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1 Introduction 

Risk aversion and the pricing kernel (stochastic discount factor) are among the most 

studied concepts in finance and financial economics, particularly in the areas of asset pricing and 

derivatives. For instance, a persistent problem in the literature, known as the pricing kernel 

puzzle or risk aversion puzzle2, concerns the empirical findings of non-monotonically decreasing 

pricing kernels and non-monotonic and/or negative-valued risk aversion functions (in terms of 

future endowment or wealth levels). Related work on the equity premium puzzle and risk-free 

rate puzzle, which suggest risk aversion functions and pricing kernels that are incompatible with 

some of the more restrictive but frequently used expected utility consumption/investment 

models, has in recent years focused on allowing for “peso problem”-type rare disasters in 

financial asset markets (e.g. Barro, 2006). Lastly, a smaller but active literature has looked at the 

time-varying character of the risk aversion coefficient (e.g. assuming power utility and thus 

constant relative risk aversion) and the rate of time preference (e.g. Chabi-Yo, Garcia and 

Renault, 2008).  

However, comparatively little research has been conducted on the effect of rare market 

shocks on the general shape of pricing kernels and risk aversion functions. The recent turmoil in 

capital asset markets resulting from the credit freeze crisis has provided researchers with rich 

opportunities to examine the impact of large, unforeseen shocks on financial markets and 

investors (e.g. Birru and Figlewski, 2011). In this paper, we investigate using options data 

whether and to what extent rare economic and political events can change investor risk attitudes 

                                                        
2 E.g. Ait-Sahalia and Lo, 2000; Bakshi, Madan and Panayotov, 2010; Christoffersen, Heston and Jacobs, 2012; 

Dittmar, 2002; Engle and Rosenberg, 2002; Jackwerth 2000, 2004; Liu et al. 2009; Hens and Reichlin, 2010; 

Ziegler, 2007. 
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(i.e., risk aversion) and inter-temporal substitution of wealth (i.e., the pricing kernel or stochastic 

discount factor). Our motivation is that investors acquire new information revealed through 

financial or political events, which may influence their sentiment toward risk or inter-temporal 

wealth substitution. Indeed, Barone-Adesi, Mancini and Shefrin (2012) develop a theory in 

which investor sentiment affects risk aversion and the rate of time preference, then show 

empirically that under- or overconfidence helps explain the pricing kernel puzzle.  

Thus, the importance of rare market events should be reflected in forward-looking 

measures such as the risk-neutral density, which incorporates investor perceptions of the 

distribution of the underlying asset, as well as risk aversion functions and the pricing kernel that 

are estimated using both historical (real-world) and risk-neutral densities implied from option 

prices.  

While the financial literature on option-implied risk-neutral densities and state price 

densities is immense,3 the literature on the robustness of the pricing kernel and risk aversion 

functions to rare market events is scarce. Melick and Thomas (1997) look at the option-implied 

distribution of crude oil futures prices during the Persian Gulf crisis and find that the Black-

Scholes model option-implied density overestimates the market’s assessment of the likelihood of 

a major disruption. Jackwerth (2000) examines the long-term stability of the absolute risk 

aversion function implied by S&P 500 index options and finds that it changes dramatically after 

the 1987 crash, possibly due to mispricing in the options market. These two papers essentially 

consider events to be structural breaks, such that the effect is assumed to be long-term. In 

                                                        
3 E.g., Ait-Sahalia and Lo, 2000; Bahra, 1997; Bliss and Panigirtzoglou, 2002; Figlewski, 2008; Jackwerth, 1999, 

2000, 2004; Jackwerth and Rubinstein, 1996; Jondeau, Poon and Rockinger, 2007; Liu et al. 2007; Pérignon and 

Villa, 2002; Rubinstein, 1994; Ziegler, 2007. 
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contrast, this paper investigates short-term reactions in risk aversion functions and pricing 

kernels to significant exogenous events by developing an event study approach allowing us to 

present graphical and statistical evidence. Our paper further differentiates itself from the 

literature in its focus on crude oil options, as the literature has focused mainly on equity and 

Forex markets (Coutant, Jondeau and Rockinger, 2001). Empirical studies of crude oil option-

implied densities include, however, Flamouris and Giamouridis (2002), Giamouridis (2005), and 

Melick and Thomas (1997).  

The main contribution of this paper is to provide evidence of significant and differential 

effects of infrequent financial and political events on risk aversion functions and pricing kernels, 

through the risk-neutral and historical densities. These are estimated from available options data 

on the West Texas Intermediate (WTI) Future contract for the period of 2007-2011. Based on 

financial news, we identify four events that have affected the crude oil market, namely the end of 

the commodity bull cycle, the trough of the credit freeze crisis, the BP Deepwater Horizon 

platform explosion, and the Libyan uprising in Tripoli. The first two events may be considered at 

least partly anticipated as they define the end of cycles, while the latter two events are 

idiosyncratic and wholly unanticipated shocks. Estimates are obtained in windows of fifteen 

trading days before and after each event (omitting the event date itself). A parametric non-

structural approach is used to recover the option-implied risk-neutral and historical (real-world) 

densities for crude oil futures price returns. Two cases are considered, under the assumptions of a 

Gaussian normal distribution for returns, and a Generalised Beta 2 (GB2) distribution. The 

normal case provides a baseline case, while the GB2 case provides greater flexibility to capture 

in particular skewness and kurtosis. Once both densities have been estimated, we compute 
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pricing kernels and risk aversion functions following Jackwerth (2000) and present both 

graphical and statistical evidence as well as several robustness checks to support our findings. 

Our results, briefly, are as follows. We find that exogenous events have a short-term 

impact on risk aversion (the investor’s tolerance for risk), but not on the pricing kernel (inter-

temporal substitution of wealth). The effect on risk aversion depends on the nature of the shock. 

End-of-cycle (anticipated) shocks affect the historical density but leave the risk-neutral density 

relatively unchanged, its information appearing to be anticipated by and incorporated into the 

option market. This implies flatter absolute risk aversion functions, such that the representative 

investor will be less risk-averse if his future wealth level is low, but more risk-averse if his future 

wealth level is high. On the other hand, idiosyncratic or unanticipated shocks affect the risk-

neutral density more than they do the historical (real-world) density. As a result, unpredictable 

shocks cause the risk aversion function to become steeper, such that an investor becomes more 

risk-averse for lower future endowments and less risk-averse for higher future wealth. Several 

robustness checks are presented to provide support for the paper’s claim that the events have a 

economically and statistically significant effect on risk aversion.  

The reminder of this paper is organised as follows: section 2 presents the methodology. 

Section 3 presents the data. Section 4 presents the results and section 5 concludes.  

 

2. METHODOLOGY 

2.1 Practical considerations : event windows 
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Our paper aims to build on the work of Melick and Thomas (1997) and Jackwerth (2000). 

Our goal is to perform an event study type analysis identifying changes in the investor’s attitude 

toward risk associated with infrequent political and financial events. In particular, we aim to 

identify changes in risk-neutral densities, pricing kernels and risk aversion functions associated 

to such events. 

 The exact window dates for each event are presented in Table 1. The four events 

considered are: i) the end of the commodity bull cycle on July 11th 2008 associated with 

uncertainty of the housing market in the USA, ii) the oil price trough that occurred on January 

19th 2009 related to the global recession, iii) the explosion of the BP Deepwater Horizon oil 

platform on April 20th 2010 and iv) the beginning of the “Libyan uprising” (Jasmine revolution) 

in the spring of 2011 with expected repercussions on crude oil production and shipping. The day 

of the events was chosen according to the magnitude of the WTI price movement and the 

importance of news affecting commodity prices as reported on Bloomberg. In particular, there 

has been several notable events related to the “Jasmin revolution” prior to the chosen date 

(Febuary 22nd, 2011), but the day the insurrection started in Tripoli is chosen because it cast a 

great deal of uncertainty on Future oil supplies.4 The first two events, the end of the bull 

commodity cycle and the credit freeze bottom, are characterised as end-of-cycle and were 

possibly anticipated by investors. The last two events, the BP platform explosion and the Libyan 

uprising, should be considered as idiosyncratic shocks that are very difficult to forecast.  

                                                        
4 News regarding oil price on Bloomberg show that this day was where the uncertainty was at its highest and where 

the markets were volatile in response to it. 
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Figure 1 presents the evolution of the WTI future contract price during the 2006-2012 

period. It shows that the WTI futures contract price was relatively volatile during the period 

considered. Note that the event windows are identified on the figure using rectangles. The first 

two windows were chosen because they correspond to the end of a cycle for the future price of 

oil. The third window shows the oil movements around the explosion of the BP platform. 

Finally, the last window looks at the movement in oil prices around the beginning of the Libyan 

uprising. Table 2 reports that the average gross return for a two-month holding period for the 

whole period considered was 1.03 with a standard deviation of 16.69%.  

2.2 Densities, pricing kernel and risk aversion function 

The pre and post event densities, pricing kernel and risk aversion function need to be 

estimated for each event. We estimate the pre- and post-event densities using fifteen trading days 

before and after the event, respectively. For both the pre- and post-event densities, an historical 

and risk neutral density is estimated in each fifteen days.  

2.2.1. The historical density 

Two general approaches have been presented in the literature to estimate the historical or 

real-world density. First, one strand of literature aims at estimating the “conditional” density of 

historical returns using a short window of observations that are available to the representative 

investor at a given time. For example, Jackwerth (2000) uses one month of daily returns. The 

objective is to highlight the time-varying component of risk aversion. This method has the 

advantage of allowing for a time-varying structure in the historical density. Another approach 

presented in Ait-Sahalia and Lo (1998) is to use longer time series to relax the distributional 

assumption and obtain the most accurate estimate of the risk aversion function. Given the event 
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study nature of our objective, we adopt a methodology similar to Jackwerth (2000). However, we 

use the longest non-overlapping historical window available for each event to improve the 

precision of our estimates.  

The historical densities for returns on a two-month investment horizon are estimated for 

each day in the pre- and post-event window using data from the WTI third nearby futures 

contract price. We use a moving window approach, such that the number of observations varies 

with each window, but is kept constant within a given window. The number of observations is 

kept constant to avoid spurious improvements in the goodness-of-fit associated with a growing 

number of observations in later measurements. Only the information available to investors on a 

given day (i.e., past prices) is used to estimate the historical densities. Moreover, an important 

issue is to isolate the impact of one event from the other events in the sample. The historical 

densities are non-overlapping across the events in order to isolate the event’s effect. Table 2 

reports the maximum number of non-overlapping observations available to fit the historical 

densities. Given that the historical returns must be non-overlapping across events, there is not a 

large enough number of observations to implement for each event a fully non-parametric 

approach as in Ait-Sahalia and Lo (1998). Therefore, two parametric approaches are considered 

instead.  

Firstly, a baseline case using a Gaussian normal parameterisation is estimated. Following 

the recommendation of Jackwerth (2000) and Merton (1980) the distribution is demeaned and 

the mean is fixed as the risk-free rate plus the equity premium, set at 6% for our sample based on 

Ivo Welch’s 2009 survey of financial economists (see e.g. Welch, 2000, 2009). This approach 

avoids the problem of irregularities in the estimated pricing kernel and risk aversion function that 

are due to the difficulty of estimating the historical mean of returns. Moreover, the paper aims to 
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document and explain changes in the shape and slope of the risk aversion function, rather than its 

actual level. Variance of returns is calibrated as the empirical variance of historical returns in 

each sub-sample. 

Secondly, the distributional assumption of normality in returns is relaxed and replaced by 

the more general class of Beta densities. Given our objective of documenting the effect of several 

significant market events on the representative investor risk aversion, we emphasize the 

importance of making the distributional restrictions as similar as possible for the two densities 

(i.e., historical and option-implied). For example, it would be misleading, in terms of our pricing 

kernel and risk aversion function results, to allow for non-zero skewness in one density but not 

the other.  For this reason, we opt for a (scaled) Beta distribution for the historical density and a 

Generalized Beta 2 distribution for the risk-neutral density. The Beta distribution is a special 

case of the Generalised Beta 2 distribution that will be used in the risk-neutral density. This 

somewhat more restrictive parameterisation than the Generalised Beta distribution is chosen 

because the number of non-overlapping observations related to each event limits our capacity to 

adequately parameterize the latter. 

The Beta distribution is versatile, particularly in allowing for either positive or negative 

skewness (see e.g. Moitra, 1990). The density is: 

���|�, �� = 

���,� ���
�� − ���
���,
����           (1) 

where a and b are strictly positive parameters, B is the Beta function, and I(0,1) denotes the 

indicator function such that the only values having positive probability are those in the range of 0 

to 1. The support is rescaled over the range of 0 to 2, consistent with gross returns being bounded 
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below at 0 (i.e., non-negative prices) and above at 2, consistent with the full sample of data that 

did not include any observations corresponding to gross returns above 1.6. Computationally, it is 

more straightforward to obtain the Beta function using Gamma functions, such that: 

���, �� = �������
�����        (2) 

where Γ is the Gamma function. Moments of the Beta distribution can be also obtained using the 

Gamma function: 

����� = �����������
�����������           (3) 

for the n-th moment. In particular, mean and variance are obtained as ���� = �
�� and ������ =

�
���������
�. Parameters of the density are obtained by maximum likelihood estimation.  

2.2.2 The implied volatility surface 

Our methodology to recover risk-neutral densities for the baseline case of Gaussian 

normal futures price returns is based on Shimko (1993). A volatility surface is estimated as a 

quadratic form (see e.g. Dumas, Fleming and Whaley, 1998) and used to compute the risk-

neutral density. Specifically, Black-Scholes (Black, 1976) implied volatilities are regressed over 

corresponding values of (log) moneyness, time-to-maturity, their squared values, and a constant. 

Time-to-maturity is calculated as the ratio of business days before contract expiry over 252. Log-

moneyness is the natural logarithm of the ratio of strike price over futures price. Taking logs 

helps avoid the problem of non-spherical disturbances in the linear regression. The estimated 

regression is as follows:  
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���� = 	!� + 	 !
#$ +	 !%$& + !'#$% + !($&% + !)�#$ × $&� + 	 +�       (4) 

From the results of this estimated equation, we can plot the volatility smile and the volatility 

surface in terms of time to maturity and moneyness. To estimate the risk-neutral density, we use 

�,-., the fitted implied volatility: 

�,-. = 	 	!/� + 	 !/
0 + 	 !/%$& + !/'#$% + !/($&% + !/)�#$ × $&�              (5) 

2.2.3 The risk-neutral density 

There exists a rich literature relating options price data to state prices, and through state 

price probabilities, risk-neutral densities. Breeden and Litzenberger (1978) show that, assuming a 

continuum of strike prices, state prices (and thus, the risk-neutral density underlying asset prices 

for a terminal date T) can be recovered from the second partial derivative of the Black-Scholes 

option pricing solution with respect to the exercise price. Then, the cumulative distribution 

function is obtained by differentiating once with respect to the strike price (K). State prices are 

obtained by differentiating a second time with respect to the strike price. A numerical 

approximation for the risk-neutral density q using C as the call price and K the strike price is:5 

   1�23� = +45 6789�%67�67:9	
�∆<�� 		.							                                            (6) 

However, it is well known that since in practice the data do not contain a continuum of 

strike prices, directly computing the risk-neutral density from option price data fails to yield 

                                                        
5 For more details regarding the methodology used to extract a risk-neutral density from options data, see the survey 

by Figlewski (2008) as well as Bahra (1997), Barthunek and Chowdury (1997), Cox and Ross (1976), Engle and 

Rosenberg (2002), Jackwerth (2004), and Jarrow and Rudd (1982).  
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sensible results (e.g., Ait-Sahalia and Lo, 2000; Bahra, 1997; Bliss et Panigirtzoglou, 2004; 

Jackwerth, 1999, 2000; Jackwerth and Rubinstein, 1996; Rubinstein, 1994). The literature has 

followed different approaches to overcome this significant challenge. Structural models aim to 

capture both the underlying price dynamics as well as the terminal period density of prices, while 

non-structural methods focus on the density without explicitly modeling the price dynamics. 

Given that this paper is concerned with the short-run effect of exogenous market events on 

changes in investor risk aversion rather than the estimation of a single underlying process for the 

entire sample, data constraints lead us to use a parametric, non-structural approach.  

In the baseline case, a Gaussian normal density function is fitted to the return data, where 

> is the mean and the variance �: 

�?�@>, ��!�A = 

BC√%E +��F7	G:H��

�I�                                             (7) 

where the parameters of equation (7) are the risk-neutral drift, measured by the risk-free rate over 

the horizon of investment, while the diffusion parameter ��!� is estimated using the implied 

volatility,	�,-. , computed from the option volatility surface as presented in equation (5). 

Subsequently, a more flexible distributional assumption is allowed by using the Beta 

distribution for the historical (real-world) density of returns and the Generalised Beta 2 

(hereafter, GB2) distribution for the risk-neutral density. This distribution, developed for 

financial applications by Bookstaber and McDonald (1987) and McDonald and Xu (1995), has 

the advantage of flexibility and nests other distributions, including Beta and Normal. More 

recently, it has been used in the option-implied density literature by e.g., Aparicio and Hodges 

(1998), Anagnou-Basioudis et al. (2005), Liu et al. (2007, 2009) and Shackleton, Taylor and Liu 
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(2010). The GB2 can capture a wide range of distributional shapes through non-Gaussian values 

of skewness and kurtosis but, being parametric, does not require as many observations as do non-

parametric approaches. The latter advantage is significant given the event study character of the 

analysis, whereby the number of observations can be fairly limited. The GB2’s probability 

density function may be written as follows: 

���|�, �, J, 1� = 	 �BKL:9

KL��M,N�O
�PG
QRKS

L8T                                           (8) 

where	��J, 1� is the Beta function and ��, �, J, 1� are parameters to be estimated. The location 

parameter a is associated with the speed at which the tails of the distribution approach the 

abscissa. The scale parameter b tends toward the mean when a is large. Skewness is determined 

by the parameters p and q while kurtosis is determined by parameters a and q. The cumulative 

distribution function is: 

U�V; �, �, J, 1� = XM U%�J, 1 − 1, 1 + J; X�/J��J, 1�
          (9) 

where X = P[
R� / P1 + P[

R�R	 and U%�⋅�
  is a hypergeometric function. Following McDonald 

and Xu (1995), moments of the GB2 distribution are given by: 

��]^� = _�PM�_
K,N�`

KR
��M,N�        (10) 

where	��J, 1� is the Beta function. Thus, the mean of the distribution is given by:  

��]� = �� PJ + 

� , 1 − 


�R /��J, 1�               (11) 
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while the variance can be computed as ��]%� − ��]�%. Note that the number of moments is 

limited by the value of aq such that only moments of order less than �1 will exist. We therefore 

require �1 ≥ 4 ensuring existence of the first four moments.  

For each date, a GB2 risk-neutral density is estimated from the daily cross-section of 

option data using all available strikes and a time-to-maturity matching the representative 

investor’s time horizon of two months.6 A constrained optimisation program searches for the 

optimal GB2 distribution parameters ��, �, J, 1� that minimizes average squared errors, defined 

as the difference between the observed option price cd,3,e and the option price predicted by the 

option pricing formula (given below) for a GB2 risk-neutral density c/d,3,ef�% : 

��, �, J, 1� ∈ argmin	 

n ∑ Pcd,3,e���� − c/d,3,ef�% ����R%n�p
         (12) 

A grid of starting values is used to verify that a global optimum is obtained and that there are no 

active boundary conditions. The martingale condition for futures prices, on which options are 

written, is applied to ensure risk-neutrality of the GB2 density by constraining the mean of the 

distribution to equal the corresponding futures price qr (i.e., for a distribution of returns, the 

mean is set to the risk-free rate of return): 

qr = �PM�9
K,N�9

KR
��M,N�       (13) 

                                                        
6 Note that as we estimate a RND for each of 15 business days before and after the event date, the contract time-to-

maturity is precisely equal to two months on one date only, and for other dates is approximately equal to the two-

month investment horizon as the closest contract is used. As a robustness check, we also estimate RNDs for a one-

year investment horizon using all strikes associated with one-year contracts.  
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Using the GB2 distribution, the option pricing formula for European call options is given by: 

c/d,3,ef� ��, �, J, 1� = qr+�43 s1 − Uf� PXtJ + 

� , 1 − 


�Ru − �+�43�1 − Uf��X|J, 1��  (14) 

where X = P1 + Pv
R��R

�

 under the martingale restriction defined above (Liu et al., 2007). Note 

further that the GB2 distribution has the advantage of allowing for a straightforward 

transformation from risk-neutral to real-world density by positing a constant relative risk 

aversion parameter γ, i.e., assuming a power utility function for the representative investor (Liu 

et al., 2007).  

2.2.4 Pricing kernel and risk aversion function 

Leland (1980) show how the risk-neutral density, historical or real-world density, and 

pricing kernel (or risk aversion function) are related such that knowledge of two quantities 

allows the researcher to compute the third. Letting 1�2�, J�2� and w�2� respectively denote the 

risk-neutral density, historical density and pricing kernel associated with the payoff of an asset 

price or wealth (S), then we may write (see Jondeau, Poon and Rockinger, 2007, for a review): 

1�2� = w�2�J�2�                                                           (15) 

Taking log-derivatives, the relationship may be expressed in a form that brings out the Arrow-

Pratt coefficient of (absolute) risk aversion computed from a utility function increasing in future 

consumption (c3�2�): 

Nx���
N��� = yzz?6{���A

yz?6{���A + Mx���
M��� 				                                                  (16) 

such that: 
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|}|�c3�2�� 	 = − ~yzz?6{���A
yz?6{���A � = Mz���

M��� − Nz���
N���      (17) 

where |}|?c3�2�A is the Arrow-Pratt coefficient of absolute risk aversion for the representative 

investor. The resulting risk-aversion function is plotted against a future period wealth index S for 

a given horizon of two months.  

2.3 Statistical robustness assessment 

In this section, a robustness analysis is presented. In line with the event study literature, the 

objective is to provide support for the graphical evidence of changes in the risk aversion function 

using statistical tests suggesting that the impact observed is also statistically and economically 

significant. This exercise is not as simple as it may seem. Indeed, the above theoretical results 

provide us with a risk aversion function rather than a risk aversion density, complicating 

statistical assessment because no “weight” or likelihood is assigned to each risk aversion/future 

wealth pair obtained from (17). Classical statistical tools such as the Kolmogorov-Smirnov test 

of equality of densities or multivariate regression analysis are not directly applicable in this case. 

We address this problem using several statistical approaches in parallel to build a case that 

changes in the risk aversion function are significant. 

 

As a first step, we perform statistical tests on the equality of the pre- and post-event 

historical price densities. We use the Kolmogorov-Smirnov and the Cramer-Von-Mises two-

sample tests to assess whether the historical density has changed after the event. For both tests, 

the null hypothesis is that the pre- and post-event observations are both drawn from the same 

distribution. Again, we are careful to use only non-overlapping observations. To build our sub-

samples, we divide the between-event observations in two halves. For each event date j, the first 
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half of the observations after the given event j is used to estimate the post-event j density while 

the second half is used to estimate the pre-event density associated with the next event ( j-1). 

Although this step is only intermediary, in that it informs us only about one of the two 

components that determine the risk aversion function, it is useful to establish the degree to which 

historical returns were affected by the exogenous event. 

 

The next step is to conduct a statistical test of differences in risk aversion before and after 

the event. To this end, pre- and post-event densities of risk aversion values are generated from 

the options and futures data. Therefore, a methodology similar to the one used to derive the 

volatility surface (section 2.2) is implemented. Specifically, we use option moneyness as a proxy 

for future wealth for each pre- and post-event sub-sample. Using equation (17) for the Gaussian 

normal baseline case, each future wealth level between 0.45 and 1.48, as a proportion of initial 

wealth and using increments of 0.005, is matched with the corresponding value of absolute risk 

aversion implied by the risk aversion functions estimated from risk-neutral and historical 

densities. The support [0.45, 1.48] is given by the range of two-month horizon gross returns in 

the sample data. Values of absolute risk aversion in terms of future wealth are determined 

assuming a quadratic form and using a linear regression to obtain coefficients of slope and 

curvature, such that for levels of future wealth S we have: 

|}|� = �� + �
2� + 	 �%2�% + +�	     (18) 

This approach can be compared with the estimation of a volatility surface, whereby 

coefficients on S and 2% on the original “unweighted” function are similar to the coefficients in 

(4) fitting the implied volatility to moneyness and time-to-maturity. The dependence of risk 

aversion on wealth levels is well established in the literature since Arrow (1971). Moreover, the 
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inclusion of a squared term is motivated by the empirical literature, according to which risk 

aversion “smiles” and is not monotonically related to wealth (e.g. Ziegler, 2007, and references 

therein).  

The estimated coefficients in (18) are used to map, for all option observations, moneyness 

to absolute risk aversion, under the assumption that each option’s moneyness is a proxy for a 

future wealth level. We obtain the fitted risk aversion associated with each option j using the 

following correspondence:  

��00+�	|}|� = ��� + ��
$&� + 	 ��%$&�%	.         (19) 

The last step generates a distribution of ARA values corresponding to observations of future 

wealth levels implied by traded options, before and after each event. This approach therefore 

serves as an approximation of the distribution of risk aversion values pre- and post-event, based 

on the observed levels of future wealth implied by options data through their moneyness. 

Although this method is only a proxy for the true distribution of risk aversion values in the 

economy and need not represent precisely the aggregate risk aversion distribution, it is 

nonetheless based on an accepted approach to recover implied volatility from options data. What 

is more, it is informative because it results in a distribution of risk aversion values associated 

with crude oil futures markets from which empirical moments can be recovered. Intuitively, it 

provides a means to assign “weight” to various points in the risk aversion function and therefore 

conduct statistical testing to support the graphical evidence of changes in the slope and curvature 

of ARA. Indeed, to determine whether ARA functions before and after each event are similar at 

any or all points in the support (i.e., future wealth levels), the likelihood of each future wealth 

level occurring in the sample must be taken into account. Mapping to ARA fitted values provides 



19 

 

additional evidence to investigate possible changes in investor risk sentiment resulting from 

exogenous events.  

A natural starting point for statistical testing is to perform Kolmogorov-Smirnov and 

Cramer-Von-Mises two-sample distributional tests on the pre- and post-event sub-samples of 

fitted risk aversion values.  

Moreover, we test statistical significance in the change in risk aversion using regression 

analysis. The following multivariate regression is performed to enable a statistical comparison in 

the estimated coefficients on future wealth (proxied by MN) and on the curvature coefficient of 

risk aversion (i.e., the smile, proxied by MN
2 ) :  

��00+�|}|�M4��4 = 	 !�
M4��4 + 	 !�

M4��4$&�
M4��4 +	 !��

M4��4$&�
%M��d + 	 ��

M4��4 

��00+�|}|�M��d = 	 !�
M��d +	 !��

M��d$&�
M��d + 	 !��

M��d$&�
%M��d + 	 ��

M��d          (20) 

This approach is analogous to the estimation of volatility surface coefficients using a 

second-order polynomial in TM and MN as in (5). It has the advantage of documenting more 

precisely the nature of changes in risk aversion resulting from exogenous events. In this 

framework, a change in risk aversion can be associated either with a change in the slope 

associated with wealth or the curvature of risk aversion in wealth. For example, if the 

representative investor has decreasing absolute risk aversion (e.g., preferences described by a 

power utility function), a change in the slope coefficients implies a flatter or steeper risk aversion 

function. A better understanding of the impact of market events on the coefficients of risk 

aversion curvature could help explain the pricing kernel puzzle (i.e., why empirically the pricing 
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kernel is not monotonically decreasing and strictly positive). Therefore, the following hypotheses 

are tested using a standard F-test procedure:  

���:	!�
M4��4 = 	 !�

M��d,      (21) 

����:	!��
M4��4 = 	 !��

M��d,      (22) 

�����:	!�
M4��4 + !��

M4��4 = 	 !�
M��d + 	!��

M��d,    (23) 

��
����d:	!�

M4��4 = 	 !�
M��d���	!��

M4��4 = !��
M��d.     (24) 

where (21) and (22), respectively, test the equality of the slope and smile coefficients before and 

after the event. Hypotheses (23) and (24) are introduced to conduct a statistical test of whether 

the relationship between wealth and risk aversion has changed as a result of the event, without 

relying on the general two-sample density approach. (23) tests whether the global effect of the 

slope and curvature coefficient is the same after the event while (24) is more restrictive and tests 

the joint equality of the coefficients before and after the event. Thus, both hypotheses serve to 

verify whether the general shape of the risk aversion function has changed. 

A final robustness check is in order to better understand the nature of changes in the 

distribution of implied absolute risk aversion values derived above. Note that the number of 

traded options observed in the pooled samples (15 days before and after the event) is very large, 

nearing 18,000 observations. It could therefore be argued that statistical significance found in our 

samples may not be economically significant, but rather an artifact of having a very large sample 

(e.g. Berger and Sellke, 1987). This potential issue is not solved by the use of a single day for 

statistical testing, instead of pooling all data for the 15 days before or after an event, because the 
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number of observations is over 1000 for most trading days. Instead, the analysis is performed on 

smaller random samples obtained from draws without replacement from the pooled samples. 

Using this sampling approach, we report results, for a range of possible numbers of draws and 

numbers of observations in each draw, for the Kolmogorov-Smirnov and Cramer-von-Mises tests 

as well as multivariate regression hypothesis tests.  

 

3. Data  

We use business daily data on futures and options on futures for the West Texas 

Intermediate (WTI) crude oil on the NYMEX market over the period of June 1st, 2007 to October 

25, 2011. The data were extracted from the Bloomberg database and from the Commodity 

Research Bureau. The WTI futures contract was chosen for several reasons. First, it is well 

established in the literature that oil prices tend to be pro-cyclical and endogenous to the real 

business cycle, both having a deep influence on the economy and also being affected by the state 

of the economy (e.g. Ewing and Thompson, 2007; Kilian, 2009; Sadorsky, 2001).  

Second, crude oil by far is the most liquid commodity futures contract, with a very large 

transaction volume and a wide range of strike prices and maturities having nontrivial trading 

volume. Although more liquid financial futures do exist, a commodity futures contract is more 

promising for an event study-type analysis as the effect of exogenous events on supply or 

demand can be identified more clearly. Based on an analysis of financial market news, it is more 

intuitive to identify relevant market events for crude oil than it would be for stock market 

indices. Indeed, options on futures reflect market expectations relating to realised and potential 
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international economic and geopolitical turmoil. Thus, it is likely to reflect changes in the 

representative investor’s risk aversion following events affecting world oil markets.  

To be sure, it should be acknowledged that oil is an imperfect proxy for wealth 

endowment, and our analysis may be subject the same critique as presented in Ziegler (2007). 

Note however that this critique also applies to stock market indices, which are only proxies for 

the true market portfolio. Nonetheless, using crude oil appears a reasonable choice for two 

reasons. First, the paper’s contribution is to provide a richer and more robust framework for an 

event study analysis of risk aversion. Our interest lies in documenting and testing changes in risk 

aversion functions and their distribution, and less in their precise level. It is therefore essential to 

identify significant market shocks on the asset, whereas an aggregate index in contrast is 

diversified against idiosyncratic shocks. Second, the pro-cyclical character of crude oil price and 

its importance for the economy suggests it is a reasonable proxy for investor wealth endowment.  

To estimate historical densities, gross returns of the WTI futures contract over a two-

month horizon are used. Table 2 presents the empirical moments for the gross returns used in 

each estimated historical density. The average gross return for the whole period was slightly 

positive and above the risk free rate at 1.02. In general, the sample shows empirical evidence of 

negative skewness in gross returns, but surprisingly no evidence of excess kurtosis. This is likely 

because two month horizon gross returns are computed rather than daily net returns, which are 

typically discussed in the oil futures literature. Table 3 reports on changes in the empirical 

moments for the historical returns in each of the four event windows. The sign and magnitude of 

the changes depend on the nature of the shock. In particular, unexpected shocks entailing 

uncertainty about oil supply, such as the BP explosion or the Libyan uprising, induce a more 

positive skew in the density of historical returns. This also suggests an increased possibility of 
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shortage. Moreover, shocks related to systemic uncertainty in the stock market and broader 

economic conditions, such as the end of the bull cycle and the trough of credit freeze crisis, 

increase variance. 

To recover the risk-neutral density, data on NYMEX American options written on the 

WTI futures contract are extracted from the Commodity Research Bureau database from June 

2007 until April 2012. As our options data are American-style, not European-style, it is 

necessary to consider the effect of early-exercise value on option prices. It is well understood 

that because no dividends are yielded by options on commodity futures, early exercise of a call 

cannot ever be optimal. For put options, however, we appeal to the sufficient condition proposed 

independently by Carr, Jarrow and Myneni (1992), Jacka (1991) and Kim (1990) that ensures a 

negligible early-exercise value when the risk-free rate is particularly low. This condition is 

empirically verified for the sample period studied in the paper. Moreover, Pan (2011) computes 

early-exercise values for options on crude oil futures contracts to adjust option prices but finds 

that his results are unchanged as early-exercise values over the same period are negligible.  

Prior to analysis, several steps must be taken to clean and filter the options dataset. First, 

the data need to be refined because the procedure does not allow for redundant assets. Following 

established practice (e.g., Rebonato, 2004, p.254), we exclude in-the-money options, which tend 

to be thinly traded. Out-of-the-money call options are used together with out-of-the-money put 

options. Using Put-Call parity, out-of-the-money puts are converted into in-the-money calls. 

Furthermore, options for which the implied volatility is negative or above 100% are excluded. 

Moreover, data for the last three days before maturity are excluded from the analysis for each 

contract. To avoid spurious effects from stale prices, we also exclude options that have a price of 

$0.01. As a result, we obtain a set of 155,071 options for the full sample, out of which 57% are 
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call options and are 43% put options. Table 4 presents descriptive statistics related to options 

data for each event window. On average, our sample contains nearly 1000 option observations 

for each trading day. The number of active strikes ranges between 157 and 220 daily. As the 

WTI futures price decreases, the number of options and the range of strikes also falls. 

 

4. Results 

4.1 Baseline Case 

Panels 1 through 4 present figures for the pre- and post-event historical and risk-neutral 

densities, pricing kernel and risk aversion function for each event. Following Jackwerth (2000), 

we present the mean distribution for both the fifteen trading days before and the fifteen days after 

each event, with empirical confidence intervals representing ±0.5 standard deviations from the 

mean. As Jackwerth (2000) explains, the empirical confidence intervals are not meant to be used 

for purposes of statistical testing. Rather, they document the dispersion of the daily densities and 

further allow aggregating information from two sub-samples of fifteen days into one meaningful 

figure. We note that our estimated densities, pricing kernel and risk aversion functions are not 

always as smooth as those presented in related, previous studies (see e.g. Christoffersen, Heston 

and Jacobs, 2012; Jackwerth, 2000; Kang and Kim, 2008; Pérignon and Villa, 2002). The 

explanation has to do with the scope of the study and data limitations. We look at risk aversion 

functions and pricing kernels estimated over a short sample period before and after significant 

event dates. In contrast, the focus of the literature has typically been on using all available data to 

obtain the smoothest and most accurate estimates of the pricing kernel or risk aversion. To 

identify short-run changes due to market shocks, our samples are necessarily much smaller. 
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Thus, some accuracy is sacrificed in the interest of highlighting and testing for the existence and 

nature of changes.  

The end of the commodity bull cycle and the trough of the credit freeze crisis are 

characterised by heavier tails in the historical densities after the event,7 reflecting higher 

volatility in the oil Futures price as reported in Table 3, as well as a greater likelihood of extreme 

returns. However, this increased volatility has only a marginal impact on the risk-neutral 

densities. Indeed, both events seem to “crystallise” anticipations in the economy and leave the 

distribution of the options market expectations relatively intact. The evidence suggests that 

although the market experienced an important change, the event was to some extent anticipated 

as the forward-looking densities (i.e., the investors’ expectations) were not substantially affected.  

The estimated pricing kernel is U-shaped both before and after the event, consistent with 

much of the empirical literature (the “pricing kernel puzzle”, see e.g., Christoffersen, Heston and 

Jacobs, 2012; Jackwerth, 2004). Although the U-shaped pricing kernel is flatter after such 

“anticipated” events, the pricing kernel puzzle persists, as the U-shape and a small interval of 

negative values persist after the events.  

For both anticipated events, we document an important change in the absolute risk aversion 

function. For the first event, the absolute risk aversion function is decreasing prior the event but 

nearly flat (i.e. constant) after the event. For the credit freeze bottom, the absolute risk aversion 

function also becomes flatter after the event, going from strongly decreasing to only lightly 

                                                        
7 The upper left quadrant of Panels 1 to 8 reports the historical densities using the empirical mean. However, as 

mentioned above, the historical density used for the calculation of ARA is demeaned and then fixed at the risk-free 

rate plus a 6% equity risk premium following Welch (2000, 2009).  
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decreasing. In both cases, the event seems to increase the propensity of a representative investor 

whose future wealth endowment is low to undertake more risk, a finding consistent with a 

“double or nothing” strategy and loss aversion theory (e.g. Benartzi and Thaler, 1995). On the 

other hand, a representative investor endowed with higher positive future wealth becomes more 

risk averse after the event and is less willing to expose his portfolio to additional risk.  

The findings suggest that during end-of-cycle events, successful, wealthy investors will 

hold more liquid and riskless assets while investors with lower return portfolios will try to use 

the end of a cycle to recover from their loss. The end of the bull commodity cycle can be 

interpreted as a structural break not unlike the 1987 stock market crash, though less dramatic. In 

that sense, our results are consistent with those of Jackwerth (2000) who reported increasing risk 

aversion in wealth and negative values of risk aversion after the 1987 crash. Likewise, our results 

document a significant though less severe change in the shape of the risk aversion function, 

which becomes less decreasing (flatter) in wealth following the end of the bull market in 

commodity prices. 

In contrast, the third and fourth events, namely the BP Deepwater Horizon explosion and 

the Libyan uprising, were unpredictable and unanticipated by the markets. We document that 

their effect on densities, pricing kernels and risk aversion functions was different than the effect 

of the first two, partly anticipated events. First, the effect of the two unanticipated events on the 

historical densities is limited. In the case of the Libyan crisis, the distribution shifts slightly to the 

right, reflecting a temporary increase in oil prices not entirely buffered by oil inventories. Given 

that both events were supply shocks affecting only a small part of worldwide production, this is 

not surprising. Indeed, Libyan production of crude oil accounts for about 0.6% of the world’s 

production (Energy Information Administration, 2012). Even if production was temporarily 
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halted, worldwide inventories of crude oil could lessen the effect of the shock. Indeed, the 

American Petroleum Institute (API) reported a decrease of more than a million of barrels of 

crude in the American inventories in that week.  

While both events had limited and temporary effects on oil prices, they also added noise 

and uncertainty to option markets, due to a fear of possible disruptions in other crude oil-

producing countries (for Libya) or other platforms (for BP). This is reflected in the important 

changes observed in the risk-neutral densities. Both densities exhibit fatter tails after the event 

and underscore changes in the nature of uncertainty in future oil supplies as perceived by 

investors. The pricing kernels for the third and fourth events do not change dramatically after 

each event, although the U-shape becomes steeper after the event. However, risk aversion 

functions do change after the events. Risk aversion is steeper (i.e., more decreasing in wealth) 

after the unanticipated events.  

This finding suggests that a representative investor with poorer future wealth prospects 

will be more risk-averse after the event, but that an investor with good future wealth prospects 

has a greater appetite for risk. The latter investor is more willing to take risks to profit from the 

possibility of oil shortages. 

4.2 Alternative Case under the Generalised Beta 2 Distributional Assumption 

We present results under the distributional assumption of a GB2 density to show that the 

changes observed in risk aversion functions in the baseline case are not an artifact of its 

restrictive parametric assumptions. Panels 5 to 8 report figures for the historical and risk-neutral 

distributions, pricing kernel, and absolute risk aversion functions, before and after each event. A 

Beta density is used to parameterise the historical densities and a GB2 density is used for the 
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risk-neutral distribution. Although we find greater variation in the shape of the functions and the 

densities estimated, as well as larger empirical confidence intervals (especially for the pricing 

kernel), the results corroborate our findings for the baseline case. 

First, the GB2 results confirm, under more flexible distributional assumptions, the 

findings for the historical densities, whose tails are heavier after the first two, partly anticipated 

events, but largely unchanged after the two unpredictable events. For the end of the commodity 

bull market cycle, the risk-neutral density is more concentrated around the mean after the event, 

suggesting once more that the market anticipated to some extent the end of the bull cycle and 

therefore “crystallised” investor perceptions. As for the credit freeze bottom, the risk-neutral 

density picks up more of a positive skew after the event, a finding that cannot be captured in the 

Gaussian normal baseline case and which can be interpreted as evidence that investors believed 

the trough had been reached.  

Our GB2 findings for absolute risk aversion functions exhibit the same pattern as in the 

normal baseline case. For the end-of-cycle events, risk aversion functions are less decreasing in 

wealth after the events. For the BP platform explosion, the absolute risk aversion function before 

the event is highly non-monotonic when the GB2 density is used to estimate the risk-neutral 

density. However, this distortion is due to problematic observations in two of the fifteen trading 

days before the event. Risk-neutral densities estimated for these two dates were not robust, as 

parameter solutions obtained from the optimisation routine were sensitive to the starting values 

used.8 Nonetheless, both risk aversion figures for the unanticipated events suggest similar 

                                                        
8 Results are smoother when the two problematic days are taken out of the analysis. However, we report the results 

without manipulations given there was no clear indication that these days were measurement errors. It is a limitation 
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changes in risk aversion as in the normal baseline case. That is, after the event a representative 

agent with lower future wealth is more risk-averse, while a representative agent with higher 

future wealth has a greater appetite for risk. 

The pricing kernels estimated for days around all four events have a U-shape as found in 

the baseline case and much of the empirical literature. However, estimation of GB2 risk-neutral 

densities leads to pricing kernels that are less smooth and which have larger empirical confidence 

intervals. This is because the GB2 distributional assumption allows for greater flexibility in the 

parameterisation of the densities which, combined with the relatively small number of 

observations in a given day, generates more dispersion among densities estimated for the 15 

trading days before and after the events, and thus among pricing kernels, than in the baseline 

case. We acknowledge the lack of precision as a limitation of our short window approach, 

especially when the parameterisation process is more flexible.  

The pricing kernel does not change dramatically after each of the events, especially if we 

focus on the interval of more plausible values of future wealth in the short term horizon between, 

e.g. future wealth between 0.85 and 1.20. Interestingly, the pricing kernel U-shape is different 

under the GB2 assumption than in the normal baseline case. Indeed, the function is highly non-

monotonic in wealth for extreme values of future wealth, below 0.2 and above 1.8, but it is 

relatively flat and monotonically decreasing over the interval between these extremes. Given that 

our results are for a two-month horizon, it is fair to say gross returns below 0.2 and above 1.8 are 

highly unlikely. Therefore, although the pricing kernel puzzle is not resolved by the use of the 

                                                                                                                                                                                   

of our analysis using GB2 that for these two days, the optimisation process is not robust to change in the starting 

values.   
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flexible GB2 distributional approach, given its U-shape and interval of negative values, it is 

however monotonic over an interval of plausible values of future wealth for a short time horizon.  

Finally, given that the GB2 findings relied on cross-sections of options data using only 

options data corresponding to a two-month maturity, we perform as a robustness check the same 

analysis using options data corresponding to a one-year time-to-maturity. The results are largely 

similar to those for the two month horizon.9  

4.3 Robustness analysis 

Table 5 reports results for non-parametric specification tests on the historical densities. 

The null hypothesis is that the prior and post-event historical densities are drawn from the same 

continuous distribution. The Kolmogorov-Smirnov and Cramer-Von-Mises tests reject the null in 

the first two events at a 5% confidence level, supporting the claim of a change in the historical 

densities as reported in panels 1, 2, 5 and 6. For the unexpected events, the null is also rejected at 

the 5% level for the BP explosion event, but not for the Libyan uprising event. These tests 

support our finding that most of the effect of events on the representative investor’s risk attitudes 

after unexpected events is captured by the risk-neutral density.  

A Kolmogorov-Smirnov test of normality of returns is presented in Table 5 for the 

historical densities as an indication of whether the baseline case assumption is appropriate. 

Although normality is rejected for the complete sample, it is not rejected at the 5% level for each 

of the sub-periods considered. This result has to be treated with caution, however, since the 

Kolmogorov-Smirnov test is known to possess relatively low power.  

                                                        
9 For brevity, only results for the two month horizon are reported, as results for the one-year horizon were largely 

similar. Results for the one year horizon are available upon request. 
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Table 6 presents the results for the Kolmogorov-Smirnov and Cramer-Von-Mises tests of 

equality of the prior and post-event densities using the fitted risk aversion values computed from 

equation (19). The equality of the distribution of fitted risk aversion values before and after the 

event is strongly rejected for the whole sample. However, as the rejection could be due to the 

large number of option observations in the pooled periods before and after each event, we also 

perform hypothesis tests on samplings drawn without replacement based on the full sample. 

Table 6 presents the proportion of rejections of the null hypothesis over the total number of 

samplings drawn. The samplings, using 100, 250 and 500 observations each, strongly reject the 

null for all events. This result does not vary with the number of samplings performed (M=1000, 

2000 and 5000 samplings). Thus, we conclude that changes in risk aversion after the event as 

measured by a proxy distribution of risk aversion values are statistically significant. 

To document changes observed in risk aversion values, fitted ARA observations are 

regressed on a proxy for endowment and the square of endowment. Table 7 presents the results 

for the whole sample of fitted ARAs and for smaller random samplings of the fitted ARAs. Two 

hypotheses (�����	and ��
����d) test the global change in the relationship between risk aversion 

and future wealth. Hypotheses ���	 and ����	consider whether the slope or curvature of the risk 

aversion function drive the adjustment process after the event. All tested hypotheses are strongly 

rejected for the full sample for every event.  

To analyse results from the samplings, we adopt a conservative approach and set the 

rejection hurdle at 70% rejections while the non-rejection rate is chosen to be less than 30%. Test 

outcomes between 30% and 70% are considered inconclusive. First, all the hypotheses tested are 

rejected for the end of the commodity bull cycle event. Both the slope and curvature coefficients 

change significantly after the first event. Secondly, results for the credit freeze bottom show that 
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most of the adjustment in the risk aversion comes from the curvature coefficient. For instance, in 

the case of 200 observations and 10,000 samplings, we reject at the 1% level the null hypothesis 

of equality in the endowment coefficient (���) only 22% of the time, while we reject the null 

hypothesis of equality of the curvature coefficient (����) in 71% of the samplings. In contrast, for 

unpredictable events ����� is rejected more than 70% of the time when N=200. For the BP event, 

the equality of the curvature coefficients cannot be rejected 28% of the time while the rejection 

rate is around 50% for the Libyan uprising. Taken collectively, these results suggest that the 

global effect (tested ��
����d and �����) is statistically significant. Further results are needed to 

conclude on the adjustment process of the risk aversion function, but our results suggest there is 

a greater adjustment of the risk aversion smile than of the slope coefficient after a foreseeable 

event. For unexpected events, we find the reverse adjustment process.  

4.4 Discussion of the results 

Our analysis builds on Jackwerth’s (2000) finding that major stock market events (the 

1987 crash) affect investor risk aversion, by generalising the result to show that several market 

and political events have significant but differential effects on investor risk aversion. The results 

from the baseline case show that infrequent events affect risk aversion, but that the pricing kernel 

remains relatively unchanged. Thus, infrequent events have an impact on the representative 

investor’s sentiment toward risk, but do not change how he values future over current wealth. 

Predictable events have a different impact on densities than do unforeseeable events. In 

predictable events, the historical density changes while the risk-neutral density remains the same 

after the event. Indeed, the information provided by the realization of such events is not “news” 

and the distribution of forward-looking expectations is unchanged. For unpredictable events, 
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however, the historical density is unchanged after the event, but the risk-neutral density shows 

fatter tails, reflecting greater uncertainty about extreme events and their likelihood.  

Our results also confirm that the pricing kernel puzzle documented in equity and Forex 

markets is also found empirically in commodity futures markets. The nature of the shock 

influences how the risk aversion function adjusts to the event. A representative investor with a 

negative or smaller endowment has a greater appetite for risk (“risk-loving”) after predictable 

events, “doubling-down” on his strategy, but becomes more risk-averse after unexpected shocks. 

In contrast, a wealthier investor becomes more risk-averse after predictable shocks but more of a 

“risk-lover” after unforeseeable events. The theoretical concepts of loss aversion (e.g., Benartzi 

and Thaler, 1995) and ambiguity aversion (e.g., Mukerji and Tallon, 2001) may be useful to help 

reconcile the findings, but testing for their evidence in the data is beyond the scope of the paper.  

Results obtained under the GB2 risk-neutral distributional assumption show a greater 

dispersion and less smoothness, likely a side effect from estimating more parameters and 

allowing for more flexibility in density estimation. However, the findings support the 

conclusions obtained in the baseline case regarding risk aversion. Moreover, the introduction, 

through the GB2 distribution, of greater flexibility in the parameterisation of the historical and 

risk-neutral densities may help explain the pricing kernel puzzle for a range of plausible values 

of future wealth for a short-term horizon. 

Our robustness analysis supports the claim of statistically significant changes in the fitted 

risk aversion densities for all events as well as in the historical densities of the first three events. 

Hypothesis testing done using multivariate regression analysis also suggests that the events under 

consideration in this paper have a statistically significant impact on risk aversion. For anticipated 
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events, the adjustment of risk aversion functions appears to be mostly driven by the curvature 

coefficient of wealth. For unanticipated events, however, the slope coefficient of wealth seems to 

change more than does the curvature coefficient. 

5. Conclusion 

In this paper, we have investigated the impact of four major market events on the real-world and 

risk-neutral price densities, pricing kernel, and risk aversion functions derived from NYMEX 

WTI contract crude oil options on futures over the period 2007-2011. To provide a detailed event 

study-type analysis, we consider both a baseline Gaussian normal and an alternative Generalised 

Beta 2 case. Using estimated pricing kernels and risk aversion functions together with 

distributional and hypothesis tests and resampling robustness checks, we document significant 

and differential changes in the risk aversion function following each of the events.  

First, we find that end-of-cycle events (i.e., the end of the bull commodity market and the 

bottom of the credit freeze) affect the historical density more than the risk-neutral density. 

Following these events, the risk aversion function is flatter (less decreasing) in wealth, such that 

a representative investor facing a poor future wealth endowment has a greater appetite for risk 

(tending toward risk-neutral and “risk-loving” preferences), while an investor with a good future 

wealth endowment becomes more risk-averse.  

Second, unpredictable events affect the risk-neutral density more than the historical 

density. As a result, absolute risk aversion functions become steeper (more decreasing), such that 

risk aversion increases for investors facing poor future wealth outcomes, but decreases for 

investors with good financial perspectives, tending to risk neutrality or “risk-loving” preferences. 

In contrast, events do not significantly affect pricing kernels, as the U-shape, empirically 
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documented in options data for many equity and Forex markets, is present both before and after 

the event. It appears therefore that major shocks to the market affect risk sentiment but not 

preferences for inter-temporal substitution of wealth. Therefore, the pricing kernel puzzle is not 

resolved by looking at the short-term effect of major market events. However, a more flexible 

parameterisation generates pricing kernels that are more monotonic over a range of plausible 

future wealth levels for a short investment horizon. The statistical robustness checks provided in 

this paper support our main finding that rare events have a statistically significant and differential 

effect on risk aversion functions. In line with Ziegler (2007), we note that further work could be 

done in order to relax several of the assumptions made in this literature, and to further evaluate 

the robustness of the findings as well as their potential limitation.   
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Figure 1 

The historical price of the Future contract on the WTI during the 2006 -2012 period. 

 

Note: Figure 1 presents the price of the WTI futures oil contract from January 2006 to January 2012. The four 
rectangle windows highlight the events in this paper. The first window is the end of the commodity bull cycle. The 
second window is the lowest point in the global 2008 credit freeze. The third window is the explosion of the 
Deepwater Horizon platform and finally, the fourth window is the beginning of the uprising in the Tripoli. 

Table 1 

The event windows 

Window 
End of the 

commodity 
bull cycle  

Credit 

freeze 
bottom 

Deepwater 

Horizon 
explosion 

Lybian 

uprising  

15 days prior 
the event 

2008-06-12 2008-11-28 2010-03-29 2011-01-31 

day of the 

event 2008-07-03 2008-12-19 2010-04-20 2011-02-22 

15 days after 

the event 2008-07-25 2009-01-13 2010-05-11 2011-03-15 
Note: Table 1 reports the time windows considered to estimate the historical and risk neutral densities before and 
after each of the four events considered.  
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Table 2 

 

Descriptive statistics for the NYMEX WTI future price 

  
Full 

period 

End of the 

commodity 
bull cycle  

Credit 

freeze 
bottom 

Deepwater 

Horizon 
explosion 

Libyan 
uprising  

Number of 
observations  

916 251 119 334 214 

Minimum 0.46 0.80 0.46 0.84 0.84 

Maximum 1.48 1.31 1.07 1.48 1.26 

Mean 1.03 1.10 0.71 1.08 1.06 

St. dev. 0.17 0.11 0.13 0.13 0.08 

Skewness -0.94 -0.61 0.35 0.67 -0.07 

Kurtosis 4.25 2.85 2.50 3.39 2.79 

Note: Table 2 presents the descriptive statistics for gross returns over a two month investment period of the WTI 
Future contract over the different sub-periods considered. Descriptive statistics for the full period and for the non-
overlapping period prior the event used to obtain the historical density are presented. The first line reports the 
number of observations (trading days) used to obtain the historical densities for each event. The data on the WTI 
contract are extracted from Bloomberg. 

 

Table 3 

Empirical moments for the two month horizon gross return for each event window 

 

End of the 

commodity bull 

cycle 

Credit Freeze 

bottom 
BP platform Libyan crisis 

  prior event post prior event post prior event post prior event post 

mean 1.11 1.10 0.72 0.69 0.70 0.72 1.09 1.08 1.07 1.06 1.07 1.08 

st. Dev. 0.11 0.12 0.13 0.13 0.14 0.17 0.12 0.13 0.13 0.07 0.07 0.07 

skew. -.56 -.71 -.83 0.38 0.49 0.74 0.74 0.77 0.83 -.12 0.20 0.15 

kurt. 2.81 2.90 3.01 2.42 2.42 2.83 3.48 3.57 3.71 2.81 2.66 2.60 

Note: Table 3 presents the empirical moments of the WTI future gross returns in the event windows. The empirical 
moments are computed using daily rolling windows. The prior column reports the mean of the daily empirical 
moments for a two month horizon of the empirical moments for the 15 days prior to the event. The event column 
reports the empirical moments based the two month horizon window the day of the event. The post column reports 
the mean of the daily empirical moments for a two month horizon of the empirical moments for the 15 days after the 
event. 
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Table 4 

Descriptive statistics for the optionsdata used to obtain the pre- and post- event risk-

neutral densities. 

  
end of the 

commodity 
bull market 

credit 

freeze 
bottom 

BP 

deepwater 
horizon 

Libyan 
uprising 

number of 
options 

mean 1195 1115 821 993 

min. 1122 1003 785 930 

max. 1247 1198 889 1083 

strike 
price 

mean 123.42 96.77 95.57 101.41 

min. 35.00 91.89 94.82 98.37 

max. 300.00 102.43 96.79 104.87 

Implied 

volatility 

mean 0.35 0.54 0.27 0.28 

min. 0.01 0.04 0.01 0.05 

max. 0.57 1.00 0.48 0.75 

number of 

strike 

mean 216.39 238.58 162.10 182.16 

min. 211.00 216.00 157.00 172.00 

max. 220.00 252.00 171.00 191.00 

time to 
maturity 

mean 0.93 0.96 0.87 0.75 
min. 0.12 0.13 0.13 0.12 
max. 4.56 4.98 3.76 2.92 

number of 

maturities 

mean 52.50 47.74 32.48 33.39 

min. 52 47 31 33 

max. 54 49 35 34 
Note: Table 4 presents descriptive statistics for options on the WTI future contract used to obtain the risk neutral 
densities. The data are extracted from the Commodity Research Bureau database. Reported in Table 4 are the means 
of the daily means for the options inside the event windows. 
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Table 5 

Statistical Tests on the historical densities of returns 

  Full 
period 

End of the 
commodity 

bull cycle  

Credit 
freeze 

bottom 

 BP 

Deepwater 
Horizon 

explosion 

Libyan 
uprising  

Kolomogorov-

Smirnov 
Normality test .00 .05 .22 .85 .49 
Kolmogorov-

Smirnov Test of 

equality 
 .04 .01 .00 .31 

Cramer-Von-

Mises test of 
equality 

 .03 .02 .01 .03 

 Note: Table 5 presents p-values for several tests on the historical densities. The first row reports a 
Kolmogorov Smirnov test of normality performed on the historical returns leading to event. The second row 
presents the p-value for the two samples Kolmogorov-Smirnov. The null hypothesis is that the historical densities of 
the two months returns prior the event is drawn from the sample continuous distribution as the post event historical 
densities. The last row shows the p-values for the Cramer-Von-Mises statistic for a two-sample density test. 

 

Table 6 

Statistical tests on implied absolute risk aversion distributions 

    
P-values 
full 

sample 

Simulations using the sampling without replacement 

  N=1000 N=2000 N=5000 

    100 250 500 100 250 500 100 250 500 

event  ks .00 100 100 100 100 100 100 100 100 100 
1 cvm .00 100 100 100 100 100 100 100 100 100 

event  ks .00 77 100 100 77 100 100 77 100 100 
2 cvm .00 74 100 100 77 100 100 76 100 100 

event  ks .00 100 100 100 100 100 100 100 100 100 
3 cvm .00 100 100 100 100 100 100 100 100 100 

event  ks .00 98 100 100 97 100 100 97 100 100 

4 cvm .00 48 100 100 49 99 100 46 99 100 
Table 6 presents the Kolmogorov-Smirnov (ks) and Cramer Von Mises (cvm) test of two sample densities. The tests 
are performed on the implied densities of the fitted ARA from (19). We obtain the implied absolute risk aversion 
function by mapping each option before and after the event to a level of wealth based on the moneyness of each 
option. The null hypothesis in both tests is that samples before and after event are drawn from same continuous 
distribution. First, we report the p-values for the test using the full distribution of ARA. We also report the results 
for a number of samplings without replacement with smaller samples. The number reported is the percentage of 
rejection of the null hypothesis for each case at a 1% level of significance over the total number of draws. 
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Table 7 

Tests on the coefficients of the fitted absolute risk aversion function 

    ��
����d

 ��� ���� ����� 

event 1 

M=2000 N= 100  100 100 93 99 
  N= 200  100 100 99 100 
M=10000 N= 100  100 100 93 99 
  N= 200  100 100 98 100 
p-values Nbef= 17 547         
full sample Naft=18 273 .00 .00 .00 .00 

event 2  

M=2000 N= 100  100 14 61 96 
  N= 200  100 21 72 100 
M=10000 N= 100  100 14 60 96 
  N= 200  100 22 71 100 
p-values Nbef= 16 240         
full sample Naft= 17 538 .00 .00 .00 .00 

event 3 

M=2000 N= 100 100 83 27 38 
  N= 200 100 97 28 41 
M=10000 N= 100 100 84 28 39 
  N= 200  100 98 27 44 
p-values Nbef= 17 547   
full sample Naft=18 273 .00 .00 .00 .00 

event 4 

M=2000 N= 100  63 62 46 57 
  N= 200  78 77 52 64 
M=10000 N= 100  62 61 45 56 
  N= 200  78 78 52 65 
p-values Nbef=13948         
full sample Naft= 15010 .00 .00 .00 .00 

Table 7 presents the outcome for each event of the F test on hypotheses (21)-(24) performed following regression 
(20). Reported in Table 7 is the percentage of rejection of the null hypothesis for each case scenario at a 1% level of 
significance over the total number of draws. Also, we report the p-values of the test performed on the whole sample 

rather than on draws. ��
����d  tests the joint equality of all the coefficients in the two equation of (24). ����� tests that 

the global effect of wealth (slope and curvature) is the same before  and after the event. ��� tests the equality of the 
slope coefficients on future wealth in (20) and ���� tests the equality of the curvature coefficients before and after 
the event. 
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The Gaussian baseline case 

PANEL 1: Historical densities, risk neutral densities, pricing kernel and the mean absolute 

risk version functions for the end of the bull commodity cycle 

The historical and risk neutral densities 

 
Note: the left figure represents the historical densities of the WTI futures and the right figure represents the risk 
neutral densities estimated with the options on the WTI future third nearby contract. The parametric assumption is 
the normality of the historical and risk neutral densities returns. The event occurs on July 3, 2008 and captures the 
end of the commodity bull cycle. The solid black curves represent the mean of the daily densities during the 15 
trading days prior to the event and the solid red curves represent the mean of the daily densities during 15 trading 
days after the date of the event. The dashed lines represent the associated empirical standard error (the mean ± 0.5 
standard deviation). 
 

Pricing kernel and absolute risk aversion function 

 
Note: the left figure represents the mean pricing kernel and the right figure represents the mean absolute risk 
aversion estimated around the event date using the historical WTI price and related options. The parametric 
assumption is the normality of the historical and risk neutral densities returns. The event occurs on July 3, 2008 and 
captures the end of the commodity bull cycle.  The solid black curves represent the mean of the daily function 
during the 15 days prior to the event and the solid red curves represent the mean of the daily functions during the 15 
trading days after the event date. The dashed lines represent the associated empirical standard error (the mean ± 0.5 
standard deviation).  
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PANEL 2: Historical densities, risk neutral densities, pricing kernel and the mean absolute 

risk version functions for the credit freeze bottom.  

The historical and risk neutral densities 

 
Note: the left figure represents the historical densities of the WTI futures and the right figure represents the risk 
neutral densities estimated with options on the WTI future third nearby contract. The parametric assumption is the 
normality of the historical and risk neutral densities returns.   The event occurs on December 19, 2008 and captures 
credit freeze bottom. The solid black curves represent the mean of the daily densities during the 15 trading days 
prior to the event and the solid red curves represent the mean of the daily densities during 15 trading days after the 
date of the event. The dashed lines represent the associated empirical standard error (the mean ± 0.5 standard 
deviation). 

 

Pricing kernel and absolute risk aversion function 

 
 

Note: the left figure represents the mean pricing kernel and the right figure represents the mean absolute risk 
aversion derived around the event date using the historical WTI price and related options. The parametric 
assumption is the normality of the historical and risk neutral densities returns. The event occurs at date on December 
19, 2008 and captures credit freeze bottom.  The solid black curves represent the mean of the daily functions during 
the 15 days prior to the event and the solid red curves represent the mean of the daily functions during the 15 trading 
days after the event date. The dashed lines represent the associated empirical standard error (the mean ± 0.5 standard 
deviation). 
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PANEL 3: Historical densities, risk neutral densities, pricing kernel and the mean absolute 

risk version functions for the explosion of the BP Deepwater Horizon platform.  

Historical and risk neutral densities 

 
Note: the left figure represents the historical densities of the WTI futures and the right figure represents the risk 
neutral densities estimated using options on the WTI future third nearby contract. The parametric assumption is the 
normality of the historical and risk neutral densities returns. The event occurs on April 20, 2010 and captures the 
explosion of the Deepwater horizon platform. The solid black curves represent the mean of the daily densities during 
the 15 trading days prior to the event and the solid red curves represent the mean of the daily densities during 15 
trading days after the date of the event. The dashed lines represent the associated empirical standard error (the mean 
± 0.5 standard deviation). 

 

Pricing kernel and absolute risk aversion function 

 
Note: the left figure represents the mean pricing kernel and the right figure represents the mean absolute risk 
aversion derived around the event date using the historical WTI price and related options. The parametric 
assumption is the normality of the historical and risk neutral densities returns. The event occurs on April 20, 2010 
and captures the explosion of the Deepwater horizon platform. The solid black curves represent the mean of the 
daily functions during the 15 days prior to the event and the solid red curves represent the mean of the daily 
functions during the 15 trading days after the event date. The dashed lines represent the associated empirical 
standard error (the mean ± 0.5 standard deviation). 
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PANEL 4: Historical densities, risk neutral densities, pricing kernel and the mean absolute 

risk version functions for the Libyan uprising.  

 Historical and risk neutral densities 

 
Note: the left figure represents the historical densities of the WTI futures and the right figure represents the risk 
neutral densities estimated using options on the WTI future third nearby contract. The parametric assumption is the 
normality of the historical and risk neutral densities returns.  The event occurs on February 22, 2011 and captures 
the uprising in Libya. The solid black curves represent the mean of the daily densities during the 15 trading days 
prior to the event and the solid red curves represent the mean of the daily densities during 15 trading days after the 
date of the event. The dashed lines represent the associated empirical standard error (the mean ± 0.5 standard 
deviation). 

 

Pricing kernel and absolute risk aversion function 

 
 

Note: the left figure represents the mean pricing kernel and the right figure represents the mean absolute risk 
aversion derived around the event date using the historical WTI price and related options. The parametric 
assumption is the normality of the historical and risk neutral densities returns. The event occurs on February 22, 
2011 and captures the uprising in Libya. The solid black curves represent the mean of the daily functions during the 
15 days prior to the event and the solid red curves represent the mean of the daily functions during the 15 trading 
days after the event date. The dashed lines represent the associated empirical standard error (the mean ± 0.5 standard 
deviation). 
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Generalised Beta 2 case 

PANEL 5:  Historical densities, risk neutral densities, pricing kernel and the mean absolute 

risk version functions for the end of the bull commodity cycle 

Historical and risk neutral densities 

 
Note: the left figure represents the historical densities of the WTI futures and the right figure represents the risk 
neutral densities estimated with options on the WTI future third nearby contract. The parametric assumption is the 
Beta distribution for the historical densities and the generalised Beta 2 for the risk neutral densities. The event 
occurs on July 3, 2008 and captures the end of the commodity bull cycle. The solid black curves represent the mean 
of the daily densities during the 15 trading days prior to the event and the solid red curves represent the mean of the 
daily densities during 15 trading days after the date of the event. The dashed lines represent the associated empirical 
standard error (the mean ± 0.5 standard deviation). 

 Pricing kernel and absolute risk aversion function 

   
 

Note: the left figure represents the mean pricing kernel and the right figure represents the mean absolute risk 
aversion derived around the event date using the historical WTI returns and related options. The parametric 
assumption is the Beta distribution for the historical densities and the generalised Beta 2 for the risk neutral 
densities. The event occurs on July 3, 2008 and captures the end of the commodity bull cycle.  The solid black 
curves represent the mean of the daily functions during the 15 days prior to the event and the solid red curves 
represent the mean of the daily functions during the 15 trading days after the event date. The dashed lines represent 
the associated empirical standard error (the mean ± 0.5 standard deviation).  
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PANEL 6: Historical densities, risk neutral densities, pricing kernel and the mean absolute 

risk version functions for credit freeze bottom.  

Historical and risk neutral densities 

 

Note: the left figure represents the historical densities of the WTI futures and the right figure represents the risk 
neutral densities estimated with options on the WTI future third nearby contract. The parametric assumption is the 
Beta distribution for the historical densities and the generalised Beta 2 for the risk neutral densities. The event 
occurs at date on December 19, 2008 and captures credit freeze bottom. The solid black curves represent the mean 
of the daily densities during the 15 trading days prior to the event and the solid red curves represent the mean of the 
daily densities during 15 trading days after the date of the event. The dashed lines represent the associated empirical 
standard error (the mean ± 0.5 standard deviation). 
 

Pricing kernel and absolute risk aversion function 

 
Note: the left figure represents the mean pricing kernel and the right figure represents the mean absolute risk 
aversion derived around the event date using the historical WTI returns and related options. The parametric 
assumption is the Beta distribution for the historical densities and the generalised Beta 2 for the risk neutral 
densities. The event occurs on December 19, 2008 and captures credit freeze bottom.  The solid black curves 
represent the mean of the daily functions during the 15 days prior to the event and the solid red curves represent the 
mean of the daily functions during the 15 trading days after the event date. The dashed lines represent the associated 
empirical standard error (the mean ± 0.5 standard deviation). 
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PANEL 7: Historical densities, risk neutral densities, pricing kernel and the mean absolute 

risk version functions for the explosion of the deepwater Horizon platform.  

Historical and risk neutral densities 

 
Note the left figure represents the historical densities of the WTI futures and the right figure represents the risk 
neutral densities estimated with options on the WTI future third nearby contract. The parametric assumption is the 
Beta distribution for the historical densities and the generalised Beta 2 for the risk neutral densities. The event 
occurs on April 20, 2010 and captures the explosion of the BP Deepwater Horizon platform. The solid black curves 
represent the mean of the daily densities during the 15 trading days prior to the event and the solid red curves 
represent the mean of the daily densities during 15 trading days after the date of the event. The dashed lines 
represent the associated empirical standard error (the mean ± 0.5 standard deviation). 
 

Pricing Kernel and absolute risk aversion function 

 
Note: the left figure represents the mean pricing kernel and the right figure represents the mean absolute risk 
aversion derived around the event date using the historical WTI returns and related options. The parametric 
assumption is the Beta distribution for the historical densities and the generalised Beta 2 for the risk neutral 
densities. The event occurs on April 20, 2010 and captures the explosion of the BP Deepwater horizon platform. The 
solid black curves represent the mean of the daily functions during the 15 days prior to the event and the solid red 
curves represent the mean of the daily functions during the 15 trading days after the event date. The dashed lines 
represent the associated empirical standard error (the mean ± 0.5 standard deviation). 
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PANEL 8: The historical densities, risk neutral densities, pricing kernel and the mean 

absolute risk version functions for the Libyan uprising.  

Historical and risk neutral densities 

 
 

Note the left figure represents the historical densities of the WTI futures and the right figure represents the risk 
neutral densities estimated with options on the WTI future third nearby contract. The parametric assumption is the 
Beta distribution for the historical densities and the generalised Beta 2 for the risk neutral densities. The event 
occurs on February 22, 2011 and captures the uprising in Libya. The solid black curves represent the mean of the 
daily densities during the 15 trading days prior to the event and the solid red curves represent the mean of the daily 
densities during 15 trading days after the date of the event. The dashed lines represent the associated empirical 
standard error (the mean ± 0.5 standard deviation). 

 

Pricing kernel and absolute risk aversion function 

 

 
Note: the left figure represents the mean pricing kernel and the right figure represents the mean absolute risk 
aversion derived around the event date using the historical WTI price and related options. The parametric 
assumption is the Beta distribution for the historical densities and the generalised Beta 2 for the risk neutral 
densities.  The event occurs on February 22, 2011 and captures the uprising in Libya. The solid black curves 
represent the mean of the daily functions during the 15 days prior to the event and the solid red curves represent the 
mean of the daily functions during the 15 trading days after the event date. The dashed lines represent the associated 
empirical standard error (the mean ± 0.5 standard deviation). 

 


