (8.30) 

  
(19.69) (21.18) 

Volume 
 

-0.004 -0.009 
  

-0.026*** -0.023*** 

  
(-0.36) (-0.98) 

  
(-3.10) (-2.72) 

Momentum 
 

-0.039 -0.044 
  

-0.189*** -0.193*** 

  
(-0.82) (-1.08) 

  
(-12.28) (-13.85) 

ILLIQ 
 

-0.01 -0.01 
  

0.00 0.00 

  
(-1.02) (-1.64) 

  
(-0.85) (-0.85) 

NASDAQ 
 

-0.032* -0.016 
  

-0.041*** -0.038*** 

  
(-1.71) (-0.85) 

  
(-3.71) (-3.52) 

Constant 1.558*** 1.159*** 1.032*** 
 

1.381*** 0.973*** 1.033*** 
  (10.78) (5.90) (5.62)   (13.12) (5.22) (5.99) 
Industry FE No No Yes   No No Yes 
Adj-R2 0.182 0.322 0.406   0.085 0.54 0.562 
Obs. 168 168 168   180 180 180 
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Table 7. Nominal Price and Option Trading 
For each month, we run the cross-sectional regression 

, 1 , , ,(Pr )i t t i t i t i tDV Log ice Xα β ε= + + + , 
where DV is one of the followings: put and call option trading volume ratio (VolRatio), or the put and call option open interest 
ratio (OIRatio). VolRatio=log (1+ volume of call options)-log (1+ volume of put options). OIRatio=log (1+ options interests of 
call options)-log (1+ options interests of put options). The independent variables include price, log price, beta, log of firm market 
capitalization, log of B/M, Leverage, past volatility, past skewness, implied volatility, volume, momentum, ILLIQ and a 
NASDAQ dummy indicating listing exchange. Beta is calculated following Fama and French (1992), that is, for each month, we 
use the past 60 months’ monthly excess return data and CRSP value weighted excess market return to calculate Beta. B/M is the 
ratio between book value of common equity and market equity. Leverage is the ratio of total liabilities to total assets. Volatility 
and Skewness are calculated using the past one year daily returns. Annualized volatility is calculated by multiplying daily 
standard deviation by the square root of 252. Volume is the total number of shares traded from the last month. ILLIQ is measured 
following Amihud (2002). Both Volume and ILLIQ are measured in natural log. Momentum is the cumulative return from month 
t-12 to month t-1). IV is directly from OptionMetrics. We calculate IV from options that are at the money. ATM options are 
defined as call options with delta higher than 0.375 and not higher than 0.625 and put options with delta higher than -0.625 and 
not higher than -0.375. The sample period is from January 1996 to December 2011. Reported t-statistics are Newey-West adjusted 
with 12 lags. 
 

  VolRatio   OIRatio 
Log (Price) -0.396*** -0.481*** -0.486***   -0.107*** -0.251*** -0.260*** 

 
(-18.87) (-26.11) (-24.26) 

 
(-6.82) (-14.64) (-15.81) 

Beta 
 

0.008 -0.003 
  

0.007 0.001 

  
(1.24) (-0.55) 

  
(0.58) (0.13) 

Size 
 

0.121 0.120*** 
  

-0.019 -0.028** 

  
(5.80) (6.37) 

  
(-1.43) (-2.36) 

BM 
 

-0.014* -0.024*** 
  

0.001 -0.003 

  
(-1.93) (-3.16) 

  
(0.11) (-0.45) 

Leverage 
 

-0.042** -0.069*** 
  

-0.154*** -0.158*** 

  
(-2.15) (-3.22) 

  
(-4.51) (-4.40) 

Past Volatility 0.002 -0.008 
  

0.020 0.009 

  
(0.04) (-0.13) 

  
(0.18) (0.07) 

Past Skew 
 

0.013** 0.013*** 
  

0.015 0.018** 

  
(2.42) (3.10) 

  
(1.64) (2.01) 

IV 
 

-0.001 -0.049 
  

-0.757*** -0.801*** 

  
(-0.02) (-0.86) 

  
(-8.21) (-8.23) 

Volume 
 

-0.129*** -0.121*** 
  

-0.068*** -0.066*** 

  
(-7.38) (-7.31) 

  
(-9.14) (-8.77) 

Momentum 
 

0.113*** 0.111*** 
  

0.337*** 0.331*** 

  
(7.10) (9.07) 

  
(11.40) (12.25) 

ILLQ 
 

0.030** 0.040*** 
  

-0.020** -0.020** 

  
(2.36) (3.27) 

  
(-2.25) (-2.63) 

NASDAQ 
 

0.007 0.005 
  

0.038*** 0.022*** 

  
(0.63) (0.45) 

  
(4.27) (2.67) 

Constant 2.069*** 2.660*** 2.847*** 
 

0.994*** 2.459*** 2.642*** 
  (15.45) (12.86) (13.30)   (10.64) (9.81) (9.91) 
Industry FE No No Yes   No No Yes 
Adj-R2 0.051 0.081 0.127   0.008 0.071 0.117 
Obs. 179 179 179   180 180 180 
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Table 8. Option Trading Strategy 
Portfolios are formed on the expiration Friday (or Thursday if Friday is a public holiday) of the month and the option portfolio 
strategies are initiated on the first trading day (typically a Monday) after the expiration Friday of the month. We do the analysis for 
OTM. OTM options are call options with delta higher 0.02 and not higher than 0.375 and put options with delta higher than -0.375 
and not higher than -0.02. As in Bollen and Whaley (2004), we exclude options with absolute delta below 0.02 due to the 
distortions caused by price discreteness. On each portfolio formation day, we choose the put and call options for any given 
moneyness that will expire within one month. On each portfolio formation day, all stocks with available options are sorted into 
quintiles based on the stock price on the portfolio formation day. For each option series, we construct delta-hedged portfolios and 
hold them until option expiration. As in Goyal and Sarreto (2009), we use the absolute value of the position as the reference price 
to calculate the delta-hedged return. Specifically, the formulae are 
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Besides reporting the raw return of each option portfolio, we also report the average abnormal return adjusting Fama and French 
three factors, Carhart (1997) momentum factor and a factor reflecting the market level put-call return differences. The last row of 
each panel reports the results. The portfolio returns are equal-weighted. The sample extends from January 22, 1996 to December 
16, 2011.  

Price Lowest 2 3 4 Highest Lowest-Highest 
Panel A. OTM 
Call -3.844 -3.337 -2.790 -1.649 -0.988 -2.856 

 
(-8.55) (-7.79) (-6.15) (-3.83) (-2.08) (-8.07) 

Put -2.915 -2.332 -2.319 -1.732 -1.409 -1.506 

 
(-7.48) (-5.89) (-5.42) (-3.75) (-2.97) (-5.72) 

Put-Call 0.929 1.005 0.471 -0.083 -0.421 1.350 

 
(2.50) (2.61) (1.15) (-0.21) (-0.96) (4.04) 

Put-Call adjusted 1.142 1.269 0.708 0.233 0.117 1.025 

 
(4.12) (4.73) (2.40) (0.86) (0.42) (3.75) 

Panel B. ATM 
Call -0.744 -0.048 -0.054 0.087 0.004 -0.748 

 
(-2.43) (-0.18) (-0.20) (0.32) (0.01) (-3.74) 

Put -1.347 -0.920 -0.901 -0.806 -0.857 -0.489 

 
(-6.52) (-4.84) (-4.53) (-3.91) (-4.06) (-3.52) 

Put-Call -0.602 -0.871 -0.847 -0.893 -0.861 0.259 

 
(-4.93) (-8.65) (-8.66) (-9.53) (-8.82) (3.05) 

Put-Call adjusted -0.552 -0.807 -0.781 -0.854 -0.786 0.233 

 
(-4.90) (-8.58) (-8.61) (-9.55) (-8.29) (2.80) 
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