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Abstract 

In this paper we explore ways that alleviate problems of nonparametric 

(artificial neural networks) and parametric option pricing models by 

combining the two. The resulting knowledge enhanced network model is 

compared to standard artificial neural networks and to parametric models 

with several historical and implied parameters. Empirical results using S&P 

500 index call options strongly support our approach.     
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Introduction 

We propose a new approach in the empirical pricing of options by 

combining nonparametric Artificial Neural Network (ANN) methodology in 

conjunction to several established uses of parametric models with historical 

and implied parameters. This proposed method we call Knowledge (enhanced) 

Artificial Neural Networks (KANNs). It can be seen as a sophisticated ANN 

structure dedicated to option pricing and provides a nonparametric 

enhancement of parameter values used in the Parametric Option Pricing 

Models (POPMs).  

The Black and Scholes model (BS) is an options pricing formula (Black 

and Scholes, 1973, see also Merton, 1973) that is built on a set of unrealistic 

assumptions and exhibits systematic biases like the volatility smile (i.e. Black 

and Scholes, 1975, Rubinstein, 1985, Bakshi et al., 1997, Andresen, 2002). 

BS has shown severe time endurance and is still widely used by practitioners 

since it generates quite accurate prices for a wide spectrum of European 

financial options. The post-BS financial engineering research came up with a 

variety of parametric option pricing models that relax several of the BS 

fundamental assumptions. Recent POPMs that incorporate stochastic 

volatility and jump risk factors (e.g. Bakshi et al., 1997, Bates, 1991 and 

1996), mitigate much of the bias associated with the original BS. 

Nevertheless, none of these models has managed to generalize all of the BS 

assumptions, and provide results consistent with the observed market data. 

Besides the fact that the above-mentioned parametric models seem to perform 

better than the BS1 they are often too complex to implement, have poor out-of-

sample pricing and hedging performance and have implausible and sometimes 

inconsistent implied parameters (i.e. Bakshi et al., 1997).  

 For resolving this issue researchers have addressed attention to the use 

of market-data driven models such as ANNs that can be used for nonlinear 

regression. The key power provided by ANNs compared to other statistical 

techniques (like projection pursuit, generalized additive models, multivariate 

adaptive regression splines) is that they rely on fairly simple algorithms and 

the underlying form of the nonlinearity can be learned from training data. The 

                                                 
1 Although the post-BS option-pricing models have managed to eliminate some of the BS 
biases in practice are very difficult to be implemented due to their complexity. According to 
Andersen et al., (2002), “the option pricing formula associated with the Black and Scholes 
diffusion is routinely used to price European options, although it is known to produce systematic 
biases”. 
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models are extremely powerful, have nice theoretical properties (with respect 

to convergence), and apply well to a vast array of real-world applications (see 

Duda et al., 2001, for further details). Attempts in pricing options with ANNs 

have shown that these models are promising alternatives in respect to robust 

pricing accuracy. Contrary to the parametric option pricing models that rely 

on specific assumptions about the dynamic evolution of some state variables 

(like the underlying asset, the volatility, the interest rate, etc), ANNs involve no 

financial theory since the option’s price is estimated inductively by using 

options transactions data.  

ANNs are used to estimate directly the empirical options pricing 

function (thereinafter termed as the standard ANN approach). Evidence 

concerning the out-of-sample pricing performance is mixed. Hutchison et al. 

(1994) apply ANNs on market transactions of the S&P 500 futures call options 

from 1987 to 1991 to conclude that although the learning networks do not 

constitute a substitute for the more traditional BS formulas, they are more 

accurate and computationally more efficient alternatives when the underlying 

asset’s price dynamics are unknown. Lajbcygier et al. (1996) that examines 

futures call options transacted on the Sydney Futures Exchange find that 

ANNs outperform the modified BS formula in a reduced data region, but they 

are not superior when all call option are considered (see also Lajbcygier, 2004 

for extended results). Andreou et al. (2005) conjecture that similar results 

hold for a reduced and a full dataset for the S&P 500 index call options even 

for more general OPM that alleviate much of the BS biases, like the Corrado 

and Su model (hereinafter CS, see Corrado and Su, 1996), with both historical 

and implied parameters. Anders et al. (1998) as well as Garcia amd Gencay 

(2000), find the BS with historical volatility underperforms significantly the 

standard ANNs.     

 Of course, the application of ANNs for pricing of options has its own 

merits and limitations. First of all, Anders and Korn (1999) indicate that 

neural networks are usually applied in cases where there is lack of knowledge 

about an adequate functional form; so they are commonly interpreted as 

“black boxes” since they learn the empirical functions inductively from 

transactions data without embedding any information related to the problem 

under scrutiny. Second, in the absence of any kind of knowledge or prior 

information about the problem, ANNs need relative large amounts of training 

data to ensure an adequate accuracy.  
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 The above demonstrate that we should explore ANN structures that are 

enhanced by knowledge from the POPMs. As supported by Lajbcygier (2004), 

the standard ANNs are very sensitive to the nonstationarity of input variables 

and this problem is exaggerated with the use of large training-validation-

testing datasets; thus we should eventually use any knowledge together with 

ANNs in an attempt to minimize the size of datasets. The use of standard 

ANNs can deliver options prices that violate fundamental financial principles; 

for instance they can return negative option values or irrational Greek letters 

(these are the partial derivatives of the option with respect to a parametric 

model’s structural parameters). Therefore we must combine ANNs and POPMs 

in a way that does not allow such problems to occur.  

 

 

Conceptual Framework 

In this study we extend the ANN structures that have been applied 

previously in options pricing, by using a knowledge enhancement 

methodology that allows an adjustment to some of the input variables to the 

parametric model. A significant feature of our methodology is that it allows a 

set of the input variables of the parametric model to be jointly determined by a 

neural network.  

 Such kind of knowledge oriented ANN models are more desirable than 

the standard ones for a variety of reasons. First, they will always return 

arbitrage-free and nonnegative option values and we thus expect them to 

exhibit reasonable pricing performance at the boundary option pricing areas, 

in both dense and sparse input areas. Similarly, it is also certain that KANN 

will always deliver theory consistent Greek letters.  

 Second, the proposed approach assures nonnegative implied state price 

densities in all cases. Herrmann and Narr (1997) show that standard ANNs 

return negative implied state price densities in state regions that available 

training options data do not contain any information about these regions.     

 Third, as conjectured by Wang and Zhang (1997), knowledge based 

ANN structures should not need large amount of training samples to exhibit a 

satisfactory performance in out of sample testing as opposed to the case of 

standard ANNs.  

 The proposed methodology can fit the options pricing field in many 

perspectives. It can be utilized in studies like the one of Bakshi et al. (1997) 
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(see also Eraker, 2004, Bates, 1996 and 2000, Corrado and Su, 1996 and 

1997, Whaley, 1982, Lehar et al., 2002, etc) that examine the cross sectional 

pricing performance of alternative option pricing models. They rely on 

previous day’s option prices to back out the required parameter values and 

then to use them as input to compute current day’s model-based option 

prices. KANNs can also be considered as a generalization of studies that first 

employ some kind of methodology to estimate versions of time varying 

volatility that is either simultaneously or subsequently used with the BS 

model to price options. For instance, Dumas et al. (1998) estimate arbitrary 

Deterministic Volatility Functions of quadratic forms and examine how well 

they predict option prices. Kiesel (2002), elaborates on semi-parametric 

version of the Black and Scholes formula according to which the formula is 

used with a volatility function that is estimated inductively by using a three-

dimensional Kernel Estimator. In another example, Adesi et al. (2005) derive 

relatively simple option pricing formulas in which the instantaneous variance 

is driven by a GARCH diffusion process.  

 In addition, the KANN structure we develop has some common 

characteristics with a variety of previous approached in the engineering area. 

For instance it is knowledge oriented as the ANN structures proposed by 

Wang and Zhang (1997) for microwave design, with some significant 

differences: i) they do not use a fully connected network as we do, ii) contrary 

to our approach, they use a relative more complex network structure with six 

different layers, iii) they employ the knowledge layer in a parallel fashion with 

their hidden layers where the error propagation is split into two paths, one 

through a knowledge layer and the other through a set of hidden layers each 

serving a specific purpose, and iv) the knowledge embedded in their network 

is in the form of empirical and semi-analytical functions. Our methodology 

also preserves some characteristics of the Neuromodeling Space Mapping 

Techniques of Bandler et al., (1999) (see also Sanchez, 2004) developed for 

microwave circuits design and optimization. The Space Mapping concept was 

initiated by Bandler et al. (1994); it establishes a mathematical link between 

the computational efficiency of coarse models with the accuracy of fine 

models. The coarse models are computationally very efficient with limited 

accuracy models while fine models are extremely accurate but very computer 

intensive. In the Neuromodeling Space Mapping concept, the purpose is to 

make the coarse model response as close as possible to the fine model 
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response for all the training points considered. This is achieved by 

constructing a nonlinear multidimensional vector mapping function from fine 

to coarse input space using a typical ANN.                       

The data for this research come from two dominant world markets, the 

New York Stock Exchange (NYSE) for S&P 500 and the Chicago Board of 

Options Exchange (CBOE) for call option contracts, spanning a period from 

January 2002 to August 2004. Compared to previous literature in empirical 

options pricing, we examine more explanatory variables including historical 

and implied ones. Also, instead of constant maturity risk-free interest rate, we 

use nonlinear interpolation for extracting a continuous risk-free interest rate 

according to each option’s time to maturity.   

In this study we do not restrict our attention to parametric benchmarks 

that have limited flexibility in terms of the underlying diffusion process. For 

instance, BS assumes that log-relative returns are normally districted but 

empirical evidence does not support this principle. ANNs can allow more 

general probability density distributions (see Herrmann and Narr, 1997). 

Thus, it is imperative to compare ANNs with: i) the BS model with other 

versions of volatility measures besides the traditional historical ones, and ii) 

parametric models that allow for negative skewness and excess kurtosis for 

the underlying asset’s log-relative returns; thus, as in Andreou et al. (2005) 

we will also consider the semi-parametric CS that can be considered as a 

flexible model that can proxy for many other more complex ones2. 

 

 

The Parametric Models Used 

Below we reel off the different POPMs we exploited in this study. The 

first model examined is the Black and Scholes (1973) since is a benchmark 

and widely referenced model. The Black Scholes formula for European call 

options modified for dividend-paying underlying asset is: 

 

)()( TdNXedNSec rTTBS σλ −−= −        (1)  

 

where, 

                                                 
2 Backus et al. (1997) conjecture that the CS formula exhibits good performance for pricing 
options when the underlying asset follows a jump-diffusion process (see also Jurczenko et al., 
1997). 
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Τσ

σλ 2/)()()/ln( 2TTrXS
d

++
=

-
  (1.a) 

 

≡BSc premium paid for the European call option; ≡S spot price of the underlying 

asset; ≡X exercise price of the option;3 ≡r continuously compounded risk free 

interest rate; ≡λ continuous dividend yield paid by the underlying asset; 

≡Τ time left until the option expiration date4; ≡2σ yearly variance rate of return 

for the underlying asset; ≡(.)N the standard normal cumulative  distribution . 

 The need to use more advance POPMs is necessitated by the fact that 

exist a specific behavior of the BS implied volatility for various moneyness (the 

ratio of the underlying asset to strike price) and time to maturity levels. (see 

Bakshi et al., 1997) So, we use the Corrado and Su (1996) model that 

constitutes an extension of the BS model that accounts for additional 

skewness and kurtosis in stock returns in a heuristic manner. Corrado and 

Su, based their extension on a methodology employed earlier in 1982 by 

Jarrow and Rudd. Via subtle handlings of the Gram-Charlier series expansion 

of a normal density function they defined their model as (see also the 

correction in Brown and Robinson, 2002):  

 

4433 )3( QQcc BSCS −++= µµ   (2) 

 

where cBS is the BS value for the European call option adjusted for dividends 

and, 

))()()2((
!3

1 2
3 dTdndTTSeQ T Νσσσλ +−= −  (2.a) 

))()())(31((
!4

1 2/332
4 dNTdnTdTdTSeQ T σσσσλ +−−−= −   (2.b) 

 

                                                 
3 For the purposes of this study we use the following moneyness categories: deep out the 
money (DOTM) when S/X=0.90, out the money (OTM) when 0.90<S/X=0.95, just out the money 
(JOTM) when 0.95<S/X=0.99, at the money (ATM) when 0.99<S/X=1.01, just in the money 
(JITM) when 1.01<S/X=1.05, in the money (ITM) when 1.05<S/X=1.10, deep in the money 
(DITM) when S/X>1.10. 
4 In terms of time length, an option contract is classified as short term maturity when its 
maturity is less than 60 days, as medium term maturity when its maturity is between 60 and 
180 days and as long term maturity when it has maturity longer than (or equal to) 180 days. 
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Q3 and Q4 represent the marginal effect of non-normal skewness and kurtosis, 

respectively in the option price whereas 3µ  and 4µ  correspond to coefficients 

of skewness and kurtosis. In the above expressions,  

 

)/zexp()z(n 2
2
1 2−=
π

 (2.c) 

 

refers to the standard normal probability density function.  

 Greek letters are the partial derivatives of a call options with respect to 

its structural parameters. For the purpose of this study, we need the following 

Greek letters: 

 

- BS Vega: 

)(dnTSecV T
BS

BS λ
σ

−=
∂

∂
≡  (3) 

 

- CS Vega: 

σ
µ

σ
µ

σσ ∂
∂

−+
∂

∂
+

∂
∂

=
∂

∂ 4
4

3
3 )3(

!4
1

!3
1 QQcc BSCS

 (4) 

 

where, 

)(3)(

333)(

2/323

23

dNTSdndTS

TdTdTdnSe
Q T

σ

σσσ
σ

λ

+

−



 +++=

∂
∂ −

 (5)

  

( ) ( )
2/34232/32

32234

)()(4)(6)(

4642)(

TdnSdNTSdnTSdnTS

TTddTdddndTS
Q

σσσ

σσσ
σ

+++

−



 −+−+−=

∂
∂

 (6) 

 

- CS partial derivative of call with respect to skewness: 

3
3

QcCS
=

∂
∂

µ
 (7) 

 

- CS partial derivative of call with respect to kurtosis: 
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44
Q

cCS
=

∂
∂

µ
 (8) 

 

 

Neural networks 

Multilayer Neural Networks are a flexible heuristic technique for doing 

statistical pattern recognition and for approximating highly nonlinear 

functions. A neural network is a collection of interconnected simple 

processing elements structured in successive layers and can be depicted as a 

network of links (termed as synapses) and nodes (termed as neurons) between 

layers. A typical feedforward neural network has an input layer, one or more 

hidden layers and an output layer. Each interconnection corresponds to a 

modifiable weight, which is adjusted according to the faced problem via an 

optimization, commonly termed as training algorithm. The particularity of 

ANNs relies on the fact that the neurons on each layer operate collectively and 

in a parallel manner on all input data.  

  Figure 1 depicts the network structure developed for the purposes of 

this study. As it will become apparent shortly, such structure can been seen 

as an extension of the two-layer network studied in Andreou et al. (2005) and 

elsewhere (e.g. Hutchison et al., 1994, Lajbcygier et al., 1996). 

 For our analysis, inputs are set up in feature vectors, 

]...,,[~
21 Nqqqq xxxx =  for which there is an associated and known target, qt , 

P21q ,...,,≡ , where P is the number of the available sample feature vectors for 

a particular training sample. The network’s outputs are obtained when the 

training patterns are presented as inputs at the input layer and after 

evaluating the signals at each node. To let the network learn the underlying 

relationship, its weights are adjusted in order to minimize the error between 

the network output and the desire target values.      

 The proposed network model under scrutiny has four layers. The first 

three are typical ANN layers: an input layer with N input variables, a hidden 

layer with H neurons, and a layer with M output neurons. For these three 

layers, each node is connected with all neurons in the previous and the 

forward layer. Each connection is associated with a weight, )1(
inw , and a bias, 

)1(
0iw , in the input layer (i=1,2,…,H, n=1,2,…N ) and a weight, )2(

jiw , and a bias, 
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)2(
0jw , in the hidden layer (j=1,2,…,M). Each neuron behaves as a summing 

vessel that computes the weighted sum of its inputs to form a scalar term and 

with the use of the transfer function it eventually works as a non-linear 

mapping junction for the forward layer. The part of the network that is outside 

the bold-dotted line in Figure 1 is a typical two-layer ANN with a single output 

that under proper treatment can be used for nonlinear regression. Such type 

of networks has been used previously to approximate the empirical options 

pricing function (e.g. Andreou et al., 2005, Hutchison et al., 1994). In our 

analysis, we employ this type of network for implementing the standard ANN 

results for comparison reasons with the KANNs. 

 The fourth layer, which hereafter will be termed as a knowledge layer, 

makes possible for a chosen parametric options pricing model to be an 

inseparable part of the network’s structure. This is the innovative contribution 

of the model we develop since under this setting we can hypothesize that our 

network structure embeds knowledge from the parametric model during 

training. If we let SX  to denote the set of all input variables that are 

necessary for the parametric model to price options, then SS XX ⊇1  should 

correspond to the enhanced5 variables coming from the network’s output layer 

and SS XX ⊃2  those variables that are passed to the parametric model 

exogenously. It is obvious that 12 SSS XXX −=  and in the case that we 

choose to let all parametric model variables to be determined via the network, 

then ∅=2SX . The definition of 1SX  is basically a choice of the researcher 

and manifests the number of neurons at the output layer and the type of 

transfer function to be used at the knowledge layer. 

 According to Figure 1, the operation carried out for computing the final 

estimated output, y, in the case of a single endogenous variable ( }{ 11 vXS = ) is 

the following:  

 

),( 21 SPM Xvfy =  (9) 

and, 

)( 11 1 dfv d=  (10) 

 

                                                 
5 We use the term “enhanced variable” to describe the number of variables that come as an 
output of the network and used as  input to the parametric model. 
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where (.,.)PMf  refers to the functional form of the parametric options pricing 

model, (.)1df  is a smooth monotonically increasing transfer function and 1d  

is simply the descaled valued of )2(
1y . Eq. (9) can be interpreted as a nonlinear 

regression of y over the networks inputs if we allow an error term.  

 Computation of )2(
1y  follows the functional form of a typical two-layer 

ANN similar with the one used by Andreou et al. (2005) and Hutchison et al. 

(1994):    

  

∑ ∑
= =

++=
H

i

N

n
sninsiHiM xwxwfwywfy

1 1

)1(
0

)1(
0

)2(
10

)2(
10

)2(
1 )]([  (11) 

 

where (.)Mf  and (.)Hf  are smooth monotonically increasing transfer 

functions associated with the output and hidden layer respectively and snx , 

n=1,2,…,N, is just the scaled value of the input nx . The network’s structure 

employs a scaling scheme for both the inputs and the enhanced variables. 

This is essential for the training of ANNs since it increases the effectiveness of 

the optimization algorithm and minimizes the significance of different 

dimensions of the input signals (see Haykin, 1999, and Bishop, 1995). We 

apply a standard z-score scaling: smxz /)~(~ −= , where x~  is the vector of an 

input/enhanced variable, m  is the mean and s  the standard deviation of this 

vector. 

 

 [Figure 1, here] 

 

For our case, the smooth monotonically increasing transfer functions is either 

the hyperbolic tangent sigmoid,  

 













+

−
= −

−

ηη

ηη
αη bb

bb

ee

ee
f )(  (12) 

 

the logistic, 
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γ
αγ

be
f

−+
=

1
)(  (13) 

 

or the linear one, 

 

ξξ =)(f  (14) 

 

 

The differential of the above expressions can be expressed in a particularly 

simple form and equal to: 

 

( ))()( 22 ηη fa
a
bf −=′  (15) 

 

for the hyperbolic tangent sigmoid, 

 







 −=′

a
f

bff
)(

1)()(
γ

γγ  (16) 

 

for the logistic and, 

 

1)( =′ ξf  (17) 

 

 

for the linear transfer function. In the above expressions, with ℜ∈ba,  where 

a controls the output range and b the slope of the transfer function. As 

advised by Duda et al. (2001, pg.308), the overall range and slope are not 

important, because it is their relationship to parameters such as the learning 

rate and magnitudes of the inputs and targets that affect learning.  According 

to Bishop (1995) (see also Duda et al., 2001), these transfer functions work 

well with ANNs. In the hidden layer we always use the standard hyperbolic 

tangent sigmoid transfer function (with a and b equal unity) for (.)Hf , while 

in the output layer we use a linear transfer function for (.)Mf  as this is 

necessitated by the scaling scheme we apply at the output layer.  
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 The choice of the transfer function at the knowledge layer is dictated by 

the type of the parametric model we use and the kind of the enhanced 

variable(s) we choose to map via the network; thus it is possible for (.)1df , 

(.)2df ,…, (.)dMf  to be different depending on the case considered. This set of 

transfer functions are necessary during the implementation of the method in 

order to ensure that each of the enhanced variable value is in an acceptable 

range for use with the parametric model6. Table 1 – Panel A describes the 

different transfer functions we have used at the knowledge level for all cases 

considered. We use transfer functions that truncate implicitly the enhanced 

variable value range. For instance in the case of BS we do not allow volatility 

to be larger than 150% and for the case of CS, skewness is confined in the 

]15,15[−  range. The choice of the truncation point is not crucial for the 

implementation of the models as long as we allow the enhanced variables to 

vary into plausible ranges. This choice can be guided by empirical 

investigation. For example we rarely observe volatility to be above 150% or 

skewness to be below -15 or above 15 (e.g. Corrado and Su, 1997, Bates, 

1991).    

   

[Table 1, here] 

          

 The training of any type of ANN model is a highly non-linear 

optimization process in which the network’s weights are modified according to 

an error function. Below we describe the updating formulas for the training of 

our networks in the case that there is only one enhanced variable. The 

formulas for the general case of more enhanced variables are trivial. The error 

function between the estimated response qy  and the actual response qt  is 

defined as: 

 

qqq twywe −= )()(  (18) 

 

                                                 
6 For instance, if BS is the chosen parametric model and volatility is the enhanced variable, 
then our transfer function should be a logistic that allows only positive values whilst if the 
enhanced variable is the skewness of CS then the transfer function should be a hyperbolic 
tangent one that allows for both positive and negative values. 
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where, w  is an ?-dimensional column vector containing the weights and 

biases given by: T
jHjjHNH wwwwwwww ],...,,,,...,1,...,[ )2()2(

1
)2(

0
)1()1(

1
)1(
0

)1(
10= . The 

traditional backpropagation7 algorithm which is based on the gradient descent 

error is the most popular method for training the ANNs. It is shown in 

Charalambous (1992) that this training algorithm is often unable to converge 

rapidly to the optimal solution. So, in this paper we rely on the Levenberg-

Marquardt algorithm (LM) which is much more efficient training method in 

terms of training time and convergence rate. According to LM, the weights and 

the biases of the network are updated in such a way so as to minimize the 

following sum of squares performance function: 

 

2

11

2 )()()( ∑∑
==

−≡=
P

q
qq

P

q
q tywewF  (19) 

 

Then, at each iteration t of the algorithm, the weights vector w is updates as 

follows: 

 

 [ ] )()()()(
1

1 τττττττ µ wewJIwJwJww TT −
+ ++=  (20) 

 

where, )( twJ  is the PÎ? Jacobian matrix of the P-dimensional output error 

column vector at tth iteration, and is given by:   

 



















∇

∇

=

)(

)(

)(
1

we

we

wJ
T
P

T

M  (21) 

 

In the above, I is νν ×  identity matrix, and tµ  is like a learning parameter that 

is automatically adjusted in each iteration in order to secure convergence (by 

assuring that the part in the square brackets of Eq. (20) is always 

nonsingular). Large values of tµ  lead to directions that approach the steepest 

descent, while small values lead to directions that approach the Gauss-
                                                 
7 The backpropagation algorithm is so-called because during training an error must be 
propagated from the output layer back to the hidden layer in order to perform the learning 
step (from Duda, 2001, pg. 292).   
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Newton algorithm. Further technical details about the implementation of LM 

can be found in Hagan and Menhaj (1994) and Hagan et al. (1996). Based on 

Eq. (20), the weights and biases update takes place in a batch mode and only 

when all input vectors have been presented to the network. Moreover, the 

network initialization technique proposed by Nguyen and Windrow (see Hagan 

et al., 1996) that generates initial weights and bias values for a nonlinear 

transfer function so that the active regions of the layer’s neurons are 

distributed roughly evenly over the input space is employed accordingly.   

 The quantity )(we q∇  is the gradient vector of )(weq  with respect to the 

trainable parameter vector w. This quantity is computed in a similar fashion 

as with the case of the traditional backpropagation algorithm that is 

commonly used in the context of multilayer perceptron neural networks. Since 

the error function does not depend explicitly upon the network’s weights, 

)(we q∇  is evaluated via the chain rule. Based on the neural network model 

depicted in Figure 1, the partial derivative of the error function in Eq. (18) 

with respect to the weight )2(
jiw  at the hidden layer is:   

 

)1()2(
)2( ij

ji

q y
w

e
δ=

∂

∂
 (22) 

 

and, 

 

)()()( )2()2(
jMjjdjPMj fsdfvf

j
ψδ ′′′=  (23) 

 

where )( )2(
jMf ψ′  and (.)

jdf ′  are the differentials of the knowledge and the 

output neuron transfer function at points )2(
jψ  and jd  respectively (see 

Eqs. (15) and (17)), and js  the standard deviation of the enhanced variable as 

used during scaling.  

 Quantity )( jPM vf ′  is the partial derivative  of the parametric model with 

respect to input jv  and makes our network model more dedicated to options 

pricing. We believe that this quantity is very important during the training of 
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the ANN because it incorporates knowledge from a parametric model. All 

necessary Greek letters for the implementation of the different KANN models 

have been previously discussed in the parametric models section.  

 The partial derivative of the error function in Eq. (18) with respect to 

the weight )1(
inw  at the input layer is: 
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where, 
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and snx is simply the z-score  scaled value of nx .  

 The optimal number of hidden neurons is chosen via a cross-validation 

procedure. Standard ANN structures and KANNs with 2 to 6 hidden neurons 

are trained, and the one that performs the best in the validation period is 

selected. Since the initial network weights affect the final network 

performance, for a specific number of hidden neurons, the network is 

initialized, trained and validated ten separate times. After defining the optimal 

network structure, its weights are frozen and its pricing capability is tested 

(out of sample) in a third separate testing dataset in order to verify the ANN 

ability to generalize to unseen data. 

 

 

Data and Methodology 

 The data considered cover the period January 2002 to August 2004.  

The S&P 500 index call options are used because this option market is 

extremely liquid; one of the most popular index options traded in the CBOE 

and is the closest to the theoretical setting of the parametric models (Garcia 

and Gencay, 2000). All options data are purchased from CSI. For each trading 

day we have the available last transaction call price, mrkc , along with the 

striking price, X , date of expiration, volume and open interest. Along with the 
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index, we have collected a daily dividend yield, λ , provided online by 

Datastream.  

 We used a chronological data partitioning via a rolling-forward 

procedure in order to have a better simulation of  the actual options trading 

conditions. The data is divided into ten different overlapping training (trn) 

and validation (vld) sets, each followed by separate and non-overlapping 

testing (tst) set. Each trn, vld and tst period has 8, 4 and 2 month spanning 

period respectively. For instance, the first trn set covers the period January 

to August 2002, the first vld set covers the period September to December 

2002, the first tst set covers the period January to February 2003, etc. The 

ten testing (out of sample) periods are non-overlapping and cover almost the 

last two years of the data-set. According to this splitting, the trn sets have 

about 10,000 datapoints, the vld about 5,000 datapoints and the tst about 

2,500 datapoints.  

 For the needs of the analysis, we created an aggregate testing period 

(agr) with 25,750 datapoints by simply pooling together the pricing estimates 

of all ten tst periods. For agr and for the case of pricing accuracy, we compute 

and tabulate: the Root Mean Square Error (RMSE), the Mean Absolute Error 

(MAE), the Median Absolute Error (MdAE) and for conceptualizing each 

model’s absolute error distribution, we compute the 5th Percentile of Absolute 

Error (P5AE) and 95th Percentile of Absolute Error (P95AE).  

 

 

Filtering Rules 

To create an informative dataset we mostly rely on the filtering rules adopted 

before by Bakshi et al. (1997) for empirical options pricing (see also Andreou 

et al., 2005). We first eliminate all observations that have zero trading 

volume since they do not represent actual trades. Second, we eliminate 

observations that violate either the lower or the upper arbitrage bounds. 

Third, we eliminate all options with less than six days to expiration to avoid 

extreme option prices that are observed due to potential illiquidity problems. 

In the same spirit, options with more than 260 trading days are also 

excluded. Fourth, price quotes of less than 0.5 index points are not included 

since it perceived that such options come from a different data generating 

process. Last, we demand at least four datapoints per maturity to secure 
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that during the implied parameters extraction process, every maturity period 

is satisfactorily represented.      

 The final dataset used is still larger than previous studies. For 

instance Hutchison et al. (1994) have an average of 6,246 data points per 

sub-period. Lajbcygier et al. (1996) include 3,308 data points, and 

Schittenkopf and Dorffner (2001) include 33,633 data points.  

 

 

Observed Structural Parameters 

 The moneyness ratio, S/X, is the basic input to be used with all 

network structures since it is highly related with the pricing bias associated 

with the POPMs. The moneyness ratio S/X is calculated and used like in 

Hutchison et al. (1994) (see also Garcia and Gencay, 2000). The dividend 

adjusted moneyness ratio Χλ /)( TSe−  is preferred here since dividends are 

relevant. In addition, the time to maturity (T ) is computed assuming 252 

days in a year. Previous studies have used 90-day T-bill rates as 

approximation of the interest rate. In this study we use nonlinear cubic 

spline interpolation for matching each option contract with a continuous 

interest rate, r , that corresponds to the option’s maturity. For this purpose, 

1, 3, 6, and 12 months constant maturity T-bills rates (rates collected from 

the U.S. Federal Reserve Bank Statistical Releases) were taken into 

consideration.  

 Here we use several volatility measures with BS; as in Bakshi et al. 

(1997), we employ overall average implied parameter measures that are 

theory consistent. This is in contrast to several studies (e.g. Hutchison et al., 

1994, Garcia and Gencay, 2000) where the assumption is made that ANNs 

are able to capture the associated volatility from data. For pricing reasons at 

time instant t, the implied structural parameters derived at day t-1 are used 

together with all other needed information.  

 The 60-days volatility is a widely used historical estimate (see 

Hutchison et al., 1994, and Lajbcygier et al., 1997). This estimate is 

calculated using all past 60 log-relative index returns and is symbolized as 

BS
60σ . In addition, the VIX Volatility Index is an estimate that can be directly 

observed from the CBOE. It was originally developed by CBOE in 1993 as a 

measure of the volatility of the S&P 100 Index (currently termed VXO) but 



 20 

nowadays reflects a proxy for the volatility of S&P 500. VIX is calculated as a 

weighted average of S&P 500 option with an average time to maturity of 30 

days and emphasis on at-the-money options.  This volatility measure is 

symbolized as BS
vixσ .  

 

 

Weighted Volatility Measures 

 To obtain the contract specific implied volatility ( impσ ) of each option 

we use the widely applied Newton-Raphson. Afterwards, each of the implied 

volatilities is utilized to create daily weighted implied volatility forecasts to be 

used with the BS. The general formula we use is: 
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where tN  refers to the number of different call option transaction datapoints 

available at each time instance t and ξ  is a weighting factor. We apply 

various versions of ξ  in this study. The most widely used weighted volatility 

measure is the one proposed by Chiras and Manaster (1978) in which is 

implied volatility is weighted by the price elasticity of the call option: 
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This weighted volatility forecast will be termed as BS
cmσ . In addition, we also 

implement another weighting scheme in which ξ  represents the percentage 

of the trading volume of each options. As documented by Day and Lewis 

(1988), at the money options which are the most sensitive  to volatility 

changes concentrate the largest trading activity and out-of-the money 

options that might represent noisy trades concentrate the least trading 

activity. Volume weighted volatility will be termed as BS
volσ . 
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   Implied Volatility Measures 

 The methodology employed in this study for the implied parameter 

estimation is similar to that in previous studies that somehow adopt the 

Whaley’s (1982) simultaneous equation procedure to minimize a price 

deviation function with respect to the unobserved parameters. As with Bates 

(1991), market option prices (cmrk) are assumed to be the corresponding 

POPM prices (ck, k=BS or CS) plus a random additive disturbance term ( k
Ne , 

k=BS or CS): 

 

k
N

k
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where N refers to the number of different call option transaction datapoints 

available. To find optimal implied parameter values we solve an optimization 

problem that has the following form: 
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where t represents the time instance, k?  the unknown parameters 

associated with a specific parametric options pricing model ( }{ BSBS σθ = , 

},,{ 43 µµσθ CSCS = ) and ξ  is a weighing factor. The SSE is minimized via a 

non-linear least squares optimization based again on the Levenberg-

Marquardt algorithm. To minimize the possibility to obtain implied 

parameters that correspond to a local minimum of the error surface with 

each model we use three different starting values for the unknown 

parameters based on reported average values for the S&P 500 (but for 

different periods) according to Bates (1991), Bakshi et al. (1997), and 

Corrado and Su (1996 and 1997).  

 The above approach is used daily to obtain two different sets of 

implied parameters for each parametric model. The first optimization is 

performed by including all available options data in order to obtain daily 

average implied parameters by assuming that ξ  is unity; this is consistent 

with Bates (1991), Bates (1996), Bakshi et al. (1997), and Corrado and Su 
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(1996). These implied parameter measures will be termed as implied-overall 

average and for notation reasons will be denoted with av. Furthermore, the 

same procedure is done for each by assuming that ξ  is the percentage of the 

daily trading volume for each option observation included in the 

optimization. As explained before, the motivation for this approach follows 

the study of Day and Lewis (1988). These implied parameter measures will 

be termed as implied-overall volume average and for notation reasons we will 

be denoted with vav.  

 For the optimization procedure above we have imposed two kind of 

constraints for practical reasons; nonnegative implied parameters are 

optimized using an exponential transformation, the skewness of CS8 is 

allowed to vary in the range [-10, 5] whereas kurtosis is constrained to be 

less than 30 . 

 The two different implied BS volatility estimates will be symbolized 

as: BS
jσ , },{ vavavj = , whilst the two different sets of CS parameters as: 

}4,3,{ CS
j

CS
j

CS
j µµσ . We should note that the pricing dynamics differ 

between BS and CS so we can expect BS
js  and CS

js  to differ for the same 

call contract. 

  

 

Comparison of the Alternative Models 

 With the BS models we use as input S, X, T, λ ,  r, and any of the 

following six volatility forecasts: BS
60σ , BS

vixσ , BS
avs , BS

vavσ , BS
cmσ  and BS

volσ . We 

use the following notation when we refer to the parametric BS models: 60BS , 

vixBS , avBS , vavBS , cmBS , volBS . In a similar way there are two different CS 

models according to the implied parameters used: avCS  (with 

CS
av

CS
av

CS
av 4,3, µµσ ), and vavCS (with CS

vav
CS
vav

CS
vav 4,3, µµσ ).  

                                                 
8 If not somehow constrained, skewness and kurtosis can take implausible values due to 
model overfitting that will lead on enormous pricing errors on the next day (especially for deep 
in the money options). It is hard to believe that implied skewness and kurtosis can exceed 
these values (i.e. Bates, 1991) on most of the days. In our case these constraints were binding 
in less than 2% of the whole dataset and actually the fitting errors on these cases were in 
acceptable levels. 
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 With the neural networks, we also use three standard input 

variables/parameters: XSe Td /)( − , T  and r ; in addition, the target variable 

is always the standardized market call price: cmrk/X. The notation for the 

models depends on the parametric model considered. We use jnBS , with 

j={60, vix, av, vav, cm, vol}, to denote the six standard ANNs that use as an 

additional input one of the BS volatilities: BS
60σ , BS

vixσ , BS
avs , BS

vavσ , BS
cmσ  and 

BS
volσ . Similarly we use jnCS , with j={av, vav}, to denote the two standard 

ANNs that use as additional input one set of the CS variables: either CS
avσ , 

CS
av3µ , CS

av4µ  or CS
vavσ , CS

vav3µ , CS
vav4µ . Moreover, we use jkBS , with j={60, 

vix, av, vav, cm, vol}, to denote the six knowledge enhanced networks that 

use as an additional input variable the BS volatilities: BS
60σ , BS

vixσ , BS
avs , 

BS
vavσ , BS

cmσ  and BS
volσ ; for these models volatility is the only enhanced 

variable. In the same spirit we use  sig
jkCS , with j={av, vav}, to denote the 

two KANNs that use as additional inputs the CS variables: CS
avσ , CS

av3µ , 

CS
av4µ  and CS

vavσ , CS
vav3µ , CS

vav4µ  respectively, with volatility being the only 

enhanced variable. Finally, we use  all
jkCS , with j={av, vav}, to denote the 

two networks that use as additional inputs the CS variables: CS
avσ , CS

av3µ , 

CS
av4µ  and CS

vavσ , CS
vav3µ , CS

vav4µ  respectively, with volatility, skewness and 

kurtosis being the enhanced variables. Description of the network models 

can be found in Table 1 – Panel B.  

 Table 2 demonstrates descriptive statistics of the data used with all 

models exploited in this study. Tables 3 and 4 exhibit the performance of all 

models considered in terms of RMSE, MAE and RMeSE, P5AE, P95AE for the 

aggregate period (agr). Since all types of ANNs are effectively optimized in 

respect to sums of squares, (see Eq. 19), the out of sample pricing 

performance should be similarly  based on RMSE and in a lesser degree on 

the other measures.  

 

[Tables 2, 3, 4, here] 
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 We first concentrate our attention to Panel A of Tables 3 and 4 for the 

parametric BS and CS models. avBS  is the best performing model within 

the alternative BS parametric alternatives. From the BS class results, we 

view that vavBS , which utilizes a volatility forecast that is estimated with 

volume information, is the second best performing model and still inferior to 

avBS  in all performance measures considered. Likewise, avCS  outperforms 

vavCS . In addition, avCS  (that captures better fat tails and asymmetry in 

log-returns) is the best performing model with the POPMs with RMSE equal 

to 3.21. 

 The pricing results of Table 3-Panel B show that the standard ANNs 

do not exhibit superior performance compared to the BS or CS parametric 

alternatives, although the overall results are mixed. We see that avBS  is 

superior compared to avnBS . Likewise, avCS  is superior to avnCS . 

 When we take all results into account, always the KANNs outperform 

significantly in all performance measures, both the respective parametric 

and standard ANNs. cmkBS  is the best performing within the KANN-BS 

class, followed by avkBS , and all
avkCS  the best performing within the KANN-

CS class. Overall we see that the ratio of the BS models to their KANN 

equivalents is between 1.23 and 1.61 whilst the corresponding figures for 

the CS case are 1.10 and 1.17. Another noticeable observation relates to the 

improvement in the A95PE. This performance measure indicates a degree of 

confidence about large mispricings. Someone should feel more confident by 

using avkBS ( all
avkCS ) with A95PE equal to 6.66 (5.97) compared to avBS  

( avCS ) with A95PE equal to 8.19 (6.61). 

 Overall the knowledge enhanced all
avkCS  (and sig

avkCS ) are the best 

performing models among all considered in this study. Despite this, given 

the relative simplicity of BS and its wide applicability (see Andersen et al., 

2002), the BS based KANN models remain an excellent alternative. 
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Summary and Conclusions 

 In this study we combine the ANN models that have been applied 

previously in options pricing, with parametric models. Our approach allows a 

set of the input variables of the parametric model to be jointly determined by 

the neural network. The knowledge oriented ANN models proposed by this 

study have many desirable properties compared to standard ANNs like 

arbitrage-free and nonnegative option values, theory consistent Greek letter 

etc. In general, this methodology is proposed as a way to eliminate some of the 

deficiencies of the modern parametric options models and the standard ANNs. 

We compare the proposed methodology with standard ANNs and with 

the Black and Scholes and the Corrado and Su models. For pricing 

performance analysis we use the S&P 500 index call options, with both 

historical and several overall average implied parameters for the period 

January 2002 to August 2004. 

The results obtained strongly support the proposed methodology. 

Specifically, we find that the increase in the pricing accuracy of KANN-BS over 

the standard BS models is between 23% and 61%. The increase of the pricing 

accuracy of the KANN-CS over the CS model is between 10% and 17%. 

Compared to the standard ANNs, the increase in pricing accuracy is even 

more significant.   
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Tables 
 

Model Enhanced  
Variable 

Transfer 
Function 

Parameter Values 
(a,b) 

BS Volatility Logistic (1.5,1)  
CS Volatility Logistic (1.5,1)  
CS Skewness Tangent  (15,0.15) 
CS Kurtosis Logistic (30,0.20) 

Panel A: Transfer functions used with enhanced variables    

 
Model 

 
Input Variables 

 
Enhanced 
Variable(s) 

60nBS  XSe T /)( λ− , T , r , BS
60σ  none 

vixnBS  XSe T /)( λ− , T , r , BS
vixσ  none 

avnBS  XSe T /)( λ− , T , r , BS
avs  none 

vavnBS  XSe T /)( λ− , T , r , BS
vavσ  none 

cmnBS  XSe T /)( λ− , T , r , BS
cmσ  none 

volnBS  XSe T /)( λ− , T , r , BS
volσ  none 

avnCS  XSe T /)( λ− , T , r , CS
avσ , CS

av3µ , CS
av4µ  none 

vavnCS  XSe T /)( λ− , T , r , CS
vavσ , CS

vav3µ , CS
vav4µ  none 

60kBS  XSe T /)( λ− , T , r , BS
60σ  Volatility 

vixkBS  XSe T /)( λ− , T , r , BS
vixσ  Volatility 

avkBS  XSe T /)( λ− , T , r , BS
avs  Volatility 

vavkBS  XSe T /)( λ− , T , r , BS
vavσ  Volatility 

cmkBS  XSe T /)( λ− , T , r , BS
cmσ  Volatility 

volkBS  XSe T /)( λ− , T , r , BS
volσ  Volatility 

avkCS  XSe T /)( λ− , T , r , CS
avσ , CS

av3µ , CS
av4µ  Volatility, skewness, 

kurtosis 
vavkCS  XSe T /)( λ− , T , r , CS

vavσ , CS
vav3µ , CS

vav4µ  Volatility, skewness, 
kurtosis 

Panel B: Description on all ANN based models  
 
Table 1: Network characteristics 
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 DOTM OTM JOTM ATM JITM ITM DITM 
S/X =0.90  0.90 -

0.95 
0.95-
0.99 

0.99-
1.01 

1.01-
1.05 

1.05-
1.10 

>1.10 

Short Term Options  <60 Days 
mrkc  1.81 3.46 8.83 21.25 38.81 74.44 156.09 

Volume 591 995 1274 1766 554 303 213 
BS
60s  0.20 0.16 0.14 0.14 0.15 0.15 0.16 
BS
vixs  0.28 0.22 0.19 0.19 0.19 0.20 0.21 
BS
avs  0.23 0.20 0.18 0.17 0.18 0.18 0.19 
BS
vavs  0.24 0.19 0.17 0.17 0.17 0.18 0.18 
BS
cms  0.23 0.18 0.16 0.16 0.16 0.17 0.17 
BS
vols  0.24 0.20 0.17 0.17 0.17 0.18 0.19 

# obs 378 1696 3868 2237 2843 1332 857 
Medium  Term Options  60-180 Days 

mrkc  4.09 10.40 23.76 39.93 55.62 86.72 176.02 

Volume 287 565 650 1553 494 143 221 
BS
60s  0.18 0.15 0.15 0.15 0.15 0.15 0.15 
BS
vixs  0.23 0.19 0.19 0.19 0.19 0.19 0.20 
BS
avs  0.21 0.18 0.18 0.18 0.18 0.18 0.18 
BS
vavs  0.21 0.17 0.17 0.17 0.17 0.17 0.18 
BS
cms  0.19 0.16 0.16 0.16 0.17 0.16 0.17 
BS
vols  0.21 0.18 0.17 0.17 0.18 0.17 0.18 

# obs 1165 1759 1682 980 1111 750 713 
Long Term Options   ≥ 180 Days 

mrkc  10.21 27.24 45.51 61.12 76.52 102.84 175.32 

Volume 343 478 341 471 200 110 185 
BS
60s  0.18 0.16 0.15 0.15 0.16 0.15 0.16 
BS
vixs  0.23 0.21 0.20 0.20 0.20 0.19 0.20 
BS
avs  0.20 0.19 0.18 0.18 0.18 0.18 0.18 
BS
vavs  0.20 0.18 0.18 0.17 0.18 0.17 0.18 
BS
cms  0.19 0.17 0.17 0.17 0.17 0.16 0.17 
BS
vols  0.21 0.19 0.18 0.18 0.18 0.17 0.18 

# obs 1080 734 660 429 417 258 353 
Table 2: Sample descriptive statistics 
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 60BS  vixBS  avBS  vavBS  cmBS  volBS  
RMSE 7.11 5.54 3.98 4.47 4.68 6.24 
MAE 5.01 4.00 2.88 3.01 3.05 3.49 
MeAE 3.40 3.01 2.17 1.87 1.67 1.90 
P5AE 0.22 0.38 0.21 0.17 0.12 0.15 
P95AE 15.59 11.43 8.19 10.02 10.53 11.63 

Panel A: Parametric Black and Scholes Pricing Performance 
 

 60nBS  vixnBS  avnBS  vavnBS  cmnBS  volnBS  

RMSE 7.89 5.12 4.54 4.78 4.56 5.45 
MAE 5.82 3.28 3.02 3.26 2.77 3.56 
MeAE 4.77 2.17 2.16 2.25 1.74 2.34 
P5AE 0.47 0.22 0.23 0.22 0.18 0.23 
P95AE 14.84 9.86 8.64 9.46 9.12 10.56 

Panel B: Standard ANNs Pricing Performance 
 

 60kBS  vixkBS  avkBS  vavkBS  cmkBS  volkBS  

RMSE 5.18 3.44 3.24 3.55 3.21 4.15 
MAE 3.61 2.36 2.27 2.48 2.19 2.74 
MeAE 2.41 1.62 1.64 1.75 1.51 1.90 
P5AE 0.20 0.12 0.13 0.13 0.11 0.15 
P95AE 11.38 7.23 6.66 7.42 6.59 8.48 

Panel C: KANNs  Pricing Performance 
 
Table 3: Black and Scholes based parametric and network models 
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 avCS  vavCS    

RMSE 3.21 3.88   
MAE 2.22 2.51   
MeAE 1.53 1.48   
P5AE 0.13 0.12   
P95AE 6.61 8.55   

Panel A: Parametric Corrado and Su Pricing Performance 
 

 avnCS  vavnCS    
RMSE 4.79 5.50   
MAE 3.23 3.37   
MeAE 2.26 2.13   
P5AE 0.24 0.21   
P95AE 9.32 10.39   

Panel B: Standard ANNs Pricing Performance 
 

 sig
avkCS  sig

vavkCS  all
avkCS  all

vavkCS  
RMSE 2.95 3.46 2.92     3.32 
MAE 2.00 2.49 2.01     2.29 
MeAE 1.35 1.80 1.40     1.60 
P5AE 0.13 0.15 0.12     0.15 
P95AE 6.08 7.07 5.97     6.71 

Panel C: KANNs  Pricing Performance 
 

Table 4: Corrado and Su based parametric and network models 
 


