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A Markov Regime Switching GARCH Model with Realized 

Measures of Volatility for Optimal Futures Hedging 

 

Abstract 

Futures contracts are important instruments for managing the price risk exposure of 

spot portfolios. Over years, a number of studies have employed multivariate 

generalized autoregressive conditional heteroscedasticity (GARCH) models for 

managing the price risk, whereas the recent literature further indicates that utilizing 

either the Markov regime switching (MRS) or the realized volatility (RV) techniques 

on traditional GARCH hedging can help improving the hedging performance. This 

study contributes to this line of research by developing, for the first time, a 

multivariate MRS-GARCH model with realized measures of volatility 

(MRS-GARCH-X) for hedge ratio estimation, which itself is more flexible and/or 

informative in capturing the joint distribution of spot and futures than the existing 

models with stand-alone technique. To justify the performance of MRS-GARCH-X 

hedging, the NASDAQ 100 data are obtained for the investigations. Empirical results 

indicate that the MRS-GARCH-X hedging exhibits good in-sample and out-of-sample 

performance in terms of both criteria of variance reduction and utility growth, 

illustrating the statistical and economic benefits of combining the techniques of 

time-variation, state-dependency, and precise RV for effective futures hedging. 

 

Keywords: multivariate GARCH model; Markov regime switching; realized 

volatility; futures hedging; hedging effectiveness.  

JEL classification: C32, C58, G11. 
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INTRODUCTION 

Futures contracts are important instruments for managing the price risk exposure of 

spot portfolios. To hedge the portfolio risk effectively, the hedging theory indicates 

that an optimal hedge ratio defined as an amount of futures position that is undertaken 

for each unit of the underlying spot should be adopted. Over years, a number of 

studies have developed econometric models for estimating the hedge ratio. While 

earlier studies have restricted the ratio to be constant over time (Ederington, 1979), 

recent studies recognize that spot-futures distribution is time-varying, hence the hedge 

ratio should be time-dependent (Baillie & Myers, 1991; Moschini & Myers, 2002). To 

address this issue, multivariate generalized autoregressive conditional 

heteroscedasticity (GARCH) models are usually employed in estimating the 

conditional second moments that are relevant for hedge ratio estimation (Myers, 1991; 

Kroner & Sultan, 1993; Park & Switzer, 1995; Brooks et al., 2002; Lien & Yang, 

2006). Since the hedge ratio changes as new information arrives to the markets, 

generally, this realistic ratio tends to outperform the static ordinary least squares (OLS) 

one in terms of risk reduction size.  

  To enhance the hedging performance empirically, recent studies have considered 

two classes of augmented GARCH for overcoming some of the limitations in the 

standard models. One is to allow for potential regime shifts between spot and futures 

dynamics under different market scenarios, because it is observed that standard 

GARCH tends to impute high levels of volatility persistence due to structure breaks in 

the volatility process (Lamoureux & Lastrapes, 1990). Henceforth Markov regime 

switching (MRS) models are developed for effective hedging (Alizadeh & Nomikos, 

2004; Lee & Yoder, 2007a, 2007b; Alizadeh et al., 2008; Lee, 2009, 2010). The 

empirical results show that one may obtain more reliable hedge ratio estimates when 
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the joint distribution can be switched stochastically between regimes, as a result, 

better hedging performance is obtained.  

In addition to augmenting standard GARCH models using MRS techniques, recent 

studies also indicate that modeling and forecasting of a GARCH can be improved by 

incorporating finer intraday prices (Engle, 2002; Andersen et al., 2003; Koopman et 

al., 2005). This is because the realized variance (RV) by summing intraday squared 

returns provides more information about current level of integrated variance (IV) 

relative to that of using daily squared returns (Andersen et al., 2001; 

Barndorff-Nielsen & Shephard, 2002). Lai and Sheu (2010) demonstrated that, in the 

S&P 500 equity index market, both the statistical and economic hedging effectiveness 

are substantially improved with the use of intraday returns, relative to the use of daily 

returns.  

  This study contributes to this line of research by developing, for the first time, a 

MRS-GARCH model with finer RV (henceforth MRS-GARCH-X) for hedge ratio 

estimation. This MRS-GARCH-X hedging model accommodates the techniques of 

time-variation, state-dependency, and precise RV in estimating the hedge ratio, which 

itself in spirit generalizes the GARCH model of Baillie and Myers (1991), the 

MRS-GARCH model of Lee (2007a), and the GARCH-X model of Lai and Sheu 

(2010) for hedging. To ensure the benefits of a hedge using this MRS-GARCH-X 

model, the highly-traded NASDAQ 100 equity index futures traded on Chicago 

Mercantile Exchange (CME) is applied for the investigations. Empirical evidences 

suggest that the in-sample fitting of spot-futures distribution improves with the use of 

this proposed model, relative to the use of reduced GARCH, MRS-GARCH, and 

GARCH-X models. In addition to in-sample fitting, out-of-sample investigations are 

also carried out because the hedging decision has to be made ex-ante. Consequently, a 

rolling window method is involved for the out-of-sample period to provide robust 
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evidence on the usefulness of MRS-GARCH-X hedge ratios for long NASQAD 100 

positions. The results indicate that the MRS-GARCH-X accommodating the 

techniques of time-variation, state-dependency, and precise RV provides superior 

performance in terms of both risk reduction and utility growth sizes. The benefit of 

using the MRS-GARCH-X model for effective hedging is clearly supported.  

The remainder of this study proceeds as follows. In the next section, the 

MRS-GARCH-X model is introduced for hedging, and is related to the reduced 

GARCH, MRS-GARCH, and GARCH-X models. Section 3 describes the data; and 

Section 4 provides empirical results. Finally, Section 5 concludes this study. 

 

 

MRS-GARCH-X MODEL AND HEDGING 

Multivariate GARCH models are widely adopted in estimating the dynamic hedge 

ratio.
1
 This study considers using a BEKK specification for GARCH specification, 

because it allows for rich and flexible dynamics for the conditional second moments. 

An augmented GARCH model with MRS and RV components is provided to 

supplement the standard GARCH model for describing spot-futures distribution more 

realistically. Then the hedge ratio estimates are directly obtained from the forecasted 

conditional covariance matrix by the MRS-GARCH-X model.  

It is documented that standard GARCH models fail to statistically fit the observed 

price data (Carnero et al. 2004). Hence, a plenty of augmented GARCH models has 

been proposed, such as MRS-GARCH (Lee & Yoder, 2007a, 2007b) or GARCH-X 

                                                      
1
 For example, Baillie and Myers (1991) adopted the vector error correction (VEC) framework of 

Bollerslev et al. (1988) for hedging commodities; Kroner and Sultan (1993) adopted the constant 

conditional correlation (CCC) framework of Bollerslev (1990) for hedging foreign currency; Brooks et 

al. (2002) adopted the BEKK framework of Engle and Kroner (1995) for hedging equity index; Lien 

and Yang (2006) adopted the dynamic conditional correlation (DCC) framework of Tse and Tsui (2002) 

for hedging currency; Lai and Sheu (2011) adopted the asymmetric DCC framework of Cappiello et al. 

(2006) for hedging equity index portfolios. 
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(Engle, 2002; Visser, 2011) models. Assume that the state-dependent spot and futures 

returns in a generalized MRS-GARCH-X model can be specified as 

 , , , ,

, , , ,
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f t f st f t st

r u

r u
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where 
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 and 
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 are state-dependent conditional means of spot and futures 

returns, respectively,
 ,t st
u

 

is a state-dependent vector of Gaussian white noise 

process with time-varying 2 2  positive definite covariance matrix 
,t st

H , and 
1t
 

is the information set available on day 1t . It means that the conditional means, 

noises, and covariance matrix in MRS-GARCH-X depend on the market regime at 

time t  represented by the unobserved state variable {1,2}st , which is assumed 

to follow a two-state, first order Markov process with the following transition 

probabilities: 
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st st P
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 (2) 

where P  and Q  are assumed to remain constant between successive periods.  

  Moreover, the state-dependent variance/covariance matrix is assumed to follow a 

GARCH formulation with all orders set to 1, which is given by 
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for {1,2}st , where 
st
C , 

st
G , and 

st
A  are state-dependent parameter matrices. 

In this formulation, the state-dependent conditional (co-)variances are a function of 

past (co-)volatility proxies 
1t

X  and conditional (co-)variances 
1t

H . When 
1t

X  

is specified as 
1 1t t

u u , this defines a standard state-depend BEKK(1,1) model with 
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daily returns (henceforth MRS-GARCH; see Lee & Yoder, 2007a; Alizadeh, et al, 

2008), which is an augmented fully parameterized BEKK model (henceforth GARCH) 

of Engle and Kroner (1995).  

  Many financial data sets include intraday data in addition to the daily returns. Such 

data sets contain more information about the current level of volatility, so in principle 

it should be possible to improve standard GARCH models based on daily returns. 

This point is illustrated by Engle (2002), Koopman et al. (2005), and Visser (2011). 

They show that includes finer realized volatility measures in the GARCH equation 

(known as a GARCH-X model) is very useful for modeling and forecasting future 

volatility, because any of these realized measures is far more informative about the 

current level of volatility than is the squared return (Andersen et al, 2001; 

Barndorff-Nielsen & Shephard, 2002).  

  Realized variance (RV) is a commonly applied proxy for daily IV measurement. 

Usually, RV is defined as the sum of the intraday squared returns, 
2

,t t mm
RV r , 

where 
,t m
r  denotes the return over the m

th
 intraday interval of day t . In the absence 

of microstructure noise, Barndorff-Nielsen and Shephard (2002), Andersen et al. 

(2003) indicated that RV is a consistent estimate of IV when the sampling observation 

diverges. Extending the results for a univariate process to a multivariate framework, 

Barndorff-Nielsen and Shephard (2004) define the realized covariance (RC) by 

summing up intraday cross-product returns, 
, ,

i j

t t m t mm
RC r r , where 

,

i

t m
r  and 

,

j

t m
r  respectively denote the return over the m

th
 intraday interval for asset i  and j  

of day t . It is shown that RC is consistent for daily integrated covariance (IC) 

measurement in a frictionless market. With the finer realized volatility proxies, a 

MRS-GARCH-X model for spot and futures is given by defining  

 1 1

1
1 1

s

t t
ft

t t

RV RC

RC RV
X  (4) 
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in equation (3). Obviously, equation (3) combined with equation (4) will reduce to a 

state-independent GARCH-X model when a single regime process is assumed.  

  To solve the well-known path-dependency problem in the regime switching 

literature, this study integrates the state dependent variances and covariance by 

transferring them into path-independent counterparts. Following Gray (1996), the 

conditional variances can be recombined using the equations 

 2 2 2

, ,1 ,1 , ,1 ,1 ,2 , ,2 ,1 ,1 ,1 ,2
( ) (1 )( ) [ (1 ) ]

i t t i i t t i i t t i t i
h p h p h p p  (5) 

for { , }i s f , where 
,1t
p  is the probability of being in regime 1 at time t , defined 

as 

 

,1 1
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1,1 1,1 1,2 1,1

1,2 1,1

1,1 1,1 1,2 1,1

Pr( 1 | )
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(1 )
(1 )

t t

t t

t t t t

t t

t t t t

p st

f p
P
f p f p

f p
Q
f p f p

 (6) 

where  

 
1 1/2 1

, 1 , , , ,

1
( | ) (2 ) | | exp

2t st t t t st t st t st t st
f f R H u H u  (7) 

and 
, ,
[ ]

t s t f t
r rR  is a vector of spot and futures returns at time t . Similar to the 

variances, Lee and Yoder (2007a) showed that the state dependent covariance can be 

expressed as 

 , ,1 ,1 ,1 , ,1 ,1 ,2 ,2 , ,2

,1 ,1 ,1 ,2 ,1 ,1 ,1 ,2

[ ] (1 )[ ]

[ (1 ) ][ (1 ) ]
sf t t s f sf t t s f sf t

t s t s t f t f

h p h p h

p p p p
 (8) 

Using the collapsing procedure at each time step (equations (5)-(8)), the 

MRS-GARCH-X model becomes path-independent and tractable. Thus, the 

parameters of MRS-GARCH-X can be estimated by maximizing the log-likelihood 

(LL) function 
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, , ,1 ,1 ,1 ,2

1

( , ; ) log[ (1 ) ]
T

s t f t t t t t
t

LLF r r p f p f  (9) 

where { , , , , , }
st st st st
c g a P Q  represents the vector of parameters to be estimated. 

Note that we restrict 
1
c , 

3
c , 

1
g  and 

1
a  to be positive and apply the covariance 

stationary condition in Engle and Kroner (1995) to satisfy positive definite and 

covariance stationary in 
,t st

H  for each state. After obtaining the parameters’ 

estimates, a one-step-ahead hedge ratio forecast for time 1t  given all the available 

information up to t  can be calculated by 

 *

1
ˆ
t , 1

ˆ
sf t
h /

, 1
ˆ
f t
h  (10) 

where the conditional variance forecast 
, 1

ˆ
f t
h  and conditional covariance forecast 

, 1
ˆ
sf t
h  are calculated for the collapsing procedure as presented in equations (5) and 

(8), respectively.  

  Estimating hedge ratio using the MRS-GARCH-X model outlined above further 

incorporates finer intraday information in standard MRS-GARCH hedging, and 

relaxes the assumption of constant parameters in the GARCH-X process so that the 

hedge ratio depends on the state that the market is in. Once the state variable is 

restricted to be one state, the MRS-GARCH-X and the MRS-GARCH, respectively, 

reduce to the GARCH-X and the GARCH without allowing for switching 

stochastically under different market conditions. It is also noted that the 

MRS-GARCH model is a special case of the MRS-GARCH-X model when 
1t

X  is 

specified as 
1 1t t

u u . In this situation, collapsing the residuals of spot and futures 

returns is necessary in estimating the MRS-GARCH, as follows:  

 
, , ,1 ,1 ,1 ,2

[ (1 ) ]
i t i t t i t i
u r p p  (11) 

While the literature has documented that either MRS-GARCH or GARCH-X models 

overcome some of the limitations that standard GARCH models exhibit, one expects a 

MRS-GARCH-X model accommodating all the techniques of time-variation, 
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state-dependency, and precise realized measures of volatility should provide better 

description in fitting the data relative to the traditional models. Consequently, it is 

expected that the MRS-GARCH-X hedging would be superior to the GARCH, 

MRS-GARCH, GARCH-X, as well as static OLS
2
 hedging in terms of hedging 

performance.  

 

 

DATA DESCRIPTION 

The performance of optimal futures hedging using the MRS-GARCH-X, the 

MRS-GARCH, the GARCH-X, the GARCH, and OLS models are applied to the 

NASDAQ 100 equity index futures traded on CME, covering the period of July 1, 

2003 to June 30, 2010 (1763 trading days). Tick Data Inc. provides a record of the 

time and price of every trade/quote revision for the futures as well as their underlying 

equity index. To construct a continuous price series for futures, the prices of nearby 

contracts are used and rolled to the next month on any given day when the trading 

volume of the current contract is exceeded. The procedure of Barndorff-Nielsen et al. 

(2009) is also applied to the tick-by-tick data sets, because there may be multiple 

price observations with the same time stamp. In this situation, they suggested using 

the median price instead.  

  Having constructed the continuous time series for the futures contracts prices, price 

records for the spot occurring after 3:00 PM are dropped from the dataset. This is 

because the spot market closes fifteen minutes earlier than the (floor) section for 

futures. This means that we model and forecast the variation of open-to-close (8:30 

                                                      
2
 The OLS hedge ratio is defined as the ratio of the unconditional covariance between cash and futures 

returns over the variance of futures returns. Ederington (1979) shown that this static hedge ratio is 

derived by minimizing the unconditional variance of hedged portfolio returns. In practice, this OLS 

hedge ratio is obtained by regressing spot return on futures return with intercept parameter in a simple 

regression model; this is equivalent to the slope parameter estimate.  
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AM to 3:00 PM) continuously compounded returns on NASDAQ 100 positions, 

assuming that the hedger concerns with the price risk when both markets are open. 

In addition to obtaining daily logarithmic returns, daily realized volatility estimates 

are also relevant for MRS-GARCH-X hedging. This study considers a 15-min 

sampling procedure for calculating the realized quantities. Since the realized 

quantities constructed using all the tick-by-tick observations will result in a biased and 

inconsistent estimate of the true integrated variance when the market microstructure 

noise is presence, in practice, it is suggested to select a moderate frequency for a 

variance/bias trade-off. As a result, we partition the time horizon from 8:30 AM to 

3:00 PM (hence 390 minutes) into several 15-min girds by finding the closest 

transaction prices before or equal to each grid-point time for each day and asset. With 

the 15-min prices, daily RV and RC estimates
3
 are computed, and they are directly 

related to the daily open-to-close returns. 

Panel A of Table I presents the summary statistics of daily returns, where the 

returns are calculated as the logarithmic difference between the closing price and the 

opening price of a day (8:30 AM to 3:00 PM). It is observed that the futures price is 

more volatile than the spot price, as evidenced by higher standard deviation and 

extreme observations. The daily returns are very leptokurtic and left-skewed that 

departs from the normality assumption. Thereby a quasi maximum likelihood 

estimator is employed for models’ estimations. Panel B of Table I summarizes the 

daily RV and RC of spot and futures. As can be seen, daily squared (cross-product) 

returns are much noisier estimates for IV (IC) compared with 15-min RV and RC, as 

evidenced by larger standard deviations and extreme observations. It is also observed 

that the distribution of realized quantity is right-skewed and leptokurtic. Andersen et 

al. (2001) indicated that it can be transformed to Gaussian normal by using a 

                                                      
3
 Note that noisy overnight returns are not included in RV and RC estimation, because this would 

diminish the performance difference between the volatility proxies. 
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logarithm function. Having obtaining the daily returns and realized quantities, we then 

investigate the empirical performance of MRS-GARCH-X hedging.  

<Table I is inserted about here> 

 

 

EMPIRICAL RESULTS 

The empirical fitting of MRS-GARCH-X as well as alternative models are presented 

in Table II. We conduct the estimation of all models using data from July 1, 2003 to 

June 30, 2010. First, the likelihood function provides valuable information in fitting 

the joint distribution. It is observed that the likelihood function value increases when 

daily squared returns are replaced by precise RV estimates. For example, the 

likelihood function value of MRS-GARCH-X model is about 14683, which creates 

additional 90 values than the value of MRS-GARCH model. This implies that the 

in-sample fitting on the joint distribution improves when informative RV estimates are 

utilized; illustrating that intraday price captures more current information about 

volatility modeling than those of using daily price. Second, the covariance stationary 

eigenvalues in the last row indicate different persistence on the price dynamics. For 

example, the maximum eigenvalue for GARCH-X model approximates unity, which 

is much higher than the value of 0.8945 using standard GARCH. Similarly, the 

traditional MRS-GARCH exhibits less persistence compared to the MRS-GARCH-X 

model at each state. Importantly, a high volatility state is associated with low 

persistence in the variance and vice versa. Third, from the estimated transition 

probabilities, we can calculate the duration of being in each state. The transition 

probabilities of MRS-GARCH-X are estimated as 92.84%P  and 66.07%Q ; 

these indicate that the average expected duration of being in low volatility regime is 

about 14 (=1/(1-0.9284)) days compared to 3 (=1/(1-0.6607)) days in high volatility 
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regime 2. Thus, high volatility state is less stable and is characterized by shorter 

duration compared to low volatility state.  

<Table II is inserted about here> 

Next, we turn to investigate the empirical performance of using MRS-GARCH-X 

model for hedging. To do this, we divide the data into two: the in-sample data from 

July 1, 2003 to June 30, 2008 (1259 trading days), and the out-of-sample data from 

July 1, 2008, to June 30, 2010 (504 trading days). The in-sample state-dependent 

hedge ratio are calculated using equation (10), after integrating out the unobserved 

variable as described in equations (5), (8), and (11). Since hedgers are more 

concerned with how well they can hedge their positions in the future, we mainly focus 

on the out-of-sample performance. Note that the assessment is implemented by 

estimating the model recursively, using only data up to the specific date. Figure 1 

compares the one-step-ahead hedge ratio forecasts for that period examined. The 

hedging performance of the alternative models is exhibited in Panel B of Table III. In 

addition to the out-of-sample results, the in-sample results are also summarized in 

Panel A of Table III for comparisons. 

<Table III and Figure 1 are inserted about here> 

Focusing on the variance of these hedged portfolio returns firstly, the results 

indicate that the MRS-GARCH-X model performs the best among the competing 

models. The improvement of MRS-GARCH-X model reaches 98.33% and 98.40% in 

terms of in-sample and out-of-sample variance reduction sizes, respectively, as 

compared to unhedged spot position. The poor performance of traditional GARCH 

model illustrates the benefit of employing both the techniques of state-dependency 

and precise RV in estimating the hedge ratio. Besides assessing the variance reduction 

size of the models, investors should be more interested in knowing the economic 

benefit of using MRS-GARCH-X model for hedging. To formally assess the 
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performance of these hedges, the mean-variance utility function as in Kroner and 

Sultan (1993) is considered in the comparisons, as follows:  

 *

1 1 1
ˆ( ( ),var( ); , )p p

t t t
U E r r *

1 1
ˆ( ; )p

t t
E r *

1 1
ˆvar( ; )p

t t
r  (12) 

where  represents the level of risk aversion for an investor. The results show that 

the MRS-GARCH-X model delivers the highest average daily utility relative to the 

competing models. In addition, the out-of-sample utility gains over the GARCH, 

GARCH-X, and MRS-GARCH models are about 1091, 201, and 571 basis points per 

annum (252 days). The usefulness of simultaneously combining the techniques of 

time-variation, state-dependency, and precise RV estimates for effective hedging is 

clearly supported.  

 

 

CONCLUSIONS 

This study develops a new MRS-GARCH-X model, which accommodates the 

techniques of time-variation, state-dependency, and precise RV techniques for 

effectiveness hedging. The empirical usage of the model is examined with the use of 

NASDAQ 100 futures data. The in-sample result indicates the statistically fitting for 

the joint distribution can be improved over the models without using all of the 

techniques. Hence, the dynamics for spot and futures becomes more realistically when 

the flexible MRS as well as the informative RV techniques are allowed on the 

GARCH specification for describing the joint distribution. The in-sample results and 

the out-of-sample results with daily rolling over show that, the MRS-GARCH-X 

model exhibits good performance in terms of both criteria of risk reduction and utility 

growth, indicating the empirical usefulness of using MRS-GARCH-X model for 

effective hedging.  
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Table I 

Summary statistics of daily open-to-close returns and volatilities for the NASDAQ 100 index markets
a
  

Panel A: Daily open-to-close returns
b
 

 Spot  Futures  

Mean -1.43E-4 -2.63E-4  

Std. dev. 0.0127 0.0129  

Skewness -0.2906 -0.2878  

Kurtosis 7.4849 7.9706  

Minimum -0.0785 -0.0823  

Maximum 0.0645 0.0734  

Panel B: Daily open-to-close volatilities
c
 

 Spot variance Futures variance Covariance 

(A) Volatility estimation using daily returns 

Mean 1.60E-4 1.66E-4 1.62E-4 

Std. dev. 4.08E-4 4.40E-4 4.20E-4 

Skewness 7.5583 8.1759 7.8629 

Kurtosis 79.9504 90.8089 85.3223 

Minimum 0 0 -3.58E-5 

Maximum 6.17E-3 6.77E-3 6.46E-3 

(B) Volatility estimation using 15-min returns 

Mean 1.41E-4 1.54E-4 1.42E-4 

Std. dev. 2.79E-4 2.99E-4 2.82E-4 

Skewness 8.0476 7.4850 7.7658 

Kurtosis 88.8455 74.5566 81.4674 

Minimum 3.08E-6 4.55E-6 2.80E-6 

Maximum 4.27E-3 4.29E-3 4.25E-3 
a 
The sample period is from July 1, 2003 to June 30, 2010 (1763 trading days).

 

b
 Returns are calculated as the differences in the logarithm of daily open-to-close (8:30 AM to 15:00 PM) 

prices.  
c
 Realized variance and covariance, respectively, are calculated by summing daily or 15-min squared and 

cross-product returns from 8:30 AM to 15:00 PM of a day.  
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Table II 

Estimates of alternative GARCH models for the NASDAQ 100 index markets
a
 

Model GARCH GARCH-X
b MRS-GARCH MRS-GARCH-X

b
 

Low High Low High 

Mean equation
 

s
 

0.0003 

(11.19)
c
 

-0.0002 

(-6.01) 

0.0003 

(1.15) 

-0.0028 

(-1.73) 

0.0008 

(3.01) 

-0.0051 

(-3.69) 

f
 

0.0002 

(13.77) 

-0.0003 

(-9.53) 

0.0002 

(0.86) 

-0.0033 

(-2.08) 

0.0008 

(2.87) 

-0.0056 

(-3.95) 

Variance equation
 

1
c  

0.0021 

(56.02) 

0.0017 

(57.10) 

0.0015 

(5.99) 

0.0201 

(13.28) 

0.0003 

(1.02) 

0.0059 

(4.89) 

2
c  

0.0028 

(21.05) 

0.0021 

(67.65) 

0.0021 

(8.32) 

0.0206 

(13.58) 

0.0005 

(1.67) 

0.0058 

(4.91) 

3
c  

0.0002 

(5.84) 

0.0002 

(3.46) 

0.0001 

(0.54) 

0.0001 

(0.40) 

0.0003 

(3.74) 

0.0005 

(1.45) 

1
g  

0.0635 

(69.07) 

0.7164 

(866.31) 

0.8155 

(27.07) 

0.5483 

(14.72) 

0.8053 

(26.11) 

0.6146 

(9.83) 

2
g  

-0.5988 

(-129.36) 

0.0753 

(75.68) 

0.0613 

(3.14) 

-0.3296 

(-6.18) 

0.1614 

(7.11) 

0.0765 

(1.35) 

3
g  

0.8589 

(730.93) 

0.1788 

(213.62) 

0.1406 

(4.73) 

-0.3881 

(-7.94) 

0.1357 

(4.67) 

-0.0026 

(-0.05) 

4
g  

1.4844 

(2613.65) 

0.8011 

(816.73) 

0.8757 

(46.48) 

0.5040 

(12.33) 

0.7654 

(32.42) 

0.5622 

(8.52) 

1
a  

0.2979 

(26.22) 

0.5198 

(200.43) 

0.1917 

(5.04) 

0.1664 

(1.99) 

0.1827 

(6.26) 

0.6868 

(15.23) 

2
a  

0.5503 

(272.95) 

0.2100 

(72.15) 

0.2488 

(7.12) 

0.0246 

(0.18) 

-0.0149 

(-0.49) 

-0.0181 

(-0.27) 

3
a  

-0.5809 

(-750.54) 

-0.0738 

(-34.04) 

0.0435 

(1.19) 

0.0803 

(0.89) 

0.1522 

(5.01) 

0.0709 

(1.23) 

4
a  

-0.8969 

(-1470.02) 

0.2719 

(120.29) 

0.0274 

(0.73) 

0.1292 

(1.41) 

0.3924 

(13.40) 

0.7288 

(18.19) 

,P Q  - - 
0.9699 

(167.88) 

0.7504 

(20.68) 

0.9284 

(106.00) 

0.6607 

(8.40) 

LLF
 d
 14485.24 14610.62 14593.01 14683.47 

Covariance 

stationary 

eigenvaluese 

0.8945 

0.6069 

0.6069 

0.6609 

0.9999 

0.7059 

0.5063 

0.7173 

0.9610 

0.5631 

0.6843 

0.7000 

0.7921 

0.1677 

0.0670 

0.1680 

0.9993 

0.6768 

0.4535 

0.6685 

0.9288 

0.8420 

0.7706 

0.8476 
a 
The sample period is from July 1, 2003 to June 30, 2010 (1763 trading days).

 

b
 Note that RV estimates used by the GARCH-X models are computed using a 15-min sampling scheme.  

c
 Figures in parentheses are t-ratios. 

d
 LLF stands for log-likelihood function.  

e
 See Proposition 2.7 in Engle and Kroner (1995). 
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Table III 

Hedging effectiveness of alternative GARCH models
a
 

 Variance
b
 Variance 

improvement of 

MRS-GARCH-X
c
 

Utility
d
 Utility gains of 

MRS-GARCH-X 

over other hedging 

models
e
 

Panel A: In-sample hedging effectiveness 

Unhedged 160.3096 98.33% -642.6671  633.1796  

OLS 2.7132  1.62% -9.7049  0.2174  

GARCH 2.8057  4.87% -10.0368  0.5493  

GARCH -X 2.6868  0.66% -9.6082  0.1207  

MRS-GARCH 2.7131  1.62% -9.6245  0.1370  

MRS-GARCH-X 2.6692   -9.4875   

Panel B: Out-of-sample hedging effectiveness 

Unhedged 319.7786  98.40% -1280.2728  1261.8668  

OLS 5.3954  5.07% -19.6021  1.1961  

GARCH 6.0621  15.51% -22.7358  4.3298  

GARCH -X 5.3144  3.62% -19.2030  0.7971  

MRS-GARCH 5.5411  7.56% -20.6714  2.2654  

MRS-GARCH-X 5.1221   -18.4060   
a
 The in-sample period is from July 1, 2003 to June 30, 2008 (1259 trading days); and, the out-of-sample 

evaluation period is from July 1, 2008 to June 30, 2010 (504 trading days). 
b
 Variance denotes the variance of the hedged portfolio multiplied by 10

6
. Figures in bold denote the best 

performing model for each criterion.  
c
 Improvement of MRS-GARCH-X over other hedging models measures the incremental variance reduction 

of the MRS-GARCH-X over other models.  
d
 Utility is the average daily utility for an investor with a mean-variance utility function and a coefficient of 

risk aversion of 4, multiplied by 10
4
.  

e
 Utility gains of MRS-GARCH-X over other hedging models measures the difference of the expected daily 

utility of MRS-GARCH-X and the expected daily utilities of other GARCH models.  
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FIGURE 1. (a) Out-of-sample hedge ratios for the rolling MRS-GARCH and OLS 

models for the period of July 1, 2008 and June 30, 2010 (504 trading days).  

 

FIGURE 1. (b) Out-of-sample hedge ratios for the rolling GARCH and OLS models 

for the period of July 1, 2008 and June 30, 2010 (504 trading days). 


