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Abstract 

This paper focuses on risk contributions of trading and non-trading hours in Chinese 
commodity futures markets. We first examine integrated risks of Chinese copper, rubber, 
and soybean futures markets within the copula-VaR (value at risk) and copula-ES 
(expected shortfall) frameworks, explicitly accounting for both the trading and non-trading 
information. Then, we evaluate the component VaR and component ES of the trading and 
non-trading periods to gauge their respective risk contributions to the integrated market 
risks. We find that copula-based VaR models can appropriately measure integrated risks, 
as the typical VaR and ES based on close-to-close returns underestimate overall market 
risks. In addition, we document that the financial information accumulated during non-
trading hours contributes substantially to the overall risk of futures markets, with 
component VaR and ES weights ranging from more than 40% to nearly 60% in these 
markets. In particular, the information during non-trading hours is more important than 
that in trading hours in explaining the total risk of copper futures in China. Moreover, the 
risk contribution of non-trading periods increases with their lengths, reflecting the fact that 
information flows constantly over time.  
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1. Introduction 

Chinese financial markets trade only during the daytime hours from Monday to Friday, 

and the total trading period of any market is generally less than seven hours, which is less 

than one half of the non-trading hours. Consequently, the financial information 

accumulated during non-trading hours represents a significant source of the integrated 

market risk, and plays an important role in price discovery in financial markets. This 

information arises from public announcements made during non-trading hours in China as 

well as from trading activities in overseas markets. For risk hedging purposes, it is crucial 

not only to properly measure the overall risk in financial markets by accounting for all 

price sensitive information but also to locate sources of risk, particularly risks related to 

trading and non-trading hours. The purpose of this paper is to quantify integrated risks and 

risk contributions of trading and non-trading hours in major Chinese commodity futures 

markets.  

To measure the integrated risk of a futures market, we employ the value at risk (VaR) 

and expected shortfall (ES) concepts in our analysis, as both provide a clear interpretation 

in monetary terms and a direct application in risk management. VaR is defined as the 

maximum loss of an investment at a certain confidence level over a specified horizon; it 

became a widely accepted standard in the risk management industry after J.P. Morgan 

introduced their RiskMetrics document in 1994. However, the major drawback of this 

method is that it is not sub-additive, which means that the VaR of a portfolio can be larger 

or smaller than the sum of the VaRs of its components. Moreover, it cannot measure the 

expected loss resulting from extremely unlikely market factor changes. To overcome these 

drawbacks, Engle and Manganelli (1999) propose the concept of expected shortfall (ES), 
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which is the mean of losses, given that losses are greater than the VaR at the confidence 

level. Some research (Acerbi and Tasche, 2002; Frey and McNeil, 2002; Manganelli and 

Engle, 2001) illustrates that ES provides a better estimate of risk than VaR when loss 

distributions exhibit fat tails or empirical discreteness. In contrast with VaR, ES is a 

coherent risk measure in the sense of Artzner et al. (1999), and satisfies the sub-additivity 

property. For these reasons, ES is considered an important alternative to VaR for the 

purpose of risk measurement.  

Integrated risk estimates depend critically on the return distribution assumed for a 

particular market. In this paper, we utilize copula functions based on peaks over threshold 

(POT) theory to link both trading and non-trading return distributions and to construct the 

market return distribution. Traditionally, the joint distribution of multi-asset returns or risk 

factors is assumed to be multivariate normal with a linear correlation matrix. However, it is 

a stylized fact that financial asset returns typically exhibit non-normal properties and non-

linear dependencies. As we know, the copula approach is more flexible in modeling 

multivariate distributions, as it can separate univariate marginal distributions from the 

multivariate dependence structure. This allows us to select a rich dependence structure 

while preserving non-normality properties of marginal distributions. Given these 

advantages, the copula approach has recently received substantial attention in the finance 

literature. For example, Ward and Lee (2002) use a multivariate normal copula to 

aggregate different types of risks to create an integrated risk distribution for an insurance 

company. On the other hand, Rosenberg and Schuermann (2006) combine market, credit, 

and operational risks with copulas to obtain a total risk distribution for a financial 

institution. They find that the copula-based approach is more accurate than other methods 
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at estimating the overall risk as measured by VaR and ES. We follow this line of thought 

and combine the correlated trading and non-trading return distributions into a joint risk 

distribution using a copula function that better fits our data. Trading and non-trading 

returns can exhibit quite distinct distributional characteristics due to different information 

flow patterns in these periods. To capture the non-normality characteristics of trading and 

non-trading return distributions, such as skewness and fat-tails, we apply the extreme value 

theory (EVT) to form these distributions. The EVT is designed especially for tail 

estimation, and it enables us to estimate extreme probabilities and extreme quantiles 

without making assumptions about an unknown parent distribution. Therefore, our 

approach can better measure the integrated market risk than the typical method based 

solely on close-to-close daily returns, as it explicitly accounts for information flows during 

both trading and non-trading periods.  

Another important objective of this paper is to quantify the risk contributions of trading 

and non-trading hours in a market. To this end, we decompose the total risk of the market 

into component VaRs and component ESs to gauge the impact of the information 

accumulated during non-trading hours on market risk. We also distinguish among different 

types of non-trading periods to further investigate the role of the length of non-trading 

periods in risk contributions. The importance of non-trading information in price discovery 

and market volatility has been well documented in the literature. Tsiakas (2008) finds that 

the size and predictive ability of non-trading information for both European and US stock 

markets are substantial. Taylor (2007) also confirms the significant impact of overnight 

information on information flow in the regular S&P 500 futures market. On the other hand, 

Cliff, Cooper, and Gulen (2008) find that night returns are higher than day returns, and 
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conclude that the US equity premium over the last decade is solely due to overnight returns. 

In contrast, this paper proposes a new approach to measuring the risk contribution of 

overnight returns, and primarily focuses on the risk aspects of trading and non-trading 

information in the market. This is of particular interest to both academics and practitioners, 

as our results help explain sources of risk and provide important implications for risk 

management. Additionally, it helps us better understand how the trading information in 

international developed markets impacts Chinese markets. Note that European and US 

markets are open to trade during Chinese non-trading hours.  

Using data from Chinese copper and rubber futures traded on the Shanghai Futures 

Exchange (SHFE) and soybean futures traded on the Dalian Commodity Exchange (DCE), 

we show that our model can appropriately measure integrated risks, and that the typical 

VaR and ES calculations based on close-to-close returns significantly underestimate 

overall market risk. Additionally, the financial information accumulated during non-

trading hours contributes substantially to the overall risk of commodity futures markets in 

China. The component VaR and component ES weights of non-trading hours are much 

higher than 40% for all markets under both 95% and 99% confidence levels. Specifically, 

non-trading hours contribute more to the integrated risk than trading hours in the copper 

futures market, indicating that non-trading hours contain more important information than 

do trading periods. Moreover, the risk contribution of non-trading hours increases with the 

length of the non-trading period. We also demonstrate that both the VaR and ES are 

particularly sensitive to the confidence level when the level is high.  

The remainder of this paper is organized as follows. Section 2 describes the copula 

methodology. Section 3 discusses the data used for the analysis and provides the 
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descriptive statistics. Section 4 reports the empirical results, while Section 5 concludes this 

paper. 

2. POT-based copula- VaR and ES models 

2.1. Trading and non-trading returns 

Let c
tF  denote the daily closing price of a futures contract at date t ,  and o

tF  the daily 

opening price. Following Tsiakas (2008), the close-to-close daily return tr , the close-to-

open non-trading return n
tr , and the open-to-close trading return d

tr  are calculated as per 

the following definitions: 
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d
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Thus, we can separate non-trading returns from trading returns. The non-trading return 

and its variability are due to the information released during non-trading hours, as this 

information is reflected in opening prices. The typical daily return is simply a sum of the 

trading and non-trading returns. Separating trading from non-trading returns allows us to 

model their distributions differently to ensure their unique distributional characteristics are 

captured. Further, non-trading periods can be normal weeknights, weekends, or holidays. 

As a general practice in China, when a public holiday(s) happens to be on a weekday(s) 

from Tuesday to Thursday, a short holiday period is created by extending the nearest 

weekend to include those dates before or after the holiday(s). As a result, any non-trading 

holiday period contains at least 72 hours. Presumably, a longer non-trading period may 

accumulate more information, thereby making a higher contribution to integrated risks 
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than a shorter non-trading period. We will investigate whether a longer non-trading period 

indeed contains more (or more important) information about returns than does a shorter 

one. 

2.2. Modeling joint distributions with copula functions   

Our focus in this paper is on a bivariate model, where the random variables are trading 

and non-trading returns. In general, let ),( 21 XX  be a vector of two random variables with 

a joint distribution denoted as ),( 21 xxF , and the marginal distribution functions 1F  and 2F , 

respectively. Additionally, we assume that each marginal distribution function depends on 

one single parameter i  ( 2,1i ). Then, Sklar’s theorem states that there is a copula 

function );,( 21 uuC  such that 

));;(),;((),( 22211121  xFxFCxxF  ,      (4) 

where   is the parameter vector of the copula function C . If 1F  and 2F  are continuous, 

then the copula function is unique; otherwise, it is uniquely determined on 

)()( 21 FRanFRan  . Conversely, for any univariate risk distributions 1F  and 2F , Equation 

(4) defines a joint distribution ),( 21 xxF  with margins 1F  and 2F . Thus, Sklar’s theorem 

implies that we can combine any univariate distributions into a joint distribution together 

with a copula. 

Differentiating ),( 21 xxF  with respect to its variables yields the joint density function 

);();());;(),;((),( 22211122211121  xfxfxFxFcxxf  ,    (5) 

where copula density 2121
2

21 /);,();,( uuuuCuuc   , and );( 111 xf  as well as 

);( 222 xf  are marginal density functions. Equation (5) shows that for any continuous joint 

distribution, the univariate margins and the dependence structure can be separated, where 
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the dependence structure can be completely determined by a proper copula function. For 

this reason, copula functions enable us to obtain a joint distribution with a variety of 

possible, but not necessarily equal, parametric univariate distributions. Consequently, we 

can preserve the original characteristics of marginal distributions, while allowing for a 

wide range of dependence relations. 

 For a given set of return observations  T
ttt xx

1,2,1 ),(


, model parameters ),,( 21    

can be jointly estimated by maximizing the following log-likelihood function 

  



T

t
ttt

T

t
t xfxfxFxFcxxL

1
2,221,112,22

1
1,1121 );(ln);(ln));;(),;((ln),|(  . 

            (6) 

 This method may be computationally expensive especially for high dimensions. As we 

can see from Equation (6), the copula parameter is unaffected by the parameters of the 

marginal distributions. As a consequence, these parameters can be estimated separately. In 

this paper, we adopt the Inference Function for Margins (IFM) method, in which 

parameters are estimated in two stages. More specifically, we first estimate parameters 1  

and 2  of marginal distributions. Then, we estimate the copula parameter vector   

conditional upon the marginal distribution estimates in the first step. For the estimation at 

each stage, the maximum likelihood method is used. The IFM method is able to provide 

estimators as well as the joint distribution method in terms of the mean square errors (Xu, 

1996), but is apparently computationally simpler.  

 2.3. Marginal distributions 

 2.3.1. Excess distributions 
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 In this paper, we employ the extreme value theory (EVT) to select and specify the 

marginal distributions of trading and non-trading returns. As is pointed out by Longin 

(2000), the major advantage of EVT is that it takes into account rare events contained in 

distribution tails, with no particular return distribution assumption. There are two main 

approaches to estimating extreme values within the EVT context: the block maxima model 

(BMM) and the peaks over threshold (POT) model. The BMM method considers the 

maximum (or minimum) observations in successive periods, which are pre-chosen as 

blocks. In contrast, the POT method focuses on the realizations that exceed a given high 

threshold. The latter method apparently uses the available data more efficiently, and 

therefore is adopted in this analysis. In particular, we consider the most widely used 

distribution in modelling excesses: the generalized Pareto distribution (GPD). 

 To illustrate this method, let )Pr()( xXxF   be the distribution function of a 

random variable X . For a given threshold u , the distribution of the excess values is given 

by 

 
)(1
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uXyuXyFu 


 , 0y .   (7)  

 In practical applications, we will have to approximate the conditional excess 

distribution for high threshold values, as the parent distribution )(xF  is unknown.  

 Balkema and De Haan (1974) and Pickands (1975) prove that for a sufficiently high 

threshold u , the excess distribution converges to the GPD, which is given as 
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where )(u  is a positive function of u , representing a scale parameter, and   is a shape 

parameter that determines the GPD shape. When 0 , 0 , or 0 , the 

corresponding excess distribution is from the Fréchet, Gumbel, or Weibull families, 

respectively. The Fréchet family is particularly interesting, as it is most suitable for 

modelling fat-tailed return distributions.   

 Given that the GPD well approximates tail distributions of actual data, we use it to 

simulate the upper and lower tails of trading and non-trading returns. The marginal 

distribution is as follows: 
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where R
nu  and L

nu  correspond to the upper and lower thresholds, respectively. )( nn x  is the 

empirical function of nx  in ],[ R
n

L
n uu . K is the number of total observations. R

un
k  represents 

the number of returns that are larger than the upper threshold R
nu , while L

un
k  represents the 

number of returns that are smaller than the lower threshold L
nu . Further, R

n , L
n , L

n , and 

R
n  are parameters to be estimated in the marginal distribution. 

 2.3.2. Threshold selection 

 Before estimating the parameters in Equation (9), a proper level of threshold u  needs 

to be selected. If we choose too high a threshold, then there may be insufficient 

exceedances, and this may result in high variance estimators. On the other hand, too low a 

threshold may not satisfy well the conditions for convergence in the distribution of 
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threshold exceedances to the GPD, thereby yielding biased estimators. Thus, we face a 

tradeoff between bias and variance in the threshold determination. The following is a 

review of three major approaches to threshold choice. 

 The first method is based on the mean excess function (MEF), which is defined as 

 )|()( uXuXEue  .        (10) 

It can be shown that the MEF of the GPD is a linear function of threshold u . For this 

reason, we consider the empirical MEF   
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where iX  ( uni  , ,2 ,1  ) represents observations that exceed the threshold, and plot the 

MEF as a function of u . The threshold we choose is the lowest u  such that the empirical 

MEF is approximately linear.  

 The second method selects the optimal threshold according to the stability of 

parameter estimates. If the excess distribution for an initial threshold 0u  is a GPD with 

parameters )( 0u  and  , then the new excesses over a higher threshold 0uu   are 

distributed as a GPD with corresponding parameters )(u  and  , where 

)()()( 00 uuuu   . Define the modified scale parameter as uu   )(' , then '  

is a constant with respect to threshold u . Consequently, we plot '  and   versus u  

together with confidence intervals for the estimated quantities, and select the smallest u  

such that these estimates remain nearly stable. 
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 The third approach is based on Hill’s (1975) plot. Specifically, let nXXX  21  

be independent and identically distributed random variables. The tail index statistic is 

given by 
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 Define Hill’s plot as the dot set of  11 ),,( 1
,  nkHk nk . The observation kX  that 

corresponds to the beginning point in the tail index stable zone is selected as the threshold. 

 Overall, the first and third methods depend crucially on the number of exceedances, 

and may yield a large bias in the case of small samples. On the other hand, the second 

method provides a relatively objective criterion, as the threshold is usually determined by 

regressions in this approach. With this method, different thresholds can be selected for 

different precision levels. To make the threshold estimates more accurate, we first decide 

the range for the optimal threshold according to the first approach, and then choose the 

value as per the second and third methods. 

 2.4. Integrated VaR and ES estimation 

  Given the marginal distributions of trading and non-trading returns )( 11 xF  and )( 22 xF  

for the selected thresholds, we then estimate copula parameters by substituting them into 

various types of copula functions  

 ))(),((),( 2
1

21
1

121 xFxFFuuC  ,       (13) 

where )(1
ii xF   is the reverse of the marginal function )( ii xF . Next, these copula functions 

are simulated and compared, and the one with the smallest Bayesian Information Criteria 

(BIC) (or Akaike’s Information Criteria (AIC)) is chosen as the optimal copula for our 
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analysis.2 Finally, the VaR and ES at a confidence level can be computed using the Monte 

Carlo method. Specifically, VaR is solved from the following definition: 

 pVaRX p  )Pr( ,        (14) 

where 2211 M-VaRwM-VaRwVaRp  . Namely, 

   pdxdxxfxFxFc i
i

i
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 The ES is defined as the expected loss that exceeds VaR. Namely, 

 )|()|( ppppp VaRXVaRXEVaRVaRXXEES  ,   (16) 

where )|( pp VaRXVaRXE   is the mean excess function corresponding to the pVaR . 

We know that the mean excess function for the GPD with parameters 1  and   is 
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Equations (16) and (17) together imply  
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2.5. Component VaR (C_VaR) and component ES (C_ES) 

 In this section, we decompose the integrated risk measures into the risk contributions 

of trading and non-trading hours. For this purpose, we adopt the concepts of marginal and 

component risks in the risk attribution framework.  

                                                            
2 The copula functions considered in this paper include those from ellipse copula function family (Normal 
copula), Archimedes copula family (Gumbel copula, Joe copula, Frank copula, BB1 copula, BB3 copula, 
BB6 copula, and BB7 copula), extreme value copula family (Tawn copula), and Archimax copula family 
(BB4 copula). 
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The marginal VaR (M_VaR) of trading or non-trading returns represents the marginal 

impact of a small change in the weight of trading or non-trading returns on the integrated 

VaR. In particular, 

 ppi
i

p
i VaRrrE

w

VaR
VaRM 




 |_ ,      (19) 

where iw  corresponds to the weight assigned to trading information ( 1i ) or non-trading 

information ( 2i ), and pr  is the sum of trading and non-trading returns. 

Since VaR is homogeneous of degree one,3 we have the following formula, according 

to Ruler’s theorem (Zhang and Rachev, 2006): 

2211
2

2
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1 __ VaRMwVaRMw
w

VaR
w

w

VaR
wVaR pp
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 .   (20) 

 Thus, the first term in Equation (20) measures the risk contribution of trading returns, 

while the second term measures the risk contribution of non-trading returns. The sum of 

both terms is just equal to the integrated risk of the market under consideration. For this 

reason, the component VaR is simply defined as 

 iii VaRMwVaRC __  , 2,1i .       (21) 

 Equation (21) indicates that if we obtain the estimate of M_VaR, then C_VaR follows 

immediately. Garman (1996; 1997) derives expressions for the M_VaR and C_VaR 

metrics under the assumption that returns are multivariate normally distributed. To avoid 

the stringent normality assumption, Hallerbach (2003) derives a distribution-free 

expression for the marginal contribution of an instrument to the diversified portfolio VaR. 

Based on this method, Huang and Yang (2007) propose a new approach that can provide 

                                                            
3 A risk measure  is homogeneous of degree one if )()( XkkX    for all X and 0k . 
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more accurate estimates of M_VaRs than can Hallerbach’s procedure, especially when the 

observations are sparse. Therefore, in this paper we utilize this modified approach to 

estimate marginal VaRs. 

 Huang and Yang’s (2007) modified approach starts with selecting N  different 

observations in ],[ ppppp VaRVaRVaRVaRr    for different   )10(   , where 

each observation is a vector ),,( ,,2,1 jpjj rrr . Intuitively, the closer jpr ,  and pVaR  are, the 

better jir ,  can approximate ir  given that pp VaRr   is true. As a result, jir ,  should receive 

a high weight. The estimate for iVaRM_  is given by 

 ji

N

j
ji rmVaRM ,

1

_ 


 ,        (22) 

where jir ,  is the jth ( Nj ,,2,1  ) observation of returns for the ith ( 2,1i ) component 

(trading or non-trading). jm  represents the corresponding weight on jir , . If pjp VaRr ,  

for any j , then 
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In addition, 1
1
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 Given that the typical daily return is simply a sum of trading and non-trading returns 

(i.e., 121  ww ), the component VaR is the same as marginal VaR in our analysis. Based 

on the estimates of M_VaRs and all the observations from set ),( pp VaRr  , we can 

compute the M_ESs as follows 
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Accordingly, the percentage risk contribution of each component is given by 
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 2.6. Backtesting  

 Since the late 1990’s, a variety of backtests have been proposed for gauging the 

adequacy of VaR models. The two well-known approaches to backtesting a risk model 

include Kupiec’s (1995) unconditional coverage test and Christoffersen’s (1998) 

conditional coverage test. To illustrate the basic idea of backtesting, we denote the actual 

loss for a given horizon as tL , and then define the following indicator variable as the hit 

function, 
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tt

tt
t        (28) 

 Apparently, the hit function series tracks the history of whether or not a realized loss 

exceeds the model estimated VaR at the given confidence level p1 . Christoffersen (1998) 

demonstrates that under the null hypothesis that the VaR model is correct, the resulting hit 
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series  T

tt pI 1)(   must satisfy both the so called unconditional coverage property and 

independence property. The unconditional coverage property requires that the observed 

frequency of violations, which is defined as losses exceeding the VaR estimates for that 

period, be the same as p , the expected frequency of exceedances according to the model. 

On the other hand, the independence property states that any two elements of the hit series 

must be independent of each other. 

 Kupiec’s (1995) unconditional test focuses only on the unconditional coverage 

property. Namely, it examines whether the observed frequency of violations 


T

t
t pI

T 1

)(
1

 is 

statistically significantly different from p . Following the binomial theory, the probability 

of observing N  violations out of T  observations is NNT pp  )1( . Thus, the likelihood 

ratio test statistic is given as follows: 

 ])/()/1ln[(2])1ln[(2 NNTNNTUC TNTNppLR   .   (29) 

 Under the null hypothesis that the expected violation frequency is p , this 

unconditional test statistic is distributed as )1(2 . While this method is very intuitive and 

straightforward, it suffers from at least two shortcomings. The first problem is the low 

power of test, as pointed out by Kupiec (1995), while the second is that it fails to detect 

whether these VaR violations are independent of each other. A VaR model that violates the 

independence property may result in clustered violations, indicating that the model cannot 

properly capture the variability of losses under certain conditions.  

 In contrast, Christoffersen’s (1998) conditional coverage approach jointly tests both 

the unconditional coverage and independence properties. In addition, we can also test the 



18 

 

sub-hypothesis regarding the frequency and independence of violations with this method. 

This procedure allows us to separate clustering effects from the distributional assumption.  

 The statistic for Christoffersen’s test is given by 

 ])1()1ln[(2])1ln[(2 11100100
11110101
nnnnNNTCC ppLR    ,  (30) 

where ijn )1,0,( ji  is the number of times that value i  is followed by j  in the hit series 

 T

tt pI 1)(  , and ij  is the corresponding frequency, which is defined as 



1

0

/
j

ijijij nn . 

Under the null hypothesis that the model is correct, the distribution of CCLR  is 

asymptotically )2(2 .   

  3. Data 

 In this paper, we focus on Chinese commodity futures markets. In particular, the data 

sets consist of daily opening and closing prices for copper and natural rubber futures traded 

on the Shanghai Futures Exchange (SHFE), as well as those prices for soybean futures on 

the Dalian Commodity Exchange (DCE), obtained from their respective exchanges. The 

sample periods extend from September 15, 1993 to July 20, 2010 for copper futures, from 

November 3, 1995 to July 20, 2010 for rubber futures, and from October 18, 1994 to July 

20, 2010 for soybean futures, respectively. The SHFE currently trades futures on 

aluminum, copper, gold, zinc, natural rubber, and fuel oil, while the DCE primarily trades 

soybean futures. By 2009, both copper and natural rubber futures on the SHFE ranked first 

in the world in terms of trading volume, while the trading volume of soybean futures on 

the DCE is 23% of that on the Chicago Mercantile Exchange (CME), the largest soybean 

futures market in the world, and 13 times the trading volume of the third largest market, 
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the Tokyo Grains Exchange.4 Therefore, the futures considered in this analysis are well 

representative of Chinese commodity futures markets. 

 Following the general practice in the literature, each futures price series is constructed 

by rolling over the nearby futures contract on the first trading day of the next month (for 

copper and rubber contracts) or the contract’s expiration month (for soybean contracts). 

The nearby futures contracts are used, as these are the most liquid and actively traded 

contracts in markets. Based on these price series, close-to-close daily returns, close-to-

open, and open-to-close returns are calculated as per Equations (1)-(3), respectively. The 

trading hours of Chinese futures markets are from 9:00 a.m. to 3:00 p.m. (Monday to 

Friday). Consequently, the non-trading hours on weekdays are three times as long as the 

trading hours. 

 Figure 1 plots the trading and non-trading returns for each futures contract, whereas 

Table 1 reports the descriptive statistics of these return series. From the results, we can see 

that there are indeed some big differences in the distributional characteristics between 

trading and non-trading returns. On average, trading returns are substantially lower than 

the average non-trading returns for copper and soybean markets, while the opposite is true 

for the rubber market. This is primarily due to how good/bad the news released during 

non-trading hours is relative to that released during trading hours in a particular market. 

The returns for all the three futures are negatively or positively skewed with excess 

kurtosis, indicating that they are not normally distributed. Further, in terms of standard 

deviations, non-trading returns are more volatile than trading returns for all three futures. 

As a result, the information accumulated during non-trading hours is significant in Chinese 

                                                            
4 Sources: www.cnfinance.cn and Shanghai Securities News, August 18, 2009. 
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commodity futures markets, given the fact that volatilities are directly related to 

information flows.  

 4. Empirical results 

 4.1. Marginal distribution estimation 

 Figures 2, 3, and 4 display the mean residual life, stabilities of GPD parameters, and 

Hill plots, respectively. Based on these plots, upper and lower thresholds for trading and 

non-trading returns for these futures are selected, and are reported in Table 2. 

 For the selected thresholds, scale parameter   and shape parameter   in the GPD are 

then estimated using the maximum likelihood method. These estimates are presented in 

Table 2 as well. To evaluate the goodness of fit of the data series to the model, Figure 5 

depicts the QQ-plot of residuals from GPD fit to the actual loss data over the threshold and 

the estimated tail for trading and non-trading returns in each futures market.5 As we can 

see from these plots, all the points on the graphs lie very nearly along the solid line, 

indicating that the estimated GPDs fit the data satisfactorily. 

 For the estimated marginal distributions )ˆ( 11 xF  and )ˆ( 22 xF  of trading and non-trading 

returns, we have a copula function such that  )ˆ(),ˆ(),( 2
1

21
1

121 xFxFFuuC  , according to 

Sklar theorem. To identify the copula function that best describe the binary characteristics 

of the marginal functions, we simulate 10 different copula functions and compute their 

respective log-likelihood, AIC, and BIC using the maximum likelihood method. The 

results are reported in Table 3. 

                                                            
5 A QQ-plot (quantile-quantile plot) plots the quantiles of an empirical distribution against the quantiles 

of a hypothesized distribution. It is usually used in statistics to examine whether a sample comes from a 

specific distribution.  
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 Apparently, Tawn function generates the lowest BIC and AIC, and the highest log-

likelihood among these copulas considered, indicating that it fits the data the best.6 Thus, 

we estimate parameters  ,  , and   in Tawn function for various futures markets, which 

are presented in Table 4. We note that these estimates are all significant at the 1% level. In 

addition, Figure 6 plots the contours of empirical copula and the Tawn function for copper, 

rubber, and soybean futures markets. Clearly, the contour of the empirical copula 

inosculates with that of the Tawn function very well for all three futures, which further 

demonstrates that using Tawn function is appropriate to incorporate )ˆ( 11 xF  and )ˆ( 22 xF  

into their joint distribution.  

 4.2. Integrated VaR and ES estimation and backtesting results 

 The integrated VaRs and ESs with confidence levels of 95% and 99% for various 

futures are presented in Table 5. At the 95% confidence level, the integrated VaRs are 

1.8100, 2.1438, and 1.4726 for copper, rubber, and soybean futures, respectively, while the 

corresponding integrated ESs are 2.6274, 3.0756, and 2.1316, respectively. Therefore, 

measured by the integrated VaR and ES, the Chinese rubber futures market exhibits the 

highest overall risk, followed by the copper market, with the soybean market least risky. 

As expected, this ordering of market risks is consistent with that implied by volatilities 

                                                            
6 Tawn copula (Tawn, 1988) belongs to the extreme value copula class, which is represented in the form 

of 


















)ln(

ln
)ln(exp),(

uv

u
AuvvuC , where )(zA  is called the dependence function. Tawn copula has 

a dependence function   
1

)1()(1)( zzzA  , where 0 , 1 , and 

 1 . 
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observed in Table 1. Not surprisingly, the results at the 99% confidence level are higher 

than those at the 95% level, but indicate a similar pattern. 

  To examine the robustness of the above results, backtesting is conducted, and the 

results are presented in Table 6. We find that the failure ratios are all lower than the target 

violation rate, and both unconditional and conditional backtesting statistics are significant 

at the 1% or 5% level. This further demonstrates the adequacy of our model. 

 To evaluate the accuracy of our risk measures relative to the measures computed by 

the typical method, the VaRs and ESs are computed based on close-to-close market returns 

for each futures, and the results are reported in Table 7. The backtesting results are also 

reported in Table 7, which clearly indicate that the VaR model can accurately predict both 

the frequency and the size of expected losses. Comparing these VaR and ESs with those in 

Tables 5 shows that they are lower than the corresponding integrated values obtained by 

the copula method. This implies that risk estimation based on close-to-close returns 

understates market risk relative to the integrated measures. This is because the calculation 

of close-to-close returns only uses closing prices, and it cannot fully capture individual risk 

components in trading and non-trading hours. On the contrary, the integrated VaR and ES 

employ both closing and opening prices, which contain more information in a futures 

market. Consequently, these measures explicitly take into consideration the risk 

characteristics of trading and non-trading returns and their dependence structure.  

 Note that the integrated VaR or ES greatly depends on the confidence level. To gauge 

the sensitivity of our integrated risk measures to changes in confidence levels, we simulate 

VaRs and ESs for various confidence levels ranging from 10% to 100% by iterating 10,000 

times of samples. Figure 7 plots these VaRs/ESs against p  for copper, rubber, and 
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soybean markets, respectively. This figure shows that both the integrated VaR and ES 

increase with the confidence level, p1 , which is expected given the definitions of these 

measures. Moreover, the plots become steeper when the confidence level is higher, 

indicating that the integrated VaR and ES are more sensitive to the confidence level when 

the level is higher than when it is lower. This finding is in line with those in the literature 

(Fu and Xing, 2009), and is true regardless of the futures market under consideration. 

 4.3. Component VaR (C_VaR) and component ES (C_ES) 

 In this section, we focus on the risk contributions of trading and non-trading hours, 

which are measured by their respective C_VaR and C_ES. The results in Table 8 show that 

under the 95% confidence level, the C_VaRs of trading and non-trading returns are 1.2814 

and 2.3334 for copper, 2.2694 and 1.9276 for rubber, and 1.5452 and 1.1626 for soybean 

futures, respectively. Accordingly, the non-trading hours contribute 64.55%, 45.94%, and 

42.94% to the overall risk measured by integrated VaRs for copper, rubber, and soybean 

futures, respectively. Under the 99% confidence level, the respective PC_VaRs are 58.80%, 

47.16%, and 48.83%. Overall, the non-trading PC_VaRs are substantial for all markets. In 

particular, in the case of copper, the risk contribution of non-trading hours is even larger 

than that of trading hours. This is sharply in contrast with the French and Roll’s (1986) 

finding that the trading information is far more important than non-trading information in 

stock markets. This result highlights the huge amount of information accumulated during 

non-trading hours in Chinese futures markets and its impact on the overall market risk. 

This information includes not only announcements made concerning these commodities in 

China, but also the trading activity in corresponding international futures markets. News 

released during non-trading hours can be more negative relative to that released during 
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trading hours (Patell and Wolfson, 1982; Bagnoli, Clement, and Watts, 2005); it could also 

be relatively positive or neutral (Doyle and Magilke, 2008; Cliff, Copper, and Gulen, 

2008). The risk associated with these announcements, particularly negative announcements 

made during non-trading hours, is captured by the non-trading PC_VaR, as VaR focuses 

on the downward tail of return distributions. Our results also reflect the fact that Chinese 

futures markets have become more and more integrated with international futures markets, 

especially US and European markets. Given that these overseas futures markets trade 

during the non-trading hours in Chinese markets, their trading information apparently 

contributes greatly to the high risk component of non-trading hours in China. This is 

consistent with findings in Liu and An (2011), who document the leading role of US 

copper and soybean futures markets in information transmission and the price discovery 

process between Chinese and US markets. Finally, we believe that the high liquidity risk 

during non-trading hours is another factor that can partially explain our findings. 

 The results of the C_ESs for different markets under the 95% and 99% confidence 

levels are also reported in Table 8. Measured by the C_ES under the 99% level, it seems 

that the non-trading returns have a slightly higher contribution to the overall risk for both 

copper and rubber markets. All other major conclusions are re-confirmed in this case.  

 4.4. A further analysis of VaRs and ESs for non-trading returns 

 To further understand the risk of non-trading hours, we analyze how the VaR and ES 

are related to the length of non-trading periods. For this purpose, we estimate the VaRs and 

ESs of weeknights, weekends, and holidays based on the individual distribution of each 

type of non-trading returns. The results are presented in Table 9. We find that the VaRs of 

weeknights, weekends, and holidays under the 95% confidence level are 1.8501, 2.0212, 
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and 3.1180 for copper, 1.5140, 2.1726, and 3.0184 for rubber, and 1.2254, 1.4799, and 

2.3058 for soybean futures markets, respectively. This suggests that the longer the non-

trading period, the higher the risk of the non-trading period for all three markets. However, 

in the case of the 99% confidence level, this effect is less pronounced for the rubber market, 

and the weekend VaR is even greater than the holiday VaR for the soybean market. We 

observe a similar pattern when ES is considered. Nevertheless, weeknight VaR/ES is 

generally lower than weekend/holiday VaR/ES, regardless of the market.  Intuitively, the 

information continues to accumulate as time goes by, and therefore, weekends or holidays 

contain more price sensitive information than weeknights.    

 5. Conclusions 

 This paper investigates the risk contributions of trading and non-trading hours in 

Chinese copper, rubber, and soybean futures markets. Using the copula method, we 

incorporate the distributions of trading and non-trading returns into a joint distribution, and 

examine the integrated VaRs and ESs for these markets to gauge overall market risk. Then 

we decompose these risk measures into component VaRs and ESs to evaluate the risk 

contributions of trading and non-trading returns to overall risk. Backtests are also 

performed to assess the adequacy of the models. 

 Our empirical results show that the copula method provides appropriate measures for 

integrated risks, and the typical VaR and ES based on close-to-close returns underestimate 

overall market risks. Measured by both integrated VaRs and ESs, Chinese rubber futures 

are most risky, followed by copper futures, and soybean futures are least risky. Our results 

also demonstrate that the risk contributions of non-trading hours are substantial for all 

futures considered, with C_VaR and C_ES weights being more than 40% in any market. In 



26 

 

the case of copper futures in particular, non-trading hours seem to contribute to the total 

risk more than do the trading hours. This sheds lights on the important role of non-trading 

information in predicting market returns and explaining market risks. Finally, we find that 

weeknight VaRs and ESs are lower than weekend/holiday VaRs and ESs for all markets, 

indicating that the risk of non-trading periods is positively related to the length of non-

trading periods.       
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Table 1. Descriptive statistics for trading and non-trading returns 

Markets Returns Maximum Minimum Mean Std. Dev. Skewness Kurtosis 
 
Copper 

Trading returns 7.7327 -6.0414 0.0073 0.9248 0.0904 9.2502 
Non-trading returns 9.1343 -6.2046 0.0175 1.2463 -0.2522 7.2062 
Traditional returns 9.8693 -6.7225 0.0248 1.4578 -0.1432 5.7548 

 
Rubber 

Trading returns 11.1184 -8.2308 0.0670 1.3701 0.0948 8.2243 
Non-trading returns 14.1152 -20.3215 -0.0541 1.5815 -1.3113 27.3505 
Traditional returns 12.8410 -18.1715 0.0129 1.8046 -0.9832 17.6471 

 
Soybeans 

Trading returns 5.6587 -6.8726 0.0003 0.9239 -0.3095 7.9104 
Non-trading returns 12.9337 -13.4104 0.0144 1.0768 -0.1058 34.1278 
Traditional returns 11.8025 -13.5122 0.0147 1.2902 -0.2675 19.2143 

 

This table reports the descriptive statistics of various return series for Chinese copper, rubber, and 
soybean futures markets. Trading, non-trading, and traditional returns are defined in Equations (3), 
(2), and (1), respectively. The sample periods extend from September 15, 1993 to July 20, 2010 for 
copper futures, from November 3, 1995 to July 20, 2010 for rubber futures, and from October 18, 
1994 to July 20, 2010 for soybean futures, respectively.  
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Table 2. Estimated parameters of the marginal distribution functions 

Markets Returns Ru  
R  

R  
Log-likelihood 
of upper tail 

Lu  
L  

L  
Log-likelihood 
of lower tail 

 
Copper 

Trading 
returns 

1.200 0.0824 0.7438 -205.2 -1.200 0.1042 0.6675 -187.6 

Non-trading 
returns 

1.600 0.0209 0.9306 -246.7 -0.850 0.0262 0.9473 -567.7 

 
Rubber 

Trading 
returns 

1.600 0.0487 0.972 -272.4 -1.500 -0.1013 1.0983 -271.9 

Non-trading 
returns 

1.200 0.2154 0.7419 -229.2 -0.700 0.2033 0.8545 -446.6 

 
Soybeans 

Trading 
returns 

1.400 0.0363 0.685 -107.3 -1.400 0.0574 0.7499 -144.7 

Non-trading 
returns 

0.730 0.3608 0.6244 -323.0 -1.190 0.1356 0.8832 -162.8 

 

This table reports the estimated parameters of the marginal distribution functions of trading and 

non-trading returns, as well as the log-likelihood values for copper futures, rubber, and soybean 

futures markets. 
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Table 3. Testing results for various copula functions  

 Copula 
functions 

Gumbel Joe Frank Tawn BB1 BB3 BB4 BB6 BB7 Normal 

Copper Log-likelihood 14.53 16.45 1.73 27.24 14.53 14.38 7.91 16.45 16.99 1.58 
AIC -27.06 -30.90 -1.47 -48.47 -25.06 -24.75 -11.82 -28.90 -29.99 -1.15 
BIC -20.87 -24.72 4.72 -29.93 -12.69 -12.39 0.54 -16.54 -17.62 5.03 

Rubber Log-likelihood 6.37 6.67 0.61 12.19 6.74 6.81 3.66 6.67 7.80 0.35 

AIC -10.74 -11.34 0.79 -18.38 -9.49 -9.61 -3.32 -9.34 -11.59 1.30 
BIC -5.01 -5.61 6.52 -1.20 1.97 1.84 8.14 2.12 -0.14 7.03 

Soybeans Log-likelihood 6.89 8.26 0.08 21.42 4.87 6.90 3.13 8.26 8.49 0.00 

AIC -11.78 -14.51 1.84 -36.83 -5.74 -9.80 -2.25 -12.51 -12.97 1.99 
BIC -5.74 -8.47 7.88 -18.71 6.33 2.28 9.83 -0.43 -0.89 8.03 

 
This table reports the testing results of log-likelihood, BIC and AIC for 10 different copula functions for copper, rubber, and soybean futures 
markets, respectively. 
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Table 4. Estimation results for the Tawn function  

Markets Parameters Value Std. Error t-value 
Copper α  0.1374** 0.0284 4.8316 

β  0.1215** 0.0265 4.5811 
γ  2.4913** 0.4715 5.2837 

Rubber α  0.1573** 0.0507 3.1043 
β  0.0978** 0.0324 3.0148 
γ  2.1296** 0.5675 3.7528 

Soybeans α  0.0727** 0.0160 4.5456 
β  0.0690** 0.0148 4.6660 
γ  7.0272** 2.1279 3.3024 

 

This table presents the estimated α , β , and γ  values in the Tawn function for copper, rubber, and 
soybean futures markets, respectively. ** indicates significance at the 1% level.  
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Table 5. Integrated VaR and ES estimates for different futures markets 

Markets Risk measures Confidence level Values 

Copper integrated VaR 95% 1.8100 
99% 3.1266 

integrated ES 95% 2.6274 
99% 3.9704 

Rubber integrated VaR 95% 2.1438 
99% 3.6940 

integrated ES 95% 3.0756 
99% 4.5870 

Soybeans integrated VaR 95% 1.4726 
99% 2.5290 

integrated ES 95% 2.1316 
99% 3.2386 

 

This table reports the estimated integrated VaR and the corresponding integrated ES under the 95% 
and 99% confidence levels in copper, rubber, and soybean futures markets. 

 
 



35 

 

Table 6. Backtesting results  

Markets Confidence 
level 

Failure 
number 

Failure ratio LRUC LRCC 

Copper 95% 172 4.32% 1.3289* 3.9910** 

99% 53 1.33% 1.0483* 4.0255** 
Rubber 95% 118 4.62% 0.8110* 1.4035* 

99% 37 1.45% 1.0483* 4.5436** 
Soybeans 95% 142 4.07% 0.0750* 6.6886** 

99% 40 1.15% 0.7338* 13.1017** 
   

This table reports the backtesting results for integrated VaRs under the 95% and 99% confidence 
levels in copper, rubber, and soybean futures markets. The sample is iterated 10,000 times. * and ** 
indicate significance at the 5% and 1% levels, respectively.  
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Table 7. Estimates of VaR and ES, and backtesting results based on close-to-close 
returns  

 
Markets Confidence 

level 
VaR ES Failure 

times 
Failure 
ratio 

LRUC LRCC 

Copper 95% 1.2768 1.8261 196 4.93% 0.0432* 50.1874**

99% 2.1664 2.6385 38 0.96% 0.0799* 18.2474**

Rubber 95% 1.6177 2.2505 109 4.26% 3.0572** 19.7498**

99% 2.6423 3.0992 19 0.74% 1.8662** 9.1448**

Soybeans 95% 0.9272 1.5187 163 4.68% 0.7806** 19.1006**

99% 1.8908 2.5331 31 0.89% 0.4462* 9.8354**

 

This table presents the VaR and ES estimates and corresponding backtesting results under the 95% 
and 99% confidence levels in copper, rubber, and soybean futures markets. The sample is iterated 
10,000 times. * and ** indicate significance at the 5% and 1% levels, respectively.  
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Table 8. Component VaR and ES, as well as risk contributions of trading and non-

trading returns 

Markets Risk measures  95% confidence level 99% confidence level 
Trading 
returns 

Non-trading 
returns 

Trading 
returns 

Non-trading 
returns 

Copper Component VaR 1.2814 2.3334 2.5906 3.6966 
Risk contribution (PC_VaR) 35.45% 64.55% 41.20% 58.80% 
Component ES 2.7724 3.6992 4.2222 5.3326 
Risk contribution (PC_ES) 42.84% 57.16% 44.19% 55.81% 

Rubber Component VaR 2.2694 1.9276 4.1470 3.7008 
Risk contribution (PC_VaR) 54.07% 45.93% 52.84% 47.16% 
Component ES 4.0404 3.7424 6.2212 6.3250 
Risk contribution (PC_ES) 51.91% 48.09% 49.59% 50.41% 

Soybeans Component VaR 1.5452 1.1626 2.6694 2.5468 
Risk contribution (PC_VaR) 57.06% 42.94% 51.17% 48.83% 
Component ES 2.8654 2.6482 4.6768 4.1274 
Risk contribution (PC_ES) 51.97% 48.03% 53.12% 46.88% 

 

This table reports the component VaRs and ESs under the 95% and 99% confidence levels, as well 
as the risk contributions of trading and non-trading hours in copper, rubber, and soybean futures 
markets. 
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Table 9. VaRs and ESs of weeknights, weekends, and holidays for different futures 

markets 

Contracts Non-trading 
periods 

95% confidence level 99% confidence level 

VaR ES VaR ES 

Copper weeknights 1.8501 2.9627 3.6240 4.1984 
weekends 2.0212 3.2973 4.9584 5.5186 
holidays 3.1180 3.7495 6.5890 7.9985 

Rubber weeknights 1.5140 3.2839 4.1342 5.9805 
weekends 2.1726 3.6832 4.4796 6.7066 
holidays 3.0184 4.0486 4.8897 7.9838 

Soybeans weeknights 1.2254 2.4567 2.8081 5.2122 
weekends 1.4799 3.2755 4.4049 6.0058 
holidays 2.3058 2.9288 3.8556 4.9840 

 

This table reports the estimated VaRs and ESs under the 95% and 99% confidence levels based on 
weeknight, weekend, and holiday returns for copper, rubber, and soybean futures markets.  
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Figure 1. Plots of trading and non-trading returns 
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This figure plots the trading (daytime) and non-trading (overnight) returns for copper, rubber, and 
soybean futures markets (from top to bottom) in China. The sample periods extend from September 
15, 1993 to July 20, 2010 for copper futures, from November 3, 1995 to July 20, 2010 for rubber 
futures, and from October 18, 1994 to July 20, 2010 for soybean futures, respectively. 
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Figure 2. Plots of mean residual life, stabilities of GPD parameters, and Hill of trading 

and non-trading returns for copper futures 
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This figure plots the mean residual life (top), stabilities of GPD parameters (middle), and Hill 
(bottom) of trading returns (left) and non-trading returns (right) for copper futures. 
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Figure 3. Plots of mean residual life, stabilities of GPD parameters, and Hill of trading and 

non-trading returns for rubber futures 
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This figure plots the mean residual life (top), stabilities of GPD parameters (middle), and Hill 
(bottom) of trading returns (left) and non-trading returns (right) for rubber futures. 
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Figure 4. Plots of mean residual life, stabilities of GPD parameters, and Hill of trading 

and non-trading returns for soybean futures 

-6 -4 -2 0 2 4

1
2

3
4

5

Threshold

M
e
a
n
 E

xc
e
s
s

-6 -4 -2 0 2 4
1

2
3

4
5

6
7

Threshold

M
e
a
n
 E

xc
e
s
s

  
-5 0 5

2
4

6
8

Threshold

M
e
a
n 

E
x
ce

s
s

-5 0 5

2
4

6
8

Threshold

M
e
a
n 

E
x
ce

s
s

 

1000 898 830 762 694 626 558 490 422 354 286 218 150 82 15

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0.372 0.425 0.491 0.571 0.662 0.760 0.883 1.080 1.370 1.930

Exceedances

S
h
a
pe

 (
x
i)
 (

C
I,

 p
 =

 0
.9

5
)

Threshold

1000 898 830 762 694 626 558 490 422 354 286 218 150 82 15

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0.326 0.397 0.466 0.546 0.642 0.761 0.897 1.110 1.460 2.120

Exceedances

S
h
a
p
e
 (

x
i)
 (

C
I,

 p
 =

 0
.9

5
)

Threshold

  
1000 898 830 762 694 626 558 490 422 354 286 218 150 82 15

-0
.8

-0
.6

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.223 0.274 0.332 0.399 0.472 0.581 0.729 0.898 1.290 2.220

Exceedances

S
ha

p
e 

(x
i)
 (

C
I,

 p
 =

 0
.9

5
)

Threshold

1000 898 830 762 694 626 558 490 422 354 286 218 150 82 15

-1
.0

-0
.5

0
.0

0
.5

0.232 0.277 0.314 0.366 0.439 0.530 0.664 0.858 1.190 1.970

Exceedances

S
ha

pe
 (

x
i)
 (

C
I,

 p
 =

 0
.9

5
)

Threshold

 

15 94 186 291 396 501 606 711 816 921 1039 1170 1301 1432 1563 1694

1
2

3
4

5
6

2.9700 1.3200 0.8870 0.6880 0.5230 0.4010 0.3010 0.2020 0.1220 0.0372

Order Statistics

a
lp

h
a
 (

C
I,

 p
 =

0
.9

5)

Threshold

15 89 176 275 374 473 572 671 770 869 968 1079 1203 1327 1451 1575

2
4

6

3.2900 1.4400 0.9430 0.7070 0.5390 0.4090 0.2950 0.2000 0.1130 0.0393

Order Statistics

a
lp

h
a
 (

C
I,

 p
 =

0
.9

5)

Threshold

  
15 90 177 277 377 477 577 677 777 877 977 1089 1214 1339 1464 1589

2
4

6

4.9700 1.2700 0.7580 0.5320 0.3880 0.2810 0.1990 0.1390 0.0787 0.0343

Order Statistics

a
lp

h
a
 (

C
I,

 p
 =

0
.9

5
)

Threshold

15 91 179 280 381 482 583 684 785 886 987 1100 1226 1352 1478 1604

1
2

3
4

5

3.9300 1.1500 0.6980 0.4860 0.3510 0.2780 0.2090 0.1490 0.0884 0.0342

Order Statistics

a
lp

h
a
 (

C
I,

 p
 =

0
.9

5
)

Threshold

 

Upper tail Lower tail Upper tail Lower tail 

This figure plots the mean residual life (top), stabilities of GPD parameters (middle), and Hill 
(bottom) of trading returns (left) and non-trading returns (right) for soybean futures. 
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Figure 5. Simulation plots of GPD of both trading and non-trading returns  
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This figure depicts the QQ-plots of residuals from GPD fit to the loss data (the first and third from top to bottom) and the tail estimates (the second and fourth 

from top to bottom) for copper futures (the first two plots from left to right), rubber futures (the third and fourth plots from left to right), and soybean futures (the 

last two plots from left to right). 
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Figure 6. The contours of the empirical copula and fitted Tawn functions  
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This figure plots the empirical copula and fitted Tawn functions using the data for copper, rubber, 

and soybean futures markets (from top to bottom), respectively. 
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Figure 7. Sensitivities of VaR and ES with respect to confidence levels 

 

 

 

 

 

This figure plots the integrated VaR and ES against the violation probability p  for copper, rubber, 
and soybean futures markets (from top to bottom), respectively. 

 

 

 


