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Abstract

Conventional tests of present-value models tend to over-reject the null of no

predictability, concluding that price-dividend ratio variations are due to both cash

flow and discount rate shocks. We propose a nonparametric Monte Carlo testing

method, which does not rely on distributional assumptions to aggregate the infor-

mation from the time series of price-dividend ratios and dividend growth. We find

evidence of return predictability, but no apparent evidence of dividend growth pre-

dictability, thus reconciling the diverging conclusions in the literature. Our findings

are robust to the specification of the predictive information set and account for the

intrinsic probability of detecting predictive relations by chance alone.
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1 Introduction

Are stock market returns and dividend growth predictable? Campbell and Shiller (1988)

observation that the price-dividend ratio reflects information on both future expected

returns and expected dividend growth has motivated a vast literature that studies pre-

dictability features based on predictive regressions of returns and cash flow growth on

lagged dividend yields.

Predictive regression results typically imply some economically significant evidence

of return predictability, even if the statistical significance is weaker in some subperiods,

and an almost constant expected dividend growth. This evidence suggests that the price-

dividend ratio varies mainly because of discount rate shocks; See Campbell (1991) and

Cochrane (1992), among others.1 In contrast, the Kalman-Bucy filter estimation of a

benchmark present-value model with hidden dividend and return expectations yields

both a predictable return and a predictable dividend growth, indicating that the price-

dividend ratio varies because of both dividend expectation and discount rate shocks; see,

e.g., Binsbergen and Koijen (2010).

In this paper, we introduce a new method with reliable finite-sample accuracy and

valid asymptotic properties, for testing general predictability hypotheses in present-value

models. Our approach is based on a nonparametric Monte Carlo bootstrap, which avoids

distributional assumptions in aggregating the information from the time series of price-

dividend ratios and dividend growth, and allows us to study more sharply the diverging

predictability implications emerging from present-value models and standard predictive

regression settings.

We show that while conventional testing procedures can imply significant finite-sample

biases that over-reject the null of no predictability, our testing method produces more re-

liable finite-sample inferences. Applying our testing methodology to benchmark present-

value models, which are designed to parsimoniously aggregate dividend growth and price-

dividend ratio information, we find a significant evidence of return predictability, but no

1Early predictive regression studies are Rozeff (1984), Schiller (1984), Keim and Stambaugh (1986),

Campbell and Shiller (1988) and Fama and French (1988). The predictive regression findings of no

dividend predictability also depend on the sample period used for estimation, as the conclusions are

opposite for the pre-war sample (Chen (2009)).
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evidence of dividend predictability, thus reconciling the diverging predictability conclu-

sions in the literature.

Inference on return and dividend predictability in standard predictive regressions is

difficult for a number of reasons. First, the large correlation between stock returns and

predictive variables, combined with the high persistence of the latter, can create finite-

sample biases and a non-standard asymptotic behaviour for common tests of return or

dividend predictability.2 Second, as the dividend yield reflects expectations of both future

stock returns and future cash flows, it is a noisy estimate of expected returns and expected

dividend growth in univariate predictive regressions, thus creating a standard error-in-

variable (EIV) problem; see, e.g., Binsbergen and Koijen (2010), among others. Third,

powerful tests of predictability need to incorporate the fact that they test a joint null

hypothesis on the return-dividend process. Cochrane (2008a) stresses the fact that return

and dividend growth predictability have to be studied jointly, concluding that the weak

evidence of return predictability in earlier univariate studies is stronger if one jointly

considers the empirical evidence on dividend predictability.3

Standard predictive regressions are agnostic about the hidden economic link between

price-dividend ratios, expected returns and expected cash flow growth, which is instead

explicitly revealed within present-value models. These models offer a convenient frame-

work to jointly estimate expected returns and dividend growth, while taking into account

the joint no-arbitrage constraints on stock returns, cash flows and valuation ratios. Recent

studies estimating market expectations for returns and dividends with different present-

value models include Menzly, Santos, and Veronesi (2004), Lettau and Ludvigson (2005),

Ang and Bekaert (2007), Lettau and Van Niewerburgh (2008), Campbell and Thompson

2Stambaugh (1999) derives the finite-sample distribution of the predictive regression parameter esti-

mates and finds that the associated t-statistic is biased towards rejection of the null of no predictability.

Torous, Valkanov, and Yan (2004) and Campbell and Yogo (2006) study asymptotic testing frameworks

in predictive regression settings with nearly integrated predictors.
3Given the observed time variation in the price-dividend ratio, at least one between returns and

dividend growth must be predictable. Cochrane (2008a) also derives upper bounds on price-dividend

ratio autocorrelation, to deliver more powerful statistics in the joint testing of return and dividend

growth predictability. In a present-value approach, such constraint is explicitly incorporated given the

joint dynamics of the expectation processes.
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(2008), Pastor, Sinha, and Swaminathan (2008), Cochrane (2008a,b), Binsbergen and

Koijen (2010), and Rytchkov (2012), among others.

Consistent with the literature, the Kalman-Bucy filter maximum likelihood estimation

of a benchmark present-value model on post-war US stock market data, along the lines

of, e.g., Binsbergen and Koijen (2010), yields different predictability implications than

standard predictive regressions. In the sample period from January 1946 to December

2010, our point estimates imply predictable returns and dividend growth rates, a quite

large fraction (18%) of future dividend variability explained by dividend expectations and

a much lower fraction (9%) of future returns explained by return expectations. These

findings are supported by the evidence produced in a standard likelihood ratio test of the

null hypotheses of constant expected returns or expected dividend growth, which are both

clearly rejected at significance levels below 0.5%. Expanding the predictive information

set to include additional predictive variables for return and dividend growth expectations

further strengthens this evidence; see Yun (2012).

Simple univariate predictive regressions with the lagged price-dividend ratio as a pre-

dictive variable imply R2’s of 9.9% and 0.95% for market returns and aggregate dividend

growth, respectively. Moreover, while the null hypothesis of no dividend predictability

is not rejected, the return predictive regression test implies a significant predictability

evidence with a p-value of 1.13%. What drives the diverging predictability implications

between benchmark present-value models and predictive regressions?

A possible explanation is the EIV-bias inherent to predictability studies.4 This paper

focuses on a different explanation, which follows from the peculiar finite-sample properties

of estimators and tests in present-value models with latent return and dividend expecta-

tions. While the finite-sample properties of tests of predictability hypotheses in standard

predictive regressions have been studied in detail,5 they have not yet been thoroughly

4While the estimation results imply a small asymptotic EIV-bias in the return predictive regression,

they are linked to a large negative EIV-bias in the slope parameter of the dividend predictive regression,

with the limit of the slope coefficient being equal to 0.0197, much lower than the model-implied parameter

value of 0.7038.
5Stambaugh (1999) derives an analytic expression for the bias in univariate predictive regressions.

Kothari and Shanken (1997), Amihud and Hurvich (2004), Lewellen (2004) Torous, Valkanov, and Yan

(2004), Campbell and Yogo (2006) and Polk, Thompson, and Vuolteenaho (2006) develop methods for
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studied in present-value models estimated with a latent-variables approach.

Similar to predictive regressions, in state-space models inference about relevant hy-

potheses is made tractable by the existence of an asymptotic theory, which under appro-

priate conditions implies consistency and asymptotic normality of parameter and latent

state estimates; see, e.g., Liung and Caines (1979) and Spall and Wall (1984). However,

the short or moderate length of time-series data available in many predictability studies

can make the use of asymptotic inference methods potentially suspect for latent variable

approaches in present-value models as well.6

To improve over the conventional asymptotic inference, a useful nonparametric method,

which does not rely on strong assumptions about the joint distribution of dividend growth

and price-dividend ratios, is the nonparametric Monte Carlo bootstrap first suggested by

Efron (1979). Stoffer and Wall (1991) prove that the bootstrap applied to the inno-

vations of a time-invariant and stable state-space model yields asymptotically correct

results. They also demonstrate, by Monte Carlo simulation and in a number of real-data

applications, that a bootstrap approach can improve over the finite-sample inference of

conventional asymptotics.

We borrow from these insights and propose a novel class of bootstrap likelihood ratio

tests of predictability hypotheses. We show their asymptotic validity and demonstrate

the improved finite-sample properties over the conventional asymptotics. Using the new

testing methodology, we obtain novel findings and interpretations for the predictability

evidence obtained by latent variable approaches within present-value models. The more

detailed contributions to the literature are the following.

First, in order to study the finite-sample properties of tests of predictability hypotheses

in present-value models, without assuming a particular error distribution, such as, e.g.,

a normal distribution, we introduce a simple nonparametric Monte Carlo simulation

hypothesis testing in univariate settings. Amihud, Hurvich, and Whang (2009) propose an analytic

method for hypothesis testing in regression with multiple predictors, while Lettau and Ludvigson (2001)

and Ang and Bekaert (2007), among others, use bootstrap methods in this setting.
6The close relation between present-value models and their (VAR) reduced-form predictive regression

representations (see, e.g., Cochrane (2008b)) also suggests that if samples must be fairly large before

asymptotic theory is applicable, then this should similarly hold both in predictive regressions and present-

value models. See also Section A of the Supplemental Appendix.
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approach. Our simulations show that asymptotic likelihood ratio tests imply large finite-

sample biases that often lead to an incorrect rejection of the null of no predictability. For

instance, while according to the asymptotic chi-square distribution and a significance level

α = 5% the critical value of the asymptotic test of no dividend (return) predictability

is 7.81 (9.49), the Monte-Carlo finite-sample critical value is 17.13 (15.99). Overall,

the fraction of incorrect rejections of the null of no time-variation in dividend (return)

expectations using the asymptotic test can be as large as 25.8% (60.5%). As a result,

the evidence resulting from asymptotic tests needs to be taken with caution, because it

could be generated by chance alone, using the typically moderate sample sizes available

in many predictability studies.

Second, the Monte Carlo evidence shows that large estimated R2’s for dividends or

returns can arise by chance alone, even under the null of constant expected dividend

growth or expected return. These features are linked to the volatile point estimates for

the persistence of dividend and return expectations, which is estimated unprecisely in

finite samples and stays in a close relation to the estimated R2’s. This evidence stresses

the importance of combining a pure estimation approach with a reliable testing method,

when quantifying the actual degree of dividend or return predictability.

Third, we propose a general nonparametric likelihood ratio test of predictability, by

applying the bootstrap to the innovations from the latent state dynamics, generated under

the relevant null hypothesis. We prove that our bootstrap likelihood ratio test implies

an asymptotically valid inference, under standard conditions, and demonstrate by Monte

Carlo simulation that it improves in finite samples over the conventional asymptotic tests.

Overall, these findings indicate that the bootstrap testing approach can better control

the finite-sample probability of rejecting a null hypothesis because of chance alone, thus

producing a more reliable predictability evidence in a number of applications.

Fourth, we apply our bootstrap test to post-war US stock market data, using several

specifications of the predictive information set. Overall, we find evidence in favour of

time-varying expected returns, but no significant evidence against a constant expected

dividend growth. While these findings are different from those of conventional tests, they

suggest that the dividend predictability of present-value models aggregating dividend

growth and price-dividend ratio information is similarly weak as for standard predictive
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regressions, thus reconciling the diverging conclusions in the recent literature.

Finally, we propose a modification of our bootstrap testing method that is useful to

test the actual degree of out-of-sample predictability, while controlling the probability of

detecting predictive relations by chance alone. Also in this context, our tests indicate

that the larger estimated out-of-sample R-square’s for dividends in the data can arise by

chance alone, under the null of constant dividend growth expectations.

The paper proceeds as follows. Section 2 introduces the benchmark present-value

model for aggregate dividends and market returns. It then briefly discusses the data

and the estimation strategy, before reporting the standard estimation results. Section 3

studies the finite-sample biases of conventional asymptotic likelihood ratio tests, while

Section 4 introduces the bootstrap likelihood ratio testing approach and studies the re-

sulting improvements in finite-sample inference. Section 5 analyses the robustness of

our main predictability findings with respect to broader specifications of the predictive

information set, while Section 6 concludes.

2 Present-Value Approach

Borrowing from Binsbergen and Koijen (2010), we introduce the benchmark cash flow and

discount rate dynamics. This model offers a tractable framework to estimate the expected

return and expected dividend growth processes, by parsimoniusly aggregating the time-

series information from dividend growth and price-dividend ratios. Even though the

benchmark model restricts the information set to be spanned by the history of dividend

(or returns) and price-dividend ratios, it is flexible enough to capture the essential aspects

related to the estimation and testing of predictive relations.7 Broader specifications of

the predictive information set are studied in Section 5.

7The same setting can result from a general equilibrium framework with multiple securities and time-

varying risk aversions; see, e.g., Menzly, Santos, and Veronesi (2004)). Recent studies have investigated

predictability in the context of the model considered in this paper, including Cochrane (2008b), Bins-

bergen and Koijen (2010), and Rytchkov (2012), among others. Model extensions and different special

cases have also been considered in Lettau and Ludvigson (2005), Ang and Bekaert (2007), Lettau and

Van Niewerburgh (2008), Campbell and Thompson (2008), Pastor, Sinha, and Swaminathan (2008), and

Yun (2012).
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2.1 The benchmark model

Let

rt+1 ≡ log

(
Pt+1 +Dt+1

Pt

)
(1)

be the cum-dividend log market return and denote by

∆dt+1 ≡ log

(
Dt+1

Dt

)
, (2)

the aggregate log dividend growth. Expected dividend growth and return, conditional on

the information at time t, are denoted by gt ≡ Et[∆dt+1] and µt ≡ Et[rt+1], respectively.

They follow simple autoregressive processes:

gt+1 = γ0 + γ1(gt − γ0) + εgt+1, (3)

µt+1 = δ0 + δ1(µt − δ0) + εµt+1. (4)

The dividend growth rate is the expected dividend growth plus an orthogonal shock:

∆dt+1 = gt + εdt+1. (5)

The vector of IID shocks (εgt+1, ε
µ
t+1, ε

d
t+1)′ has covariance matrix

Σ =


σ2
g σgµ σgd

σgµ σ2
µ σµd

σgd σµd σ2
d

 . (6)

The affine explicit expression for the log price-dividend ratio directly follows from a

Campbell and Shiller (1988) log linearisation:

pdt = A−B1(µt − δ0) +B2(gt − γ0), (7)

where A, B1 and B2 are simple functions of the model parameters such that, consistent

with intuition, pdt is decreasing in expected returns and increasing in expected dividend

growth.8

8See Binsbergen and Koijen (2010) and Appendix A. Campbell and Shiller (1988) approximation

in our sample holds almost exactly, for yearly data, if annual dividends and prices are constructed as

described in Section 2.2.
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2.2 Estimation results

We obtain the with- and without-dividend monthly returns on the value-weighted port-

folio of all NYSE, Amex and Nasdaq stocks, in the period from January 1946 until

December 2010, from the Center for Research in Security Prices (CRSP). We construct

annual time series of aggregate dividends and prices, assuming that monthly dividends

are cash-reinvested at the 30-day T-bill rate. Data on 30-day T-bill rates are also obtained

from CRSP.

We estimate the model with a Kalman filter based on a Gaussian quasi likelihood

function, from the observable time series of dividend growth ∆dt+1 and price-dividend

ratios pdt+1. Due to the present-value relations, market return rt+1 is redundant with

respect to ∆dt+1 and pdt+1.9

The parameter estimates are reported in Table 1, with bootstrapped standard errors

in parenthesis.10 We find an unconditional expected log return (dividend growth) of

δ0 = 8.3% (γ0 = 5.7%). Both expectation processes feature some degree of persistence,

with autoregressive roots γ1 and δ1 equal to 0.304 and 0.927, respectively, and expected re-

turns are substantially more persistent than expected dividend growth. Finally, expected

dividend growth is estimated as very volatile (σg = 6.5%), while unexpected dividend

growth variability is very low (σd = 0.2%).

2.3 Dividend and return predictability

Let It denote the econometrician’s information set at time t, generated by the history

of dividends and price-dividend ratios. A nice feature of the Kalman filter is to provide

filtered estimates of the unknown latent states µt−1 and gt−1, conditional on It−1. Thus,

a standard measure of the degree of predictability in model (3)-(5) can be computed by

9Using (rt+1, pdt+1) as observable variables, the estimation results are almost identical and one can

always recover the missing variable using Campbell and Shiller (1988) approximation; see also Cochrane

(2008b), among others. Details on the estimation procedure are collected in Appendix B.
10Parameter standard errors are obtained using the circular block-bootstrap of Politis and Romano

(1992), in order to account for the potential serial correlation in the data.
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the fraction of rt and ∆dt variability explained by µt−1 and gt−1, respectively:

R2
Ret = 1− V̂ ar(rt+1 − µt)

V̂ ar(rt+1)
, (8)

R2
Div = 1− V̂ ar(∆dt+1 − gt)

V̂ ar(∆dt+1)
, (9)

where V̂ ar denotes sample variances.

We find that R2
Ret = 8.82% and R2

Div = 17.58%, indicating that the degree of dividend

predictability is about twice as large as the degree of return predictability. In contrast to

these findings, simple regressions of returns and dividend growth on lagged price-dividend

ratios yield R2 of about 9.9% and 0.95%, respectively.

A possible interpretation for these diverging results is the noisiness of the price-

dividend ratio (7) as a signal for expected returns and expected dividend growth, re-

spectively, which creates a potential EIV problem in predictive regressions of returns

and dividend growth on lagged price-dividend ratios. Indeed, the large persistence of

return expectations is linked to a large sensitivity of price-dividend ratios to expected

return shocks (B1 = 10.332) and a smaller sensitivity to dividend expectation shocks

(B2 = 1.421). This feature obfuscates the predictive power of dividend expectations in

dividend predictive regressions, leading to the low (biased) R2.

3 Testing Predictability Hypotheses

Based on the above estimation results, it is natural to ask whether the empirical evidence

supports (i) the hypotheses that dividends and returns are predictable and (ii) the EIV

problem interpretation for the different predictability findings with respect to standard

predictive regressions.

These questions are best addressed using an appropriate hypothesis testing framework.

As emphasized, e.g., in Cochrane (2008a), while a point estimate produces the most likely

predictability structure according to the chosen statistical metric, an hypothesis testing

framework is needed to simultaneously control for the probability that some estimated

predictability features might be generated by chance alone.
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3.1 Asymptotic tests

Most predictability hypotheses can be formulated by means of simple parametric con-

strains, which can be efficiently tested with a standard likelihood ratio (LR) test, using

the statistic

LRT = 2

(
max

Θ
logL

(
θ, {Yt}Tt=1

)
−max

Θ0

logL
(
θ, {Yt}Tt=1

))
, (10)

where Θ0 is the restricted set of parameters under the given null hypothesis H0 and logL

is the log-likelihood of the model. Evidence against H0 is collected when LR is sufficiently

large:

{LRT > c1−α} , (11)

relative to a critical value c1−α that is unlikely under H0. As T →∞, statistic LRT follows

a χ2
r distribution with r degrees of freedom, where r is the number of parameter con-

straints defining the constrained parameter set Θ0. Therefore, the choice c1−α = χ2
r,1−α,

where χ2
r,1−α is the 1 − α quantile of the chi-square distribution, ensures asymptotically

a small probability α of rejecting H0 by chance alone:

α = lim
T→∞

PH0(LRT > χ2
r,1−α) . (12)

3.2 Time-varying expectations

Testing return and cash flow predictability is equivalent to examining time-variation in

expected returns and expected dividend growth, respectively. In terms of the model

parameters, the null of constant return expectations is:

H0 : δ1 = σµ = ρgµ = ρµd = 0 . (13)

Similarly, the null of constant dividend expectations is:11

H0 : γ1 = σg = ρgµ = 0 . (14)

11Under the null (13) (the null (14)) all price-dividend ratio variation comes from variation in ex-

pected dividend growth (returns) and the present-value model collapses to a standard linear regression

of dividend growth rates (returns) on the lagged price-dividend ratio. Note that ρgd = 0 is imposed also

in the unconstrained model for identification purposes, as for instance in Binsbergen and Koijen (2010),

see Appendix B.
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Using standard asymptotic critical values from a χ2
r distribution, where r = 4 and r = 3,

respectively, Table 2 shows that both these null hypotheses are strongly rejected according

to the asymptotic likelihood ratio test based on statistic (10), for significance levels α

below 0.5%.

3.3 Expectation persistence and EIV-problem

Consistent with the literature, e.g., Campbell and Shiller (1988), Campbell (1991) and

Cochrane (1992), the largest estimated fraction of price-dividend ratio variation is gener-

ated by expected return shocks. The loadings B1 and B2 of expected dividend growth and

expected returns in the price-dividend ratio (7) are in a close relation to their persistence

features. Therefore, the relative persistence of dividend and return expectations is a key

parameter for quantifying the potential EIV problem in the present-value model.

Figure 1 reproduces graphically this link, by plotting the asymptotic EIV-induced

bias for dividend and return predictive regressions, as a function of different hypotheses

about the relative persistence, δ1 − γ1, of dividend and return expectations.12 While the

bias for the return predictive regression coefficient (top panel) is moderate and less than

20% across all values of δ1 − γ1, the one for the dividend predictive regression coefficient

(bottom panel) is very sensitive to differences in the persistence of the two expectations.

The predictability features implied by a present-value model are also strongly de-

pendent on the relative persistence of the unobservable expected returns and expected

dividend growth processes. Figure 2 shows the R-squared of returns and dividend growth

implied by the present-value model described in Section 2 as a function of the differ-

ence between the autoregressive coefficients in the expected returns and cash flow growth

dynamics. For low values of the difference between the persistence parameters, the pre-

dictability of growth rates implied by the model is almost zero, contrary to what we obtain

12The asymptotic EIV-induced bias for dividend and return predictive regressions in the benchmark

present-value model can be computed explicitly, as a function of the model parameters; see Appendix C.
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in Section 2.3. Note that under the null hypothesis of equal expectation persistences:13

H0 : γ1 = δ1 , (15)

the model implies an identical sensitivity of price-dividend ratios to return and dividend

expectation shocks. Under this constraint, the EIV-induced asymptotic bias for both

dividend and return predictive regressions is very small.14

Based on asymptotic critical values from a χ2
r distribution (r = 1), we find in Table

2 that null hypothesis (15) is also clearly rejected, at a significance level α well below

1%. In summary, the evidence from asymptotic tests supports the following predictability

features:

(i) A time-variation in expected returns and expected dividends;

(ii) A large (a negligible) EIV problem in standard predictive regressions for dividends

(returns);

(iii) A larger degree of predictability, in terms of estimated R2s, for dividends than for

returns.

3.4 Finite-sample reliability of asymptotic tests

How reliable is the asymptotic approximation (12) for the probability of rejecting H0 by

chance alone? Since the conventional asymptotics might provide inaccurate results (see

again Stoffer and Wall (1991) and Stoffer and Wall (2004)), we investigate the quality of

this approximation for tests of predictability in the benchmark present-value model.

3.4.1 Nonparametric Monte Carlo bootstrap

Under null hypothesis H0, we can consistently estimate the quantiles of statistic LRT ,

using a simulation approach that does not rely on distributional assumptions on observed

13A the estimated parameters, the difference between the autoregressive parameters in the expected

returns and dividend growth dynamics is equal to 0.623. The parameter constraint (15) was also imposed,

e.g., for the present-value models in Cochrane (2008b) and Lettau and Van Niewerburgh (2008).
14Under null hypothesis (15), pdt follows a standard AR(1) process; see also Stambaugh (1999) and

Lewellen (2004), among others, and Section A of the Supplemental Appendix.
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dividend and price-dividend ratio shocks. We borrow from Stoffer and Wall (1991) and

apply a nonparametric Monte Carlo bootstrap to the fitted innovations in the present-

value model. Details and formal justification for this approach are provided in Section

4.15

We impose the null hypothesis H0 using the constrained Maximum Likelihood esti-

mator θ̂0 and we simulate B = 1000 time series of dividend growth and price-dividend

ratios. Given the actual probability αT := PH0(LRT ≥ χ2
r,1−α) of rejecting H0 by chance

alone in the asymptotic tests, we consistently estimate αT with the bootstrap estimator:

α̂T :=
1

B

B∑
b=1

I(LR∗T,b > χ2
r,1−α) , (16)

where LR∗T,b is the value of the likelihood ratio statistic in simulated bootstrap sample

b = 1, . . . , B and I(A) denotes the indicator function of event A.16

3.4.2 Constant return or dividend expectations

For null hypothesis (13) (null hypothesis (14)), the first (second) Panel of Figure 3 displays

the estimated quantiles of the empirical distribution of likelihood ratio statistic (10) under

H0, against the quantiles of the asymptotic χ2
4 (χ2

3) distribution.

Apparently, the finite-sample distributions of the test statistics deviate substantially

from their asymptotic limit. For instance, while for a significance level α = 5% the

asymptotic critical value for the hypothesis of constant expected dividend growth is

χ2
3,0.95 = 7.81, the finite-sample critical value is more than two times larger (17.13).

Overall, we find that both asymptotic tests tend to reject H0 too often. For instance,

the estimated probability of rejecting null hypothesis (14) (null hypothesis (13)) by chance

alone in a test of asymptotic significance level α = 5% is as large as 25.8% (60.5%); see

the last row of Table 2.

15Rytchkov (2012) also recognizes that inference based on standard asymptotics may be incorrect and

applies a parametric Monte Carlo method with Gaussian shocks to estimate the finite-sample distribution

of the LR statistic for the test of no return predictability. We prefer to avoid a parametric Monte Carlo

simulation with jointly normal dividend and price-dividend ratios, because for several null hypotheses

relevant to our analysis we have found the fitted model residuals under H0 to deviate quite significantly

from normality.
16I(A)(ω) = 1 (I(A)(ω) = 0) if and only if ω ∈ A (ω /∈ A).
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3.4.3 Equal expectation persistence

For null hypothesis (15), the third panel of Figure 3 plots the quantiles of the empirical

distribution of likelihood ratio statistic (10) under H0, against those of the asymptotic χ2
1

distribution. The finite-sample quantiles under H0 are quite different from their asymp-

totic limit: The asymptotic test is again excessively liberal. For instance, for a signif-

icance level α = 5% a test of null hypothesis δ1 = γ1 has an asymptotic critical value

χ2
0.95,1 = 3.84, which is less than half the finite-sample critical value estimated with the

bootstrap approach (9.43). This difference implies a finite-sample probability of rejecting

the null by chance alone as large as 26.4%, according to the bootstrap estimate (16); see

again the last row of Table 2.

4 Bootstrap Tests in the Present-Value Model

A powerful approach to obtain asymptotically valid tests that are less susceptible to

finite-sample distortions or specific distributional assumptions, can rely on nonparametric

Monte Carlo methods, such as the bootstrap.17

We first introduce our bootstrap tests of predictability hypotheses in present-value

models. We then show their asymptotic validity and quantify by Monte Carlo simulation

the improvements over conventional asymptotic tests. Finally, we revisit the conclusions

about return and dividend predictability in the benchmark present-value model.

4.1 State-space representation

For observed variables Yt := (∆dt, pdt)
′ and expanded state vector Xt := (ĝt−1, ε

g
t , ε

µ
t , ε

d
t )
′,

where ĝt := gt − γ0, the present-value model can be written in state-space form (see

17As shown in Hall and Horowitz (1996) and Andrews (2002), among others, a desirable property

of the bootstrap is that it may provide more accurate finite-sample approximations of the sampling

distribution of standard t−test statistics for testing the null of no predictability in predictive regression

models. Ang and Bekaert (2007) use bootstrap methods to quantify the bias of standard estimators

of regression in predictive regressions of future returns on the lagged price-dividend ratio and interest

rate. Amihud, Hurvich, and Whang (2009) compare the performance of bootstrap tests to bias-corrected

procedures in multi-predictor regressions and find the two to provide similar finite-sample accuracy.
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Appendix B):

Xt+1 = FXt + ΓεXt+1 , (17)

Yt = M0 +M1Yt−1 +M2Xt , (18)

with matrices F , Γ, M0, M1, M2 that are functions of parameter vector

θ = (γ0, δ0, γ1, δ1, σg, σµ, σd, ρgµ, ρµd, ρgd)
′ .

Let Xt,t−1 be the best linear prediction of Xt based on observable data {Ys}t−1
s=1, obtained

via the Kalman-Bucy filter, and ηt = Yt −M0 −M1Yt−1 −M2Xt,t−1 the corresponding

prediction error. The innovations form representation of the present-value model follows

from the Kalman filter as:

Xt+1,t = FXt,t−1 + FKtηt , (19)

Yt = M0 +M1Yt−1 +M2Xt,t−1 + ηt , (20)

where the Kalman gain Kt and the conditional covariance matrix St of innovation ηt are

given explicitly in Appendix B.

The advantage of representation (19)-(20) for an efficient nonparametric bootstrap

procedure, is that it allows to easily simulate forward the dynamics of observable variables

{Y1, . . . , YT}, given initial conditions Y0, X0,0 and random innovations {η1, . . . , ηT}.18

4.2 Nonparametric Monte Carlo bootstrap

Let θ̂ and θ̂0 be the unconstrained and the constrained estimators of the model parameters,

obtained by maximizing the likelihood function (49) in Appendix B over the full and

the H0−constrained parameter set, Θ̂ and Θ̂0, respectively. The observed value of the

likelihood ratio statistic LRT then follows from definition (10).19

18In practice, we first apply a nonparametric bootstrap to efficiently simulate the joint distribution of

innovations {η1, . . . , ηT }. In a second step, we simulate the joint distribution of {Y1, . . . , YT } using the

forward dynamics (19)-(20).
19Bootstrap inference is always conditional on the observed sample of data. With a slight abuse of

notation, in the sequel we denote by LRT the sample value of the likelihood ratio statistics.
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Stoffer and Wall (1991) apply a nonparametric Monte Carlo bootstrap to the (stan-

dardized) innovations {êt := S
−1/2
t (θ̂)ηt(θ̂)}Tt=1, in order to obtain the standardized boot-

strap residuals {ê∗t}Tt=1. The bootstrap residuals are used to compute a bootstrap distri-

bution of maximum likelihood estimators θ̂∗:

θ̂∗ = arg max
Θ

logL
(
θ, {Y ∗t }Tt=1

)
, (21)

where the Monte Carlo sequence {Y ∗t }Tt=1 is simulated with the dynamics (19)-(20) applied

to the unstandardized bootstrap residuals {η̂∗t := S
1/2
t (θ̂)e∗t}Tt=1.

This approach gives rise to a valid bootstrap distribution for
√
T (θ̂∗ − θ̂), which is

equivalent in large samples to the distribution of
√
T (θ̂−θ?), where θ? is the true unknown

parameter value. We start from this result, to construct a valid nonparametric bootstrap

likelihood ratio test of null hypothesis H0 in the present-value model.20

4.3 Nonparametric Monte Carlo bootstrap likelihood ratio test

Our bootstrap likelihood ratio test for state-space model (17)-(18) is based on the follow-

ing six-steps algorithm.

1) Using the estimated parameter vector under null hypothesis H0, construct the (con-

strained) time series of standardized innovations {ê0t}Tt=1, by setting:

ê0t = S
−1/2
t (θ̂0)ηt(θ̂0) , (22)

where S
−1/2
t is the inverse of the unique square root of St.

2) Applying a nonparametric bootstrap procedure (such as, e.g., the circular block-

bootstrap in Politis and Romano (1992)) to time series {ê0t}Tt=1, compute a boot-

strap sample {ê∗0t}Tt=1 of standardized innovations.

20In a robustness check, Rytchkov (2012) applies a version of a nonparametric bootstrap method,

which simulates the full state-space dynamics, in order to test the null hypothesis of constant expected

returns in a present-value setting. In contrast, we develop a bootstrap method for the innovation form

representation of the state-space model. In addition to producing a less computationally demanding

procedure, this approach yields a more transparent bootstrap simulation scheme that allows us to prove

the formal asymptotic validity of our approach.
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3) Using the innovation form representation (19)-(20), construct a bootstrap sample

{Y ∗t }Tt=1 as follows:

X∗t+1,t = FX∗t,t−1 + FKtS1/2
t ê∗0t , (23)

Y ∗t = M0 +M1Y
∗
t−1 +M2X

∗
t,t−1 + S

1/2
t ê∗0t , (24)

where matrices F , Kt, St, M0, M1, M2 are all evaluated in θ̂0 and the initial condi-

tions are Y ∗0 = Y0, X∗0,−1 = X0,0.

4) Using bootstrap sample {Y ∗t }Tt=1, compute constrained and unconstrained maximum

likelihood point estimates θ̂∗0 and θ̂∗, respectively, by maximizing the log likelihood

function logL
(
θ, {Y ∗t }Tt=1

)
, while imposing and not imposing null hypothesis H0,

respectively.

5) Following definition (10), compute the value LR∗T of the likelihood ratio statistic in

the bootstrap sample, defined by:

LR∗T = 2
(

logL
(
θ̂∗, {Y ∗t }Tt=1

)
− logL

(
θ̂∗0, {Y ∗t }Tt=1

))
. (25)

6) Repeat steps 2)-5) a large number of times, B, to obtain a collection of bootstrap

values of the likelihood ratio statistics, {LR∗T,b, 1 ≤ b ≤ B}. The empirical distribu-

tion of these values provides an approximation of the distribution of the likelihood

ratio statistic under the null hypothesis H0.

Remark 1 (i) In step 2) of the algorithm, several bootstrap procedures are applicable to

the standardized innovations {ê0t}Tt=1. We recommend a time-series bootstrap, such as

the circular block-bootstrap, in order to robustify the test against a potentially left time

series dependence, not captured by the estimated conditional moment dynamics. ii) In

some cases, it may help to exclude the random sampling of the innovations for the first

2-3 data points in step 2) of the algorithm, e.g., by setting ê∗0t = ê0t for t = 1, 2, 3. This

is useful to avoid start-up problems of the algorithm, when the Kalman filter might have

an initially transient behavior, e.g., with large values of the Kalman gain Kt.

An important question is whether the proposed bootstrap test delivers correct results in

large samples, i.e., whether the bootstrap likelihood ratio statistic LR∗t follows the same
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asymptotic distribution as LRT under H0. The next theorem justifies our bootstrap

likelihood ratio test of null hypothesis H0.

Theorem 1 Under regularity conditions detailed in Appendix D, it follows as B, T →∞:

LR∗T −→ χ2
r, in distribution.

According to Theorem 1, the bootstrap statistic LR∗T has an asymptotically equivalent

distribution to LRT under H0.21 Therefore, it gives rise to bootstrap tests with the

correct significance level asymptotically.

The most convenient way to define a bootstrap likelihood ratio test of H0 is by means

of the so-called bootstrap p−value:

p∗(LRT ) := P ∗(LR∗T > LRT ) =
1

B

B∑
b=1

I(LR∗T,b > LRT ) , (26)

where P ∗ denotes the bootstrap probability measure. Using bootstrap p−values, the

bootstrap test rejects H0 whenever:

p∗(LRT ) < α . (27)

From Theorem 1, this test implies the correct asymptotic size α. The interesting question

then is whether the bootstrap test delivers more reliable results in finite samples.

A useful property in this respect is that the inference based on bootstrap procedures

applied to asymptotically pivotal statistics, such as the likelihood ratio statistic, is gener-

ally more accurate than the inference of conventional asymptotics, in the sense that the

errors made are of lower order in the sample size T ;22 see Beran (1988), Davidson and

MacKinnon (1999b), Hall and Horowitz (1996) and Andrews (2002), among others. As

a consequence, we can hope that bootstrap likelihood ratio tests will improve over the

conventional asymptotic inference in realistic applications.

4.4 Finite-sample reliability of bootstrap likelihood ratio tests

In this section, we investigate by Monte Carlo simulation the finite-sample properties of

our bootstrap tests, in the context of the benchmark present-value model.

21A similar result can be proven with respect to sequences of shrinking local alternative hypotheses

HA,T , by applying the above algorithm to innovations defined by êAt = S
−1/2
t (θ̂A,T )ηt(θ̂A,T ) in step 1),

where θ̂A,T is the constrained maximum likelihood estimator computed under the local alternative HA,T .
22A pivotal statistic is a statistic with sampling distribution independent of nuisance parameters.
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We first impose the null hypothesis H0, using the constrained ML estimator θ̂0, and

simulate S time series of dividend growth and price dividend ratios, using our nonpara-

metric bootstrap procedure applied to the fitted innovations in the present-value model.

In this way, we can simulate the empirical distribution of observed data, under the null

hypothesis H0, without making strong parametric assumptions on the joint distribution

of dividend and price-dividend ratio shocks. For each simulated time series s = 1, . . . , S,

we compute the corresponding value of the likelihood ratio statistic, denoted by LRT,s.

We then apply our bootstrap testing method to the simulated data. For each simulated

time series s = 1, . . . , S, we compute a bootstrap distribution of likelihood ratio statistics

LR∗T,b,s, b = 1, . . . , B, and we compute the resulting bootstrap p-value:

p∗(LRT,s) =
1

B

B∑
b=1

I(LR∗T,b,s > LRT,s) ,

following the algorithm in Section 4.3. For a significance level α = 5%, we finally compute

the frequency of rejections of H0 in the bootstrap test, i.e., the fraction of time series s =

1, . . . , S in which p∗(LRT,s) < α, and compare it to the frequency of rejections obtained by

following the asymptotic testing approach. We denote these rejection frequencies by α∗T

and αT , respectively. Overall, our Monte Carlo simulation is based on a double-bootstrap

simulation scheme with 2S(B + 1) estimations of the parameters in the present-value

model, which is a computationally demanding procedure. We present our Monte Carlo

results for the parameter choices S = 200, B = 99 and an optimal bootstrap block size

of 2.23 Other parameter choices produce similar results.

For null hypothesis (13), we obtain α∗T = 5% for the bootstrap test, which is exactly

equal to the nominal level (α = 5%), while for null hypothesis (14), the empirical size of

the bootstrap test is α∗T = 8%, which is clearly closer to the given nominal level (α = 5%)

than the rejection frequency αT = 25.8% implied by the asymptotic test. Even though

the bootstrap test is slightly too liberal in the Monte Carlo simulation, it does not reject

the null of constant dividend expectations in our data. For null hypothesis (15), we obtain

23We apply a data driven calibration method for the selection of the block size, similar to the one

introduced in Romano and Wolf (2001) and discussed by Camponovo, Scaillet, and Trojani (2009). We

choose the block size that minimizes the difference between empirical and nominal size of the bootstrap

test for equal expectation persistences.
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an empirical rejection frequency α∗T = 7.5% for the bootstrap test, which is again clearly

lower than the rejection frequency αT = 26.4% of the asymptotic test. Also in this case,

the bootstrap test corrects the asymptotic critical values in the correct direction, even

though it is again slightly too liberal in the Monte Carlo simulation.

4.5 The empirical evidence revisited

We make use of the bootstrap likelihood ratio test in Section 4.3 and compare the results

with those of conventional asymptotic tests in Table 2. Based on a bootstrap size B =

1000 and an optimal block size of 2, Table 3 shows that the null hypothesis of a constant

expected return is rejected at a significance level α = 1% by the bootstrap test, but the

null hypothesis of constant expected dividend growth is not rejected, with a bootstrap

p-value of 9.5%.

The p-value of the null hypothesis of equal autoregressive coefficients in Table 2 is

2.4% (see Table 3) for the bootstrap test, compared to the p-value of about 0.05% implied

by the standard asymptotic results.24 Thus, null hypothesis (15) cannot be rejected at

a 1% significance level, but it is significantly rejected at the 5% level by our bootstrap

testing procedure. Overall, when considering also the slightly too liberal behaviour of

bootstrap tests in our Monte Carlo simulations, the evidence against a similar persistence

of expected returns and expected dividend growth is more ambiguous than under the

conventional asymptotic tests.

In summary, the non-rejection of null hypotheses (14) and (15) based on bootstrap

tests suggests the following different predictability features, when compared to the find-

ings in Section 3 for the asymptotic tests:

(i) A time-variation in expected returns, but no apparent evidence of a time-varying

expected dividend growth;

(ii) A moderate EIV-problem in dividends and return predictive regressions;

24Consistent with the standard asymptotic results, a parametric bootstrap likelihood ratio test with

Gaussian errors yields p-values of 0%, 0.3% and 0.2% for the null hypotheses of constant expected return,

constant expected dividend growth and equal autoregressive coefficients, respectively. This evidence

underlines the importance of avoiding too stringent distributional assumptions when testing predictability

hypotheses in present-value models.
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(iii) Returns and dividend growth predictability features roughly consistent with those

of standard predictive regressions.

4.6 How much predictability?

The weak evidence of dividend growth predictability produced by bootstrap likelihood-

ratio tests raises the question of the interpretation of the large R-squared (R2
div = 17.58%)

estimated in Section 2.3 for future dividends.

Differently from standard predictive regressions, the asymptotic distribution of es-

timated R-squares in the present-value model is not known in closed-form. Therefore,

the conventional asymptotic approach cannot be used, e.g., to quantify the probability of

estimating large R-squares because of chance alone. In contrast, our bootstrap methodol-

ogy can be applied with no major modification to consistently estimate such probability,

under the assumption that an asymptotic distribution for the estimated R-squares exists.

Using steps 1)-3) of the algorithm in Section 4.3, we can compute bootstrap esti-

mates of parameter θ in the present-value model and obtain the bootstrap distribution

of estimated R-square statistics under a given null hypothesis H0. Figure 4 displays the

histogram of the bootstrap distribution of estimated R-squares for future returns and fu-

ture dividend growth, under the null hypotheses of a constant expected dividend growth

and an equal persistence of dividend and return expectations, respectively.

Apparently, the bootstrap distribution of estimated R-squares under the two null

hypotheses is similar. Moreover, even though the model-implied R-squared for dividend

growth under H0 is 0% and 0.9%, respectively, we find that the variability of estimated

R-squares is quite large. For instance, the median estimated R2
Div-value is 6.02% under

the null of constant expected dividend growth (5.34% under the null of equal persistence

parameters) and the most frequently estimated R-squared value is 0% in both cases, but

the probability of estimating a dividend R-squared of at least 17.58%, as in the data, is

11.3% (10.5%).

Overall, these findings highlight that finite-sample variability is important for ap-

propriately interpreting the finite-sample distribution of estimated R-squares, as large

R-squares as in the data can arise by chance alone, in a present-value model where divi-
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dend predictability is absent or weak.

4.7 Out-of-sample predictability

All R2 values reported in the previous sections are estimated using in-sample data. From

the perspective of real-time predictability, out-of-sample prediction is an additional im-

portant aspect. For instance, Goyal and Welch (2008) study the out-of-sample predictive

power of a large set of variables for market returns and find that most of them perform

worse than the historical mean.

Following Campbell and Thompson (2008) and Goyal and Welch (2008), the incremen-

tal out-of-sample predictive power for returns and dividend growth in the present-value

model of Section 2 can be estimated using the metrics:

R2
Ret,OS = 1−

∑T
t=0 (rt+1 − µ̃t)2∑T
t=0 (rt+1 − r̄t)2

, (28)

R2
Div,OS = 1−

∑T
t=0 (∆dt+1 − g̃t)2∑T

t=0

(
∆dt+1 −∆dt

)2 , (29)

where µ̃t and g̃t are the estimated expected return and expected dividend growth in the

present value model, using observations up to time t, while r̄t and ∆dt are the sample

means of returns and dividend growth using data up to time t.

We estimate the degree of out-of-sample predictability according to measures (28) and

(29), using an out-of-sample period starting in 1985. Standard predictive regressions of

returns and dividend growth on the lagged price-dividend ratio yield R2
Ret,OS = −12.32%

and R2
Div,OS = −4.38%, while we obtain R2

Ret,OS = −7.31% and R2
Div,OS = 5.88% for the

present-value model.25 Thus, the point estimates for the benchmark present-value model

might indicate an incremental degree of out-of-sample predictability for dividend growth

with respect to the sample mean forecast.

25Precisely, we use data between 1946 and 1985 to estimate the parameters of the model and compute

expected return and expected dividend growth for 1986, which are compared to the realized return and

dividend growth in the same year. We then use data between 1946 and 1986 to compute predictions

for 1987 and proceed in this way until the end of the sample. Using data from 1946 to 2007 and

starting the out-of-sample computations in 1972, Binsbergen and Koijen (2010) find R2
Ret,OS = 1.06%

and R2
Div,OS = 5.76%.
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Using a slight modification of our bootstrap method, we can estimate the distribu-

tion of out-of-sample R-squares (28) and (29) under the null of no return or dividend

predictability; details of the procedure are given in Appendix E. This approach is useful,

e.g., to better quantify the probability of estimating large out-of-sample R2 values as in

the data by chance alone.

Given the variability of estimated in-sample R2
Div values highlighted in Section 4.6,

it is plausible that the out-of-sample R-squared distribution might inherit similar fea-

tures. Figure 5 illustrates the properties of the bootstrap distributions of out-of-sample

R-squares (28) and (29), generated under the null hypothesis of constant expected cash

flow growth in the present-value model. Both distributions imply a large variability of

estimated out-of-sample measures of predictability for returns (upper panel) and dividend

growth (lower panel). Even though under H0 expected returns are time-varying, the esti-

mated R2
Ret,OS distribution puts a large mass in regions where no evidence of incremental

predictability is estimated. Moreover, despite the absence of dividend predictability un-

der the null, the distribution of estimated R2
Div,OS’s puts a significant mass of about 15%

in regions of positive R2
Div,OS values, with a probability of estimating an out-of-sample

R-squared for dividends at least as large as in the data that is almost 10%.

Overall, these findings show that the conclusions produced by estimated common

measures of out-of-sample predictability in present-value models have to be taken with

caution and put in relation to the finite-sample variability of these quantities under the

null of no predictability. On the one side, the limited amount of data information available

can lead to a difficulty in detecting predictive relations for returns when they are there.

On the other side, high out-of-sample R-squares for dividends can arise by chance alone,

in a setting with constant expected dividend growth. In this respect, our nonparametric

bootstrap approach provides a useful tool to better interpret also the information provided

by estimated out-of-sample measures of predictability.
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5 Broader Specifications of the Predictive Informa-

tion Set

While the benchmark present-value model in Section 2 is useful for highlighting the

main issues of tests of predictability hypotheses, it might not provide the most accurate

description for the dynamics of dividend-return expectations and their link to price-

dividend ratios. Richer specifications might improve the evidence of predictability and

it is useful to study the robustness of our previous results, with respect to an enlarged

specification of the predictive information set.

Several potential predictors have been considered in the literature, to improve the

statistical evidence of univariate predictive regressions with the lagged price-dividend ra-

tio.26 Such predictive variables can naturally extend the benchmark present-value model,

in order to parsimoniously aggregate the joint information generated by the time series of

dividend growth, price-dividend ratios and additional predictors, following the present-

value approach proposed in Yun (2012).

Using the conventional asymptotic approach, variables such as the book-to-market

ratio (bm), the stock market variance (svar), the consumption-wealth-income ratio (cay)

and the BAA-rated corporate bond yield (BAA) significantly improve the forecasts of

future returns and future dividend growth in the present-value model.27 Using our general

bootstrap tests of Section 4, we study the robustness of our findings on dividend and

return predictability, with respect to the choice of the predictive information set.

26Goyal and Welch (2008) and Koijen and Van Nieuwerburgh (2011) give an excellent review of this

literature. Even though less studies have focused on dividend growth predictability, Lettau and Ludvig-

son (2005) and Favero, Gozluklu, and Tamoni (2011), among others, provide evidence that predictive

variables like cay and proxies of demographics help forecasting cash flow growth.
27The benchmark present-value model assumes a constant return volatility. Piatti and Trojani (2012)

develop a present-value approach with time-varying return and dividend growth risks to predictive re-

gression.
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5.1 The present-value model with additional predictive vari-

ables: estimation results

Expected dividend growth, expected return and an additional predictive variable, zt,

follow the following first-order vector autoregression:

gt+1 = γ0 + γ1(gt − γ0) + γ2(zt − ξ0) + εgt+1, (30)

µt+1 = δ0 + δ1(µt − δ0) + δ2(zt − ξ0) + εµt+1, (31)

zt+1 = ξ0 + ξ1(zt − ξ0) + εzt+1. (32)

In contrast to the benchmark dynamics (3)-(4), the additional predictive variable zt

can help to better explain expected returns or expected dividend growth. As such, it

appears in the price-dividend ratio implied by a standard Campbell and Shiller (1988)

log linearization:

pdt = A− (B1µ̂t +B3ẑt) + (B2ĝt +B4ẑt), (33)

where B3 = δ2
δ1−ξ1

(
1

1−ρδ1 −
1

1−ρξ1

)
, B4 = γ2

γ1−ξ1

(
1

1−ργ1 −
1

1−ρξ1

)
and ẑt = zt − ξ0 is the

demeaned additional predictive variable at time t; see, e.g., Yun (2012).

The model is estimated in state-space form with a Kalman filter.28 For brevity, we

report results only for additional predictive variables that significantly predict returns and

dividend growth using standard asymptotic tests. These include the book-to-market ratio

(bm), the stock market variance (svar), the consumption-wealth-income ratio (cay) and

the corporate bond yield on BAA-rated bonds (BAA). The description of the variables

is provided by Goyal and Welch (2008) and their updated time series through 2010 are

available at Goyal’s website.29

Estimated present-value model parameters and R-squared for returns and dividend

growth are collected in Table 4, together with the R-squared estimated from standard

predictive regressions with the additional predictive variable zt. Consistently with the

findings in Yun (2012), in each present-value model the predictive information set enlarged

by the additional predictor zt increases the estimated R-squares for dividends and returns,

28For completeness, Appendix B also describes the state-space representation and the Kalman filter

estimation procedure for the present-value model with the additional predictor zt.
29See the web page http://www.hec.unil.ch/agoyal/.
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relative to the findings for the benchmark model in Section 2.3. While estimated R-

squares for returns are similar to those obtained from the standard predictive regressions

in Panel C of Table 4, the estimated R-squared values for dividend growth are much

higher, consistently with the findings of Section 2.3 for the benchmark present-value

model.

5.2 Tests of constant dividend and return expectations

Cash flow predictability is again tested by testing the null hypothesis of constant expected

dividend growth. In the extended present-value model, this hypothesis is equivalent to the

following constraints, which are tested using a standard LR statistic that is asymptotically

χ2
5 distributed:

H0 : γ1 = γ2 = σg = ρgµ = ρgz = 0 . (34)

We test this null hypothesis for zt = bm and zt = svar, which are the variables that

seem to increase more model-implied dividend growth predictability, measured in terms

of R-squared, compared to the benchmark model (see again Panel B of Table 4). Panel

B of Table 5 shows that the asymptotic likelihood ratio test rejects null hypothesis (34)

for both choices of predictive variable zt, with a p-value below 0.5%.

To apply our bootstrap testing approach, we introduce the extended vectors of ob-

served variables Yt := (∆dt, pdt, zt)
′ and state variables Xt := (ĝt−1, ε

g
t , ε

µ
t , ε

d
t , ε

z
t )
′, in order

to write the present-value model (30)-(32) in state-space form (see Appendix B):

Xt+1 = FXt +But+1 + ΓεXt+1 , (35)

Yt = M0 +M1Yt−1 +M2Xt , (36)

with parameter-dependent matrices F , B, Γ, M0, M1, M2 and variable ut := zt−1 − ξ0.

Given Xt,t−1 the best linear prediction of Xt based on data {Yt}t−1
s=1 and ηt = Yt −

M0 −M1Yt−1 −M2Xt,t−1, the innovations form representation of model (30)-(32) follows

from the Kalman filter:

Xt+1,t = FXt,t−1 +But+1 + FKtηt , (37)

Yt = M0 +M1Yt−1 +M2Xt,t−1 + ηt , (38)
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where the Kalman gain Kt is given explicitly in Appendix B. From this dynamics, the

bootstrap likelihood ratio test in the extended present-value model is performed with the

algorithm presented in Section 4.3.30

Panel C of Table 5 shows that the bootstrap likelihood ratio test produces different

conclusions from the asymptotic test. The bootstrap test p-values are always bigger

than the asymptotic p-values and we can never reject null hypothesis (34) at the 5%

significance level, indicating that the evidence of dividend growth predictability is still

weak in the extended present-value models, as it was in Section 4.5 for the benchmark

model.

The null hypothesis of no return predictability in the extended present-value model

is equivalent to the following parametric constraints:

H0 : δ1 = δ2 = σµ = ρgµ = ρµd = ρµz = 0 . (39)

For brevity, we test again this null hypothesis using the two predictive variables that

mostly increase the return predictability evidence, as measured by the model-implied

R2
Ret, namely zt = bm and zt = cay; see again Panel B of Table 4. Panel B of Table 6

shows that the asymptotic likelihood ratio test rejects null hypothesis (39) for all choices

of the predictive variable zt, with a p-value below 0.05%. The p-values for the bootstrap

test are reported in Panel C of Table 6. Consistently with the asymptotic test results,

null hypothesis (39) is again clearly rejected, with p-values of about 0.5%, as it was in

Section 4.5 for the benchmark model.

5.3 Variability of estimated R-squared values

How can the weak evidence of dividend growth predictability be consistent with the large

estimated dividend R-squares in the extended present-value models? To understand this,

Figure 6 plots the bootstrap distribution of estimated R-squares for returns and future

30To run the bootstrap algorithm in the extended present-value model, we replace equation (19) in

step 3) of the algorithm in Section 4 by the following bootstrap simulation scheme:

X∗t+1,t = FX∗t,t−1 +But+1 + FKtS1/2
t ê∗0t ,

using parameter matrices detailed in Appendix B.
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dividend growth, simulated under null hypothesis (34), for two different choices zt = bm

(left panels) and zt = svar (right panels) of the additional predictive variable.

The bootstrap distribution of estimated R-squares under the null of constant expected

dividend growth is similar to the distribution estimated in the benchmark model, with a

large variability of estimated R-squares. The increased predictive information generated

by zt tends to rise the probability of correctly estimating an R-squared of 0% for dividend

growth under the given null hypothesis for zt = bm, while the distribution of R2
Div displays

more variability for zt = svar. For instance, while the median estimated R2
Div-value is

6.23% for zt = bm (9.41% for zt = svar), the most frequently estimated R-squared value

is 0%, but the probability of estimating a dividend R-squared of at least 22.32% (25.71%),

as in the data, is still as large as 8.20% (10.60%).

In summary, finite-sample variability can again produce large estimated R-squares by

chance alone, within a present-value model where dividend predictability is absent.

6 Conclusion

The Campbell and Shiller (1988) present-value logic, implying that price-dividend ratios

vary because of shocks to expected returns or expected dividend growth, has motivated

a vast literature studying the predictability of market returns and aggregate dividend

growth. Predictive regressions of future returns and dividend growth on predictive vari-

ables including the lagged price-dividend ratio have produced no apparent evidence of

dividend predictability in the post-war sample, suggesting that price-dividend ratios have

mostly varied because of discount rate shocks in that period. In contrast, latent variable

approaches within present-value models, which parsimoniously incorporate information

from the joint time-series of dividends and returns, have found a stronger evidence of a

time-varying expected dividend growth.

A natural explanation for these contrasting conclusions is the error-in-variable (EIV)

problem inherent to predictability studies, which can be explicitly modelled using the

present-value relations that connect return and dividend growth dynamics to the price-

dividend ratio. This paper focuses on a different explanation, motivated by the peculiar

finite-sample properties of conventional tests of predictability in models with latent return
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and dividend expectations. Using a nonparametric Monte Carlo simulation approach,

which avoids restrictive distributional assumption, such as, e.g., a normal distribution

for dividend and return shocks, we show that the conventional tests have similar finite-

sample drawbacks as many tests of predictability in predictive regressions with lagged

persistent predictors and correlated innovations.

First, we show that conventional tests frequently reject the null of no dividend pre-

dictability because of chance alone. Moreover, we find that large estimated R-squares for

dividends can arise by chance alone, even under the null of a constant expected dividend

growth. These findings stress the importance of combining a pure estimation approach

with a reliable testing method, when testing and quantifying the actual degree of pre-

dictability within present-value models.

Second, in order to introduce a general and more reliable testing approach, we pro-

pose a class of nonparametric bootstrap tests of predictability hypotheses in present-value

models, by applying the bootstrap to the innovations from the latent state dynamics, gen-

erated under the relevant null hypothesis. We prove that the bootstrap tests imply a valid

asymptotic inference and demonstrate their improved properties in finite samples. Pre-

cisely, we find that the bootstrap test can better control the finite-sample probability of

rejecting a null hypothesis by chance alone, thus producing a more reliable predictability

evidence in a number of applications.

Third, we apply our bootstrap tests to post-war US stock market data, based on

a variety of specifications of the predictive information set, and we detect a significant

evidence in favour of time-varying expected returns, but no sharp evidence of a time-

variation in dividend expectations. The weak evidence of dividend predictability emerging

from the different present-value models considered in the paper is consistent with the

results of tests of predictability in standard predictive regression models, indicating that

the most significant source of price-dividend ratio variation in post-war US data are

discount rate shocks.

We finally propose a slight modification of our bootstrap testing method, which can be

used also to test the presence of out-of-sample predictability, while controlling the prob-

ability of detecting predictive relations by chance alone. We find that the conclusions

produced by estimated common measures of out-of-sample predictability in present-value
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models have to be taken with caution and need to be set in relation to the finite-sample

variability of these quantities under the null of no predictability. In this respect, our

nonparametric bootstrap testing method provides a useful tool for more comprehensively

interpreting also the information provided by estimated measures of out-of-sample pre-

dictability.

From a broader methodological perspective, our bootstrap testing approach and our

results have implication for a number of potentially more general aspects. First, while our

bootstrap tests can help to control more systematically the probability of rejecting a null

hypothesis by chance alone, our results also indicate that the information generated by

the joint time series of stock market returns and dividends might be insufficient to reliably

identify time-variations in dividend expectations, i.e., tests of dividend predictability in

such settings may have a low power.

A low power might arise because of the short time series available for many predictabil-

ity studies or because market price-dividend ratios aggregate into a single observable

signal the expectations of future dividends for different horizons, which are potentially

difficult to identify separately. As shown in Binsbergen, Brandt, and Koijen (2012) and

Binsbergen, Hueskes, Koijen, and Vrugt (2012), a more direct identification of dividend

expectations at distinct horizons can rely on the equity yield of dividend strips, which

are dividend claims for single maturities. Annual dividend growth is strongly predictable

in the period from October 2002 to April 2011, with univariate predictive regression R2s

between 48% for the 5 year yield and 76% for the 1 year yield. This evidence suggests that

dividend strip information can potentially improve the power of tests of dividend pre-

dictability more generally. Unfortunately, quotes of liquid dividend claims are available

only since recently. Another possibility is to replicate synthetically the prices of dividend

strips from quoted index option or futures prices, in which case data are available starting

approximately in 1986; see, e.g., Binsbergen, Brandt, and Koijen (2012).

The study of reliable inference methods in present-value models estimating the joint

dynamics of dividend growth, stock returns and dividend strip returns is an interesting

direction for future research. Also in this domain, our bootstrap testing methods can

prove useful in order to better control the probability of rejecting a null of no predictability

by chance alone.
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Finally, our bootstrap testing method is also applicable more generally, in order to

more reliably test the relevant null hypotheses in models estimated by a latent variable

approach using their state-space form. Concrete but not exhaustive examples of possible

applications include the testing of the expectation and similar hypotheses in the context

of affine factor models for the yield curve (see, e.g., Piazzesi (2010) for a review) or tests of

predictability hypotheses in present-value models with time-varying return and dividend

risks (see, e.g., Piatti and Trojani (2012)).
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A Price-dividend ratio

In this section we present the detailed derivation of equation (7) in the text. From

Campbell and Shiller (1988) we have

pdt ' κ+ ρpdt+1 + ∆dt+1 − rt+1. (40)

By iterating this equation we find:

pdt ' κ+ ρ(κ+ ρpdt+2 + ∆dt+2 − rt+2) + ∆dt+1 − rt+1

=
∞∑
j=0

ρjκ+ ρ∞pd∞ +
∞∑
j=1

ρj−1(∆dt+j − rt+j)

=
κ

1− ρ
+
∞∑
j=1

ρj−1(∆dt+j − rt+j),

(41)

assuming that ρ∞pd∞ = limj→∞ ρ
jpdt+j = 0, at least in expectation. Then, we take

expectation conditional to time t:

pdt '
κ

1− ρ
+
∞∑
j=1

ρj−1Et[∆dt+j − rt+j]

=
κ

1− ρ
+
∞∑
j=1

ρj−1Et[gt+j−1 − µt+j−1]

=
κ

1− ρ
+
∞∑
j=0

ρjEt[gt+j − µt+j].

(42)

Iterating the dynamics of µ̂t+1 and ĝt+1 and taking conditional expectation we find

Et[µ̂t+j] = δj1µ̂t

and

Et[ĝt+j] = γj1ĝt.

Therefore,

pdt '
κ

1− ρ
+
∞∑
j=0

ρj[γ0 + γj1ĝt − δ0 − δj1µ̂t]

=
κ

1− ρ
+
γ0 − δ0

1− ρ
+

ĝt
1− ργ1

− µ̂t
1− ρδ1

= A+B2ĝt −B1µ̂t. (43)
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The explicit expressions for the present-value coefficients A, B1 and B2 are the following:

A =
κ+ γ0 − δ0

1− ρ
,

B1 =
1

1− ρδ1

,

B2 =
1

1− ργ1

.

B Estimation Methodology

This appendix describes in detail the estimation procedure, first for the benchmark model

in Section 2 and then for the extended model in Section 5.

B.1 Benchmark model

For estimation purposes, we cast the model in state-space form, using demeaned state

variables µ̂t ≡ µt−δ0 and ĝt ≡ gt−γ0. We obtain the following linear transition dynamics:

ĝt+1 = γ1ĝt + εgt+1, (44)

µ̂t+1 = δ1µ̂t + εµt+1. (45)

The observable variables are dividend growth ∆dt+1 and the price-dividend ratio pdt+1.

Measurement equations for ∆dt+1 and pdt+1 are derived from the model-implied expres-

sions for dividend growth and price-dividend ratio. The measurement equation for divi-

dend growth is given by (5) while log price-dividend ratio is given by (7). Note however

that Equation (7) contains no error term, and as shown by Binsbergen and Koijen (2010),

this feature can be exploited to reduce the number of transition equations in the model.

By substituting the equation for pdt in the measurement equation for dividend growth,

we arrive at a final system with one transition equation, (44), and two measurement

equations:

∆dt+1 = gt + εdt+1. (46)

pdt+1 = (1− δ1)A+B2(γ1 − δ1)ĝt + δ1pdt −B1ε
µ
t+1 +B2ε

g
t+1. (47)

38



We use the Kalman filter to derive the likelihood of the model and we estimate it using

ML. The parameters to be estimated are the following:

θ = (γ0, δ0, γ1, δ1, σg, σµ, σd, ρgµ, ρµd, ρgd).

We assume that expectation processes are stationary, therefore parameters δ1 and γ1 are

bounded to be less than one in absolute value. The covariance matrix of the shocks,

(6), has to be positive definite, thus σg, σµ and σd are constrained to be positive, while

the correlation parameters are between −1 and 1.31 Rytchkov (2012) shows that it is

impossible to identify the whole covariance structure of shocks even when an infinitely

long history of returns and dividends is given, but only one element of Σ must be fixed

to identify the whole matrix. Thus, for identification purposes, we impose the constraint

ρgd = 0, as in Binsbergen and Koijen (2010). Overall the model implies 9 free parameters

to estimate. The estimation procedure is the following: We first define an expanded

4-dimensional state vector by the concatenation of the original state variable ĝ and the

process and observation noise random variables:

Xt =


ĝt−1

εgt

εµt

εdt

 ,

which satisfies:

Xt+1 = FXt + ΓεXt+1,

where

εXt+1 =


εgt+1

εµt+1

εdt+1

 ,

with conditional variance Σ, given in (6). Moreover,

F =


γ1 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , and Γ =

 01×3

I3

 ,
31Moreover, the condition ρ2gµ + ρ2µd + ρ2gd < 1 has to hold for Σ to be positive definite
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The measurement equation,

Yt =

 ∆dt

pdt

 ,

is of the form

Yt = M0 +M1Yt−1 +M2Xt,

where

M0 =

 γ0

(1− δ1)A

 , M1 =

 0 0

0 δ1

 ,
and

M2 =

 1 0 0 1

B2(γ1 − δ1) B2 −B1 0

 .
The steps of the filter algorithm are the following:

• Initialize with the unconditional mean and covariance of the expanded state:

X0,0 = 04×1,

P0,0 = E(XtX
′
t).

• The time-update equations are

Xt,t−1 = FXt−1,t−1,

Pt,t−1 = FPt−1,t−1F
′ + ΓΣΓ′,

• The prediction error ηt and the variance-covariance matrix of the measurement

equations are then:

ηt = Yt −M0 −M1Yt−1 −M2Xt,t−1,

St = M2Pt,t−1M
′
2, (48)

where Yt is the observed value of the measurement equation at time t.

• Update filtering:

Kt = Pt,t−1M
′
2S
−1
t ,

Xt,t = Xt,t−1 +Ktηt,

Pt,t = (I −KtM2)Pt,t−1,

where Kt is the Kalman gain.
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To estimate model parameters, θ, we define the log-likelihood for each time t, assuming

normally distributed observation errors, as

lt(θ) = −1

2
log |St| −

1

2
η′tS

−1
t ηt,

where ηt and St denote prediction error of the measurement series and the covariance

of the measurement series, respectively, obtained from the KF. Model parameters are

chosen to maximize the log-likelihood of the data series:

θ̂ ≡ arg max
Θ
L
(
θ, {Yt}Tt=1

)
, (49)

with

L
(
θ, {Yt}Tt=1

)
=

T∑
t=1

lt(θ),

where T denotes the number of time periods in the sample of estimation.32

B.2 Extended Model

In the case of the extended model in Section 5.1, the transition dynamics are the following:

ĝt+1 = γ1ĝt + γ2ẑt + εgt+1, (50)

µ̂t+1 = δ1µ̂t + δ2ẑt + εµt+1. (51)

The observable variables are dividend growth ∆dt+1, the price-dividend ratio pdt+1 and

an additional observable predictor variable, zt. Since Equation (33) contains no error

term, as for the benchmark model we can reduce the number of transition equations and

we arrive at a final system with one transition equation, (50), and three measurement

equations:

∆dt+1 = γ0 + ĝt + εdt+1. (52)

pdt+1 = (1− δ1)A+B2(γ1 − δ1)ĝt + [γ2B2 + (ξ1 − δ1)(B4 −B3)− δ2B1]ẑt +

+δ1pdt −B1ε
µ
t+1 +B2ε

g
t+1 + (B4 −B3)εzt+1. (53)

We use the Kalman filter to derive the likelihood of the model and we estimate it using

ML. The parameters to be estimated are the following:

θ = (γ0, δ0, γ1, δ1, σg, σµ, σd, ρgµ, ρµd, ρgd, ξ0, ξ1, ρgz, ρµz, ρdz, σz, δ2, γ2).

32For yearly data, as in our application, T is the number of years in the sample.
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For identification purposes, we impose the constraint ρgd = 0, as in Binsbergen and

Koijen (2010) and Yun (2012). Overall the model implies 17 free parameters to estimate.

The estimation procedure is the following: We first define an expanded 5-dimensional

state vector by the concatenation of the original state variable ĝ and the process and

observation noise random variables:

Xt =



ĝt−1

εgt

εµt

εdt

εzt


,

which satisfies:

Xt+1 = FXt +But+1 + ΓεXt+1,

where ut = zt−1 − ξ0 and

εXt+1 =


εgt+1

εµt+1

εdt+1

εzt+1

 ,

with conditional variance

Σ =


σ2
g σgµ σgd σgz

σgµ σ2
µ σµd σµz

σgd σµd σ2
d σdz

σgz σµz σdz σ2
z

 . (54)

Moreover,

F =



γ1 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


, B = [γ2 01×4]′ and Γ =

 01×4

I4

 ,
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The measurement equation,

Yt =


∆dt

pdt

zt

 ,

is of the form

Yt = M0 +M1Yt−1 +M2Xt,

where

M0 =


γ0

(1− δ1)A

ξ0(1− ξ1)

 , M1 =


0 0 0

0 δ1 ξ2

0 0 ξ1

 ,
ξ2 = γ2B2 + (ξ1 − δ1)(B4 −B3)− δ2B1,

and

M2 =


1 0 0 1 0

B2(γ1 − δ1) B2 −B1 0 B4 −B3

0 0 0 0 1

 .
The steps of the filter algorithm are exactly as for the benchmark model (see previous

subsection) apart from a slight change in the time-update equation for the state, which

becomes:

Xt,t−1 = FXt−1,t−1 +But.

C Asymptotic EIV bias in standard predictive re-

gressions

Standard predictive regressions of either returns or dividend growth rates on the lagged

log price-dividend ratio suffer from an error-in-variables (EIV) problem, which does not

disappear as the sample size increases. Indeed, the true model for aggregate stock returns

is:

rt+1 = δ0 + µ̂t + εrt+1,

but we wrongly assume the following model to hold:

rt+1 = ar + brpdt + ε̃rt+1, (55)
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where pdt = A − B1µ̂t + B2ĝt, and we try to estimate the true parameter br = −1/B1

from (55). The p-limit of the OLS slope coefficient is the following:33

b̂r −→
Cov(pdt, rt+1)

V ar(pdt)
,

where

Cov(pdt, rt+1) = Cov(A−B1µ̂t +B2ĝt, δ0 + µ̂t + ε̃rt+1)

= −B1V ar(µ̂t) +B2Cov(ĝt, µ̂t)

V ar(pdt) = B2
1V ar(µ̂t) +B2

2V ar(ĝt)− 2B1B2Cov(ĝt, µ̂t)

so that

b̂r −→
1

−B1 +
B2

2V ar(ĝt)−B1B2Cov(ĝt,µ̂t)

B2Cov(ĝt,µ̂t)−B1V ar(µ̂t)

,

and the unconditional variances and covariance of demeaned expected return and dividend

growth are the following:

V ar(µ̂t) =
σ2
µ

1− δ2
1

,

V ar(ĝt) =
σ2
g

1− γ2
1

,

Cov(ĝt, µ̂t) =
σgµ

1− γ1δ1

.

Thus, the OLS slope coefficient in the regression of returns on lagged price-dividend ratio

is biased. However, at the estimated parameters the bias is small due to the relative

persistence of expected dividend growth and returns.

The model for aggregate log dividend growth is:

∆dt+1 = γ0 + ĝt + εdt+1,

while the wrong model is:

∆dt+1 = ad + bdpdt + ε̃dt+1, (56)

and we try to estimate the true parameter bd = 1/B2 from (56). The p-limit of the OLS

slope is the following:

b̂d −→
Cov(pdt,∆dt+1)

V ar(pdt)
,

33Note that here we denote with b̂r the OLS estimate of the slope coefficient br in (55).
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where

Cov(pdt,∆dt+1) = Cov(A−B1µ̂t +B2ĝt, γ0 + ĝt + ε̃dt+1)

= B2V ar(ĝt)−B1Cov(ĝt, µ̂t)

so that

b̂d −→
1

B2 +
B2

1V ar(µ̂t)−B1B2Cov(ĝt,µ̂t)

B2V ar(ĝt)−B1Cov(ĝt,µ̂t)

.

Therefore, the OLS slope coefficient in the regression of dividend growth on lagged price-

dividend ratio is also biased. This bias is negative and, at the estimated parameters,

much more significant than the one for standard return regressions.

D Asymptotic Validity of the Bootstrap Likelihood

Ratio Test

In this appendix we prove the validity of our nonparametric bootstrap likelihood ratio

testing procedure, i.e., the equivalence in distribution of LRT and LR∗T in equations

(10) and (25), respectively, when B, T → ∞, under the null hypothesis H0. It is well

known that if H0 holds, as T → ∞, LRT follows a χ2
r distribution with r degrees of

freedom, where r is the number of parameter constraints defining the null hypothesis H0.

Therefore, we only need to show that also LR∗T is asymptotically χ2
r distributed.

Without loss of generality, let us consider for brevity the case in which the null hy-

pothesis to be tested is formed by zero restrictions, i.e., some of the model parameters

are equal to zero. In such cases, the r restrictions can be written as θ2 = 0r×1, where the

parameter vector θ is partitioned as θ = [θ′1 θ′2]′, possibly after some reordering of the

elements, where θ1 is (k − r)× 1 and θ2 is r × 1-dimensional.

Let θ̂ be the unconstrained ML estimator of θ, while the pseudo-true value of θ in the

population under H0 is denoted by θ? = [θ?′1 01×r]
′, where θ?1 is the pseudo-true value of

θ1, i.e., the maximum of the population expected log likelihood function with respect to

θ1 under the (potentially) incorrect assumption H0 : θ2 = 0r×1.

Stoffer and Wall (1991) show that nonparametric Monte Carlo bootstrap applied to

the (standardized) innovations {êt := S
−1/2
t (θ̂)ηt(θ̂)}Tt=1 yields a distribution of bootstrap
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residuals {ê∗t}Tt=1, which can be used to compute a bootstrap distribution of ML estimators

θ̂∗:

θ̂∗ = arg max
Θ

logL
(
θ, {Y ∗t }Tt=1

)
, (57)

where the Monte Carlo sequence {Y ∗t }Tt=1 is obtained by simulating dynamics (19)-(20)

based on bootstrap residuals {ê∗t}Tt=1 (see steps 1)-3) in Section 4.3). Stoffer and Wall

(1991) also provide an asymptotic justification of this procedure, showing, under general

conditions, the equivalence in distribution of
√
T (θ̂∗ − θ̂) and

√
T (θ̂ − θ?) as B, T →∞,

and assuming for simplicity B = T . For simplicity of notation we assume that the ML

setting holds, but all results hold true with obvious modifications in a PML setting, using

sandwich variance-covariance matrix estimators, see Stoffer and Wall (1991):

√
T (θ̂ − θ?) d→ N

(
0, I(θ?)−1

)
, (58)

where I(θ) = plimT→∞
1
T
E[−∂2 logL(θ)/∂θ∂θ′] is the asymptotic information matrix,

and
√
T (θ̂∗ − θ̂) d→ N

(
0, I(θ?)−1

)
. (59)

The constrained ML estimator θ̂0 can then be expressed as θ̂0 =
[
θ̂′1 01×r

]′
, and the

asymptotic distribution of θ̂1 is given by:34

√
T (θ̂1 − θ?1)

d→ N
(
0, I11(θ?1)−1

)
, (60)

where I11(.) is the (k−r)×(k−r) top left block of the asymptotic information matrix I(.)

of the unrestricted model. Analogously, the constrained bootstrap Maximum Likelihood

estimator θ̂∗0 can be partitioned as θ̂∗0 =
[
θ̂∗′1 01×r

]′
and its asymptotic distribution is

given by:
√
T (θ̂∗1 − θ̂1)

d→ N
(
0, I11(θ?1)−1

)
. (61)

For ease of notation, let us denote by l(θ, y) the log-likelihood of the model, i.e.

l(θ, y) ≡ logL
(
θ, {Yt}Tt=1

)
. Using a second order Taylor expansion around θ̂∗, the boot-

strap log-likelihood l(θ̂∗0, y
∗) can be written as

l(θ̂∗0, y
∗) = l(θ̂∗, y∗)− 1

2
(θ̂∗0 − θ̂∗)′H(θ̄)(θ̂∗0 − θ̂∗). (62)

34See e.g. Davidson and MacKinnon (1999a), chapter 10.
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where H(.) is the Hessian matrix,35 and θ̄ ∈ (θ̂∗0, θ̂
∗). Using (62), the bootstrap likelihood

ratio statistics LR∗T in (25) becomes

LR∗T = 2
(
l(θ̂∗, y∗)− l(θ̂∗0, y∗)

)
= −(θ̂∗0 − θ̂∗)′H(θ̄)(θ̂∗0 − θ̂∗).

Consistency of θ̂∗ implies consistency of θ̄, and using information matrix inequality36 we

get:

LR∗T
a
= T (θ̂∗0 − θ̂∗)′I(θ?)(θ̂∗0 − θ̂∗). (63)

Let we now define the score vector g(θ, y) of first derivatives of l(θ, y) with respect to

the elements of θ,37 and the asymptotic score vector s ≡ plimT−1/2g(θ?, y). From a Taylor

expansion of the likelihood equation g(θ̂∗, y∗) = 0 we obtain the following asymptotic

equalities:

T 1/2(θ̂∗ − θ̂) a
= I−1T−1/2g(θ?)

T 1/2(θ̂∗1 − θ̂1)
a
= I−1

11 T
−1/2g1(θ?),

which can be used to eliminate the estimators in (63) when we take the limit, obtaining

an expression that involves only asymptotic information matrix and asymptotic score

vector, as follows:

plimT 1/2(θ̂∗ − θ̂∗0) = plimT 1/2(θ̂∗ − θ̂)− plimT 1/2(θ̂∗0 − θ̂)

= I−1s− I−1
11 s1

= Js, (64)

where s1 is the subvector of s that corresponds to θ1, and

J ≡ I−1 −

 I−1
11 0(k−r)×r

0r×(k−r) 0r×r

 . (65)

35The k × k matrix of second derivatives of the log-likelihood with respect to θ.
36Let the asymptotic Hessian matrix be defined as H(θ) ≡ plim 1

TH(θ). The information matrix

equality, which assumes correct specification of the model, implies that I(θ) = −H(θ).
37In the same way, g1(θ, y) is the subvector of first derivatives of l(θ, y) with respect to the elements

of θ1
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Using (64), the probability limit of LR∗T for T →∞ becomes:

plimLR∗T = s′JIJs. (66)

Moreover, from (65), we have that

IJ = Ik −

 I11 I12

I21 I22

 I−1
11 0(k−r)×r

0r×(k−r) 0r×r

 =

 0(k−r)×(k−r) 0(k−r)×r

−I21I−1
11 Ir

 ≡ Q, (67)

which implies I−1Q = J, JQ = J and JIJ = J, from which we conclude that (66) can

be written as

plimLR∗T = s′Js. (68)

Now, notice that s is asymptotically N(0, I), thus s = I1/2s̃, where s̃ is asymptotically

standard normal. Therefore, (68) can be written as

plimLR∗T = s̃′I1/2JI1/2s̃, (69)

which is χ2 distributed with degrees of freedom equal to the rank of matrix I1/2JI1/2:

r(I1/2JI1/2) = r(I−1/2QI1/2) = r,

using the fact that I has full rank and that the rank of Q is r since its first k − r rows

are zero. Therefore, we can conclude that LR∗T
d−→ χ2

r, as we wanted to show.

E Bootstrap Distribution of out-of-sample R-squares

The distribution of the out-of-sample R-squares of returns and dividend growth under

the null hypothesis H0 is computed based on the following algorithm:

1) Using the estimated model parameters obtained using the first T years of data,

under the null hypothesisH0, denoted θ̂T,0, construct the (constrained) time series of

standardized innovations {ê0t}Tt=1, and a bootstrap sample of observations, {Y ∗t }Tt=1

as in steps 1)-3) in Section 4.3.

2) Using bootstrap sample {Y ∗t }Tt=1, compute unconstrained maximum likelihood point

estimates θ̂∗T , by maximizing the log likelihood function logL
(
θ, {Y ∗t }Tt=1

)
, without

imposing null hypothesis H0.
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3) Based on estimated parameters θ̂∗T and filtered state using data until time T , com-

pute the expected return and dividend growth for year T+1, µ̃T and g̃T , respectively.

4) Repeat steps 1)-3) for T = Tin, . . . , Tmax − 1, where Tin is the minimum length of

the in-sample period and Tmax is the length of the full sample of data.38

5) The out-of-sample R2 statistics for returns and dividend growth are computed as

R2
Ret,OS = 1−

∑Tmax−1
T=Tin

(rT+1 − µ̃T )2∑Tmax−1
T=Tin

(rT+1 − r̄T )2
,

R2
Div,OS = 1−

∑Tmax−1
T=Tin

(∆dT+1 − g̃T )2∑Tmax−1
t=Tin

(
∆dT+1 −∆dT

)2 ,

where r̄T and ∆dT are historical means or returns and dividend growth up until

time T .

6) Repeat steps 1)-5) a large number of times, B, to obtain a collection of bootstrap

values of the out-of-sample R2 statistics. The empirical distribution of these values

provides an approximation of the distribution of the R2
Ret,O and R2

Div,OS statistics

under the null hypothesis H0.

This procedure borrows from Rodriguez and Ruiz (2009), who show how to to compute

nonparametric bootstrap prediction intervals in state space models, while taking into

account the uncertainty linked to parameter estimation and not resorting to parametric

assumptions for the shock distribution in the model.

38We start our out-of-sample computations in 1985, which means that the first estimation is done

using Tin = 40 years of data, and the length of the full sample in our case is Tmax = 65 years.
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F Tables and Figures

Table 1: Results of the estimation of the present-value model in Section 2. The model is

estimated by maximum likelihood, using yearly data from 1946 to 2010 on log div-

idend growth rates and log price-dividend ratio. Panel A presents estimates of the

coefficients of the underlying processes. Panel B reports resulting coefficients of the

present-value decomposition pdt = A − B1µ̂t + B2ĝt. Bootstrapped standard errors

are in parentheses.

Panel A: Maximum likelihood estimates

γ0 δ0 γ1 δ1

0.057 0.083 0.304 0.927

(0.009) (0.010) (0.337) (0.089)

σg σµ σD ρg,µ ρµ,D

0.065 0.015 0.002 0.231 -0.972

(0.023) (0.024) (0.028) (0.419) (0.606)

Panel B: Implied present-value parameters

ρ A B1 B2

0.974 3.637 10.332 1.421

(0.004) (0.140) (2.418) (6.396)
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Table 2: Constrained ML estimates of the present-value model and LR statistics for the tests

of constant expected returns (H0 : δ1 = σµ = ρgµ = ρµd = 0), constant expected

dividend growth (H0 : γ1 = σg = ρgµ = 0) and equal autoregressive parameters

(H0 : δ1 = γ1). The first column reports the results of the unconstrained estimation,

from Table 1. LogL denotes the pseudo log-likelihood obtained, LR is the value of the

Likelihood Ratio statistic computed using (10), p−value denotes percentage p-values

of the tests, and the last row reports finite-sample sizes of the tests, in percentage.

Unconstrained H0 : δ1 = σµ = ρgµ = ρµd = 0 H0 : γ1 = σg = ρgµ = 0 H0 : δ1 = γ1

γ0 0.057 0.072 0.055 0.054

δ0 0.083 0.079 0.082 0.081

γ1 0.304 0.996 0 0.926

δ1 0.927 0 0.903 0.926

σg 0.065 0.002 0 0.004

σµ 0.015 0 0.021 0.021

σd 0.002 0.069 0.068 0.068

ρgµ 0.231 0 0 0.950

ρµd -0.972 0 0.357 0.312

LogL 230.84 215.91 224.33 224.79

LR 29.87 13.02 12.11

p− value (%) 0.00 0.46 0.05

size (%) 60.5 25.8 26.40

Table 3: Results of the bootstrap LR tests of constant expected returns (H0 : δ1 = σµ = ρgµ =

ρµd = 0), constant expected dividend growth (H0 : γ1 = σg = ρgµ = 0) and equal

autoregressive parameters (H0 : δ1 = γ1). p − value denotes percentage p-values of

the tests.

H0 : δ1 = σµ = ρgµ = ρµd = 0 H0 : γ1 = σg = ρgµ = 0 H0 : δ1 = γ1

p− value (%) 0.5 9.5 2.4
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Table 4: Panel A reports estimation results of the present-value model in Section 5.1, using as

predictor variables the book-to-market ratio (BM), stock variance (SV AR), CAY

and the BAA corporate bond yield (BAA), respectively. The models are estimated

using annual data from 1946 to 2010. Panel B reports the model-implied R-squared

values for return and dividend growth, in percentage, computed as in (8)-(9), while

Panel C reports R-squared from standard OLS predictive regressions of returns and

dividend growth on lagged price-dividend ratio and each predictive variable zt:

rt+1 = ar + brpdt + γrzt + εrt+1

∆dt+1 = ad + bdpdt + γdzt + εdt+1.

BM SV AR CAY BAA

Panel A: Maximum-likelihood estimates

γ0 0.051 0.056 0.050 0.057

δ0 0.071 0.129 0.077 0.090

γ1 0.234 0.475 0.338 0.296

δ1 0.878 0.993 0.926 0.920

σg 0.064 0.078 0.066 0.065

σµ 0.016 0.018 0.031 0.018

σd 0.013 0.018 0.015 0.008

ρgµ 0.220 -0.454 -0.308 0.177

ρµd -0.144 -0.758 -0.596 -0.167

ξ0 0.487 0.020 0 0.082

ξ1 0.913 0.418 0.733 0.939

ρgz -0.298 -0.764 -0.528 -0.250

ρµz 0.567 0.804 0.882 0.485

ρdz 0.597 -0.594 -0.775 0.702

σz 0.102 0.021 0.014 0.010

δ2 0.019 -0.285 -0.396 -0.025

γ2 0.067 1.652 0.837 -0.014

Panel B: Model-implied R-squared

R2
ret 10.13 9.70 17.58 9.65

R2
div 22.32 25.71 19.81 18.29

Panel C: Predictive regression R-squared

R2
ret 10.34 12.24 15.40 13.81

R2
div 4.26 8.02 0.95 3.03
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Table 5: Test of no dividend growth predictability in the context of the present-value model

in Section 5.1:

H0 : γ1 = γ2 = σg = ρgµ = ρgz = 0.

Panel A reports constrained estimation results, using as predictor variables the book-

to-market ratio (BM) and stock variance (SV AR), respectively. The models are

estimated using annual data from 1946 to 2010. Panel B reports the p-values of the

test, using the asymptotic distribution of the LR statistic, and the effective size of

the asymptotic test, for a nominal size α = 5%, while Panel C reports the p-values

of the bootstrap test. Finite sample size computations and bootstrap tests are based

on 1000 bootstrap samples.

BM SV AR

Panel A: Constrained Maximum-likelihood estimates

γ0 0.056 0.055

δ0 0.078 0.094

γ1 0 0

δ1 0.887 0.960

σg 0 0

σµ 0.019 0.031

σd 0.068 0.068

ρgµ 0 0

ρµd 0.382 -0.029

ξ0 0.504 0.021

ξ1 0.904 0.363

ρgz 0 0

ρµz 0.681 0.927

ρdz 0.136 -0.216

σz 0.101 0.022

δ2 0.006 -0.701

γ2 0 0

Panel B: Asymptotic test

p− value (%) 0.22 0.19

size (%) 22.70 28.60

Panel C: Bootstrap test

p− value (%) 7.40 10.20
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Table 6: Test of no return predictability in the context of the present-value model in Section

5.1:

H0 : δ1 = δ2 = σµ = ρgµ = ρµd = ρµz = 0.

Panel A reports constrained estimation results, using as predictor variables the book-

to-market ratio (BM) and CAY , respectively. The models are estimated using annual

data from 1946 to 2010. Panel B reports the p-values of the test, using the asymptotic

distribution of the LR statistic, and the effective size of the asymptotic test, for a

nominal size α = 5%, while Panel C reports the p-values of the bootstrap test. Finite

sample size computations and bootstrap tests are based on 1000 bootstrap samples.

BM CAY

Panel A: Constrained Maximum-likelihood estimates

γ0 0.070 0.072

δ0 0.075 0.080

γ1 0.960 0.996

δ1 0 0

σg 0.008 0.003

σµ 0 0

σd 0.067 0.069

ξ0 0.234 -0.006

ξ1 0.997 0.857

ρgz 0.811 -0.796

ρµz 0 0

ρdz 0.215 -0.253

σz 0.104 0.014

δ2 0 0

γ2 -0.001 0.015

Panel B: Asymptotic test

p− value (%) 0.01 0.00

size (%) 14.10 28.10

Panel C: Bootstrap test

p− value (%) 0.50 0.30
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Figure 1: Model-implied EIV bias for standard predictive regressions for returns (upper panel)

and dividend growth (lower panel) as a function of the difference between the autore-

gressive coefficients in the dynamics of expected returns (δ1) and expected dividend

growth (γ1). Solid blue lines denote the true model-implied value of the regression

coefficients, br = −1/B1 and bd = 1/B2, while dashed red lines denote the limit of

the OLS estimator of br and bd.
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Figure 2: Percentage R-squared of returns (dashed red line) and dividend growth (solid blue

line), implied by a simple present-value model as a function of the difference between

the autoregressive coefficients in the dynamics of expected returns (δ1) and expected

dividend growth (γ1). Horizontal lines denote the R-squared of standard predictive

regressions of returns (dotted red line) and dividend growth (dash-dotted blue line)

on lagged price-dividend ratio for the same sample period, i.e. 1946 to 2010.
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Figure 3: First (second) panel displays the quantiles of the empirical distribution of the LR

statistics for the tests of constant expected returns (dividend growth), while third

panel shows the quantiles of the empirical distribution of the LR statistics for the

test of equal persistence parameters, all obtained through a nonparametric bootstrap

simulation procedure, against the quantiles of the asymptotic chi-squared distribu-

tion of the statistics (dotted red line). The vertical dotted line denotes the 95%

quantile of this distribution.
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Figure 4: Bootstrapped distribution of the R-squared of returns (upper panels) and dividend

growth (lower panels), starting from the estimates under the constraint of constant

expected dividend growth (γ1 = σg = ρgµ = 0, left panels) and of equal persistence

parameters (δ1 = γ1, right panels). Vertical red lines and dashed black lines denote

R-squared from constrained and unconstrained estimations on real data, respec-

tively. Distributions are based on 1000 bootstrap samples.
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Figure 5: Bootstrapped distribution of the out-of-sample R-squared of returns (upper panel)

and dividend growth (lower panel), starting from the estimates under the constraint

of constant expected dividend growth (γ1 = σg = ρgµ = 0). Vertical red lines

and dashed black lines denote out-of-sample R-squared from constrained and un-

constrained estimations on real data, respectively. Distributions are based on 1000

bootstrap samples.
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Figure 6: Bootstrapped distribution of the R-squared of returns (upper panels) and dividend

growth (lower panels) implied by the present-value model with additional predictors

(bm in the left panels and svar in the right panels), starting from the estimates under

the constraint of constant expected dividend growth (γ1 = γ2 = σg = ρgµ = ρgz =

0). Vertical dashed black lines denote R-squared from unconstrained estimations on

real data. Distributions are based on 1000 bootstrap samples.
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