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Abstract

This article examines whether volatility risk is a priced risk factor in securities
returns. Zero-beta at-the-money straddle returns of the S&P 500 index are used to
measure volatility risk. It is demonstrated that volatility risk captures time
variation in the stochastic discount factor, suggesting that straddle returns are
important conditioning variables in asset pricing. The conditional model proposed
here performs far better than its unconditional counterparts including the Fama-
French three-factor model. Thus, we argue that investors use straddle returns
when forming their expectations about securities returns. One interesting finding
is that, different classes of firms react differently to volatility risk. For example,
small firms and value firms have negative and significant volatility coefficients
whereas big and growth firms have positive and significant volatility coefficients
during high volatility periods, indicating that investors see these latter firms as
hedges against volatile states of the economy. Overall, these findings have
important implications for portfolio formation, risk management, and hedging
strategies.
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INTRODUCTION

The notion that equity returns exhibit stochastic volatility is well

documented in the asset pricing literature.1 Furthermore, recent evidence indicates

the existence of a negative volatility risk premium in the options market

(Lamoureux & Lastrapes, 1993; Buraschi & Jackwerth, 2001; Coval & Shumway,

2001; Bakshi & Kapadia, 2003). However, the existence of volatility risk in the

securities market and its impact on different classes of firms has not been

extensively documented. Recently, Coval and Shumway (2001) examines the

return characteristics of S&P 100 index straddles and gives preliminary evidence

that volatility risk may be a common risk factor in securities markets - a finding

that contradicts the classical CAPM.

CAPM suggests that the only common risk factor relevant to the pricing of

any asset is its covariance with the market portfolio; thus an asset's beta is the

appropriate quantity for measuring the risk of any asset. However, Vanden (2004)

shows that when agents face non-negative wealth constraints, cross sectional

variation in securities returns is not explained only by an asset's beta. Instead,

excess returns on the traded index options and on the market portfolio explain this

variation; implying that options are non-redundant securities. Furthermore, as

Detemple and Selden (1991) suggests, if options in the economy are non-

redundant securities, then there should be a general interaction between the
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returns of risky assets and the returns of options. This implies that option returns

should help explain security returns.

This article extends the preceding studies and presents evidence that

straddle returns are important for asset pricing since they help capture time

variation in the stochastic discount factor. The findings suggest that volatility risk

is time-varying and that options are non-redundant securities at volatile states of

the economy. This has important implications regarding the allocational role of

options in the economy. The preliminary time-series regressions, Fama-MacBeth

regressions, and GMM-SDF estimations in this article confirm the theory that

options are effective tools in pricing securities and allocating wealth among

agents as suggested by Vanden (2004). This article also examines the effect of

volatility risk in pricing different classes of firms, i.e. small vs. big and value vs.

growth, and finds distinct patterns in the returns of these firms, especially at

volatile states of the economy.

Asset pricing theories thus far have been unable to provide a satisfactory

economic explanation for the size and value vs. growth anomalies.2 In a rational

markets framework, we would expect these abnormal returns to be temporary.

Once investors realize arbitrage opportunities, the abnormal profits of small and

value stocks are expected to vanish. However, this has not been the case. The

persistence of these two anomalies has led to extensive research and has yielded

two alternative lines of explanations within the rational markets paradigm.
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One line, led by Fama and French (1992, 1993, 1995), argues that a stock's

beta is not the only risk factor. This approach suggests that fundamental additional

variables such as book-to-market and market value explain equity returns much

better, because they are proxies for some unidentified risk factors. However, the

weakness of this explanation lies in its failure to address the economic variables

underlying these factors. The other line of research within the risk-return

framework argues that it is the time variation in betas and the market risk

premium that cause the static CAPM to fail to explain these anomalies. There is

now considerable evidence that conditional versions of CAPM perform much

better than their unconditional counterparts.3

This article re-examines these two important asset pricing anomalies with

an important but somewhat overlooked factor, the volatility risk. There is now a

considerable amount of evidence that volatility risk is priced in the options

market. First, Jackwerth and Rubinstein (1996) report that at-the-money implied

volatilities of call and put options are consistently higher than their realized

volatilities, suggesting that a negative volatility premium could be an explanation

to this empirical irregularity. Furthermore, Coval and Shumway (2001) report that

zero-beta at-the-money straddles on the S&P 100 index earn returns consistently

lower than the risk free rate, suggesting the presence of a negative volatility risk

premium in the prices of options. As an extension of this study, Driessen and

Maenhout (2005) report that volatility risk is also priced in FTSE and Nikkei
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index options. Finally, Bakshi and Kapadia (2003) show that delta-hedged option

portfolios consistently earn negative returns and conclude that there exists a

negative volatility risk premium in option prices.

While the above evidence indicates that volatility risk is priced in options

markets, we are less confident that it is priced in securities markets. Recent

studies find that volatility risk can explain the cross-section of expected returns.

For example, Moise (2005) uses innovations in the realized stock market

volatility, and demonstrate that volatility risk helps explain some of the size

anomaly. Furthermore, by using changes in the VIX volatility index of Chicago

Board Options Exchange (CBOE), Ang, Hodrick, Xing, and Zhang (2006)

demonstrate that aggregate volatility is a cross-sectional risk factor. In this study,

a measure from the options market, i.e. straddle returns on the S&P 500 index, is

used as a proxy for volatility risk. The reasoning behind using straddle returns is

intuitive. As Detemple and Selden (1991) argue, if options are non-redundant

securities in the economy, then their returns should appear as factors in explaining

the cross section of asset returns. Furthermore, Vanden (2004) reports that returns

of call and put options indeed explain a significant amount of variation in

securities return, but fail to explain the returns for small and value stocks. The

failure of Vanden's model could be due to omitting an important risk factor, the

volatility risk. Furthermore, straddles are volatility trades, and they provide
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insurance against significant downward moves.4 Thus, overall, straddle returns are

ideal for studying the effects of volatility risk in security returns.

The remainder of this article is organized as follows. First, data and the

methodology for calculating straddle returns are presented. Econometric issues in

the estimation of the volatility risk premium are discussed in the next section. This

is followed by empirical results. The final section offers concluding remarks. 

DATA AND METHODOLOGY

The data consist of two parts - S&P 500 options data and stock return data

- covering the period January 1987 through October 1994.5 Daily S&P 500

options data is obtained from the Chicago Board Options Exchange and consists

of daily closing prices of call and put options, the daily closing level of the S&P

500 index, the maturities and strike prices for each option, the dividend yield on

the S&P 500 index, and the one-month T-bill rate. For option volatilities, the

closing level of CBOE's S&P 500 VIX index is used. For market portfolio,

CRSP’s value weighted index on all NYSE, AMEX and NASDAQ stocks are

used. The return data on size and book-to-market portfolios are obtained from

Kenneth French's data library.

The method for calculating daily option returns is as follows. First, options

that significantly violate arbitrage-pricing bounds are eliminated. Then, options
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that expire during the following calendar month are identified. This roughly

coincides with options that have 14 to 50 days to expiry in our sample. The reason

for choosing options that expire the next calendar month is that they are the most

liquid data among various maturities.6 Options that expire within 14 days are

excluded from the sample, because they show large deviations in trading volumes,

which casts doubt on the reliability of their pricing associated with increased

volatility.7 Next, each option is checked whether it is traded the next trading day

or not. If no option is found in the nearest expiry contracts, then options in the

second-nearest expiry contracts are used. To calculate the daily return of an

option, raw net returns are used. The usage of raw net returns is justified by Coval

and Shumway (2001) who argue that log-scaling of option returns can be quite

problematic.

Once daily call and put returns are calculated, they are grouped according

to their moneyness levels. Although there is no standard procedure for classifying

at-the-money options, options with a moneyness level (S-K) between -5 and +5

are classified as at-the-money options.  This classification also guarantees that

there are at least two options around the spot price. One reason for focusing on

zero-beta at-the-money straddles was to capture the effect of volatility risk, as

mentioned previously.  Another advantage of studying at-the-money options is

that they are less prone to pricing errors compared to deep-out-of money options,
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as cited in option pricing literature.8 Using the above procedure results in 1937

days of return data out of 1980 trading days.

The straddle returns are calculated according to the methodology outlined

by Coval and Shumway (2001). In order to capture the effect of volatility risk,

zero-beta at-the-money straddle returns on the S&P 500 index are used. The

advantage of using S&P 500 index options is that they are highly liquid, thus they

are less prone to microstructure and illiquid trading effects. Zero-beta straddles

are formed by solving for θ from the following set of equations,

( ) pcv rrr θθ −+= 1 (1)

( ) 01 =−+ pc βθθβ (2)

where vr  is the straddle return, cr  and pr  are the call and put returns, θ  is the

fraction of the straddle’s value in call options, and cβ  and pβ are the market betas

of the call and put options, respectively. It is straightforward to calculate returns

on call and put options; however, in order to calculate the return of a straddle, the

value of θ is needed, which depends on cβ  and pβ . By using the put-call parity

theorem, Equation (2) can be reduced into a single unknown, cβ , and the value of

θ is derived as follows
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where C is price of the call option, P is price of the put option, and s is the level of

the S&P 500 index.

The only parameter that is not directly observable in the above equation is

the call option’s beta, cβ . We use Black-Scholes' beta, which is defined as
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where N[.] is the cumulative normal distribution, X is the exercise price of call

option, r is the risk-free short term interest rate, q is the dividend yield for S&P

500 assets, σ is the standard deviation of S&P 500 returns, and t is the option's

time to maturity.

The methodology to calculate zero-beta at-the-money straddle returns is as

follows.  First, an option's beta is calculated according to Equation (4). Then, θ is

derived by incorporating the previously calculated call and put option returns into

Equation (3). Finally, straddle returns for each day are calculated according to

Equation (1). The daily zero-beta straddle return is then simply the equally-

weighted average of at-the money-straddle returns that are found in the final step.
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Table I reports the summary statistics for the daily S&P 500 (SPX)

straddle returns. The average daily S&P 500 straddle return is -1.06 % with a

minimum return of –87.77% and maximum of 441.79%. The mean and median of

the daily zero-beta straddle returns are negative as documented by the earlier

literature. Note that call option betas are instantaneous betas, and therefore the

straddles are zero-beta at the construction. However, we calculate the zero-beta

straddle returns by using daily buy and hold returns. Thus, they are zero-beta

instantaneously and their betas might change during the holding period. This

might be the possible explanation of negative correlation of -0.54 between the

straddle returns and market returns.9 The straddle returns also exhibit positive

skewness and relatively high kurtosis.

[Insert Table I here]

ECONOMETRIC SPECIFICATIONS

In order to test the main hypothesis that volatility risk - proxied by zero-

beta at-the-money straddle returns - is priced in securities returns, we first regress

the excess returns of size and book-to-market portfolios on excess straddle returns

and on the market factor10.  The empirical model to be tested is
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( ) itftjt
j

ijiftit rrrr εβα +−+=− ∑ ,           (5)

where rit's are realized returns of size and book-to-market portfolios, and rjt's are

the returns of factors that are included in the regressions.

The above analysis relies on monthly holding period returns, both because

microstructure effects tend to distort daily returns, and to rule out non-

synchronous trading effects that could be present in daily data. In order to

calculate monthly at-the-money straddle returns, an equally weighted portfolio of

at-the-money straddles is formed for each day and then each day's return is

cumulated to find monthly holding period returns. This adds up to 94 monthly

straddle returns, which are used as an independent variable in the preceding time-

series regressions. Although these regressions are not formal tests of whether

volatility risk is priced or not, they nevertheless give clues about the potential

explanatory power of straddle returns in explaining the cross-section of expected

returns.

Next the question of whether volatility risk is a priced risk factor is

examined by performing Fama-MacBeth two-pass regressions by using the 25

size and book-to-market portfolios.11  The model to be tested is

[ ] λβα ′+= iitrE .        (6)
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More specifically, in the first pass, portfolio betas are estimated from a

single multiple time-series regression via Equation 5. Instead of using the 5-year

rolling-window approach, a full sample period is used.12 In the second pass, a

cross-sectional regression is run at each time period, with full-sample betas

obtained from the first pass regressions, i.e.

[ ] jtijititrE λβα ′+= , i = 1, 2, …, N for each t.        (7)

Fama and MacBeth (1973) suggests that we estimate the intercept term

and risk premiums, iα and jλ 's, as the average of the cross-sectional regression

estimates

∑
=

=
T

t
iti T 1

ˆ1ˆ αα , and ∑
=

=
T

t
jtj T 1

ˆ1ˆ λλ .

One problem with the Fama-MacBeth procedure is that it ignores the

errors-in-variables problem that results from the fact that in the second pass, beta

estimates instead of the true betas are used. In order to avoid this problem, a

Generalized Method of Moments (GMM) approach within the stochastic discount

factor (SDF) representation is employed. The advantage of a GMM approach is

that it allows the estimation of model parameters in a single pass, thereby

avoiding the error-in-variables problem. The advantage of the SDF representation

relative to the beta representation is that it is extremely general in its assumptions

and can be applied to all asset classes, including stocks, bonds, and derivatives.

Cochrane (2001) demonstrates that both representations express the same point,
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but from slightly different viewpoints. However, the SDF view is more general, it

encompasses virtually all other commonly known asset pricing models. Ross

(1976) and Harrison and Kreps (1979) state that in the absence of arbitrage and

when financial markets satisfy the law of one price, there exists a stochastic

discount factor, or pricing kernel, mt+1, such that the following equation holds

[ ] 111 =++ tit mRE ,        (8)

where Rit+1 is the gross return (one plus the net return) on any traded asset i, from

period t to period t+1. We denote this as the unconditional SDF model.

Since considerable evidence exists to suggest that expected excess returns

are time-varying, the above unconditional specification may be too restrictive.

Thus, in order to answer the question of whether or not there exists time-variation

in the volatility risk premium, both unconditional and conditional models of asset

pricing are tested. The conditional SDF model is denoted as

[ ] 111 =++ titt mRE         (9)

where Et denotes the mathematical expectation operator conditional on the

information available at time t.

Following Jagannathan and Wang (1996), we consider a linear factor

pricing model with observable factors, ft.  Then, mt+1 can be represented as

11 ++ ′+= tttt fbam      (10)
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where at, and bt are time-varying parameters. Note that, when at, and bt are

constants, we obtain the unconditional version of linear factor models.

The question here is how one can incorporate the information that

investors use when they determine expected returns in Equations (9) and (10).

Because the investors' true information set is unobservable, one has to find

observable variables to proxy for that information set.  Cochrane (1996) shows

that conditional asset pricing models can be tested via a conditioning time t

information variable, zt.  One way of incorporating conditioning variable, zt, into

the model is to scale factor returns, as discussed in Cochrane (2001); and used in

Cochrane (1996), Hodrick and Zhang (2001), and Lettau and Ludvigson (2001).

This is done by scaling the factors with zt, thus modeling the parameters at, and bt

as linear functions of zt as follows

tt za 10 γγ +=      (11)

tt zb 10 ηη +=      (12)

Plugging these equations into Equation (10), and assuming that we have a

single factor, we have a scaled multifactor model with constant coefficients taking

the form

( ) ( ) 11011 ++ +++= tttot fzzm ηηγγ

        11110 ++ +++= tttot fzfz ηηγγ      (13)
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The scaled multifactor model can be tested by rewriting the conditional

factor model in Equation (9), as an unconditional factor model with constant

coefficients 010 ,, ηγγ , and 1η  as follows,

( )[ ] 1111101 =+++ +++ tttotit fzfzRE ηηγγ .      (14)

In the next section, empirical results of OLS time-series regressions

(Equation 5), Fama-MacBeth regressions (Equation 6), and the GMM-SDF

estimations (Equation 8) are presented.

EMPIRICAL FINDINGS

Time Series Regressions

Coval and Shumway (2001) (CS) argue that zero-beta at-the-money

straddles can proxy for volatility risk, which can in turn explain the variation in

the cross-section of equity returns. Usually, highly volatile periods are associated

with significant downward market moves. Furthermore, index straddles earn

positive (negative) returns in times of high (low) volatility, as can be seen by the

negative correlation between the straddle and market returns in Table I. CS also

argue that volatility risk is a possible explanation for the well-known size anomaly

among securities returns. For a preliminary investigation of those two hypotheses,

we use a two-factor model, and regress excess returns of CRSP's size deciles on
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the excess returns of CRSP's value-weighted index on all NYSE, AMEX, and

NASDAQ stocks and the excess returns of zero-beta at-the-money straddles.

Table II presents the results of these regressions.

[Insert Table II here]

As can be seen from the table, there exists a statistically significant

relationship between straddle returns and securities returns in 9 of the 10 size

deciles. Thus, straddle returns and therefore volatility risk could be a significant

variable in explaining securities returns. In their recent studies, Moise (2005) and

Ang et al. (2006) also document statistically significant negative price of risk for

aggregate volatility. In our case, the economic interpretation of this negative

volatility risk premium could be that buyers of zero-beta at-the-money straddles

are willing to pay a premium for downside market risk. If investors are assumed

to be averse to downward market moves, the existence of a negative volatility risk

premium would be justified, because downward moves are associated with high

volatility periods. Following Vanden's theoretical framework, this would imply

that straddles are effective tools in completing the market, because they help

investors avoid insolvency and negative wealth levels, during high volatility

periods.
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A more interesting finding, which also confirms CS's predictions, is the

significant pattern observed in the coefficients of straddle returns. The coefficients

of straddle returns monotonically increase from the smallest size decile to the

largest. This finding, if persistent, can be a potential explanation for the widely

known size anomaly. Since stocks with small market capitalizations are the ones

that are affected most by highly volatile states of the economy, the volatility

coefficients of smaller decile firms are expected to be lower than larger decile

firms; i.e., they are associated with more negative volatility risk premiums.13

Moreover, the coefficients of the largest size decile turn out to be significantly

positive, suggesting that investors see large firms as hedges against innovations in

volatility. This finding suggests that, during volatile periods, large firms tend to

protect their investors better than small firms.

The explanatory power of the regressions is relatively high with adjusted

R2's ranging from 0.64 to 0.98. Furthermore, none of the intercept terms are

significantly different form zero according to the t-statistics. However, the GRS

F-test rejects the hypothesis that all the intercepts are jointly equal to zero at the

5% level. Overall, the above results favor the explanation that volatility risk might

be a potential priced factor among securities returns.

Next, the relevance of the volatility risk factor on different classes of firms

is examined. To do this, 25 portfolios formed on size and book-to-market are
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used. One advantage of using this broader portfolio set is to see the robustness of

the above results across book-to-market portfolios, as well.

Table III documents the time-series regression results for the 25 portfolios.

As can be seen, straddle returns still explain the variation in the returns of 21 out

of 25 portfolios formed according to size and book-to-market. Consistent with the

previous results, small size portfolios (the lowest three size quintiles) have

statistically significant negative coefficients for most of the book-to-market levels

(14 out of 15 portfolios). Although, the intercept term αi is not statistically

significant for 23 of the portfolios, the GRS-F test rejects the hypothesis that

intercepts are jointly equal to zero. This result is consistent with Vanden (2004)

and Coval and Shumway (2001).

Looking across book-to-market portfolios, it is seen that high book-to-

market (value) stocks consistently have significant and negative coefficients in the

smallest four size quintiles and low book-to-market (growth) stocks have

significant and positive coefficients in the biggest size quintile. The positive and

significant coefficients for the big-growth portfolios are interesting. This result, if

persistent, might indicate that among the big firms, investors see only growth

firms as potential hedges against volatile states of the economy. This, in turn, can

be a possible explanation for the value vs. growth anomaly.

[Insert Table III here]



18

To further check the robustness of this explanation, the sample is refined

to 6 portfolios based on size and book-to-market. As can be seen from Table IV,

small-sized firms still have negative and significant coefficients consistent with

the previous documented results. Furthermore, among big firm portfolios it is only

the growth portfolio, which exhibits a positive and significant volatility risk

coefficient. These consistent results indicate that the volatility risk could not only

explain the size anomaly but also the value vs. growth anomaly. When formed

according to size, it is clearly seen that small firms are more prone to volatility

risk, whereas big firms are seen as hedges against this kind of risk. However a

detailed analysis reveals that it is actually the growth portfolios among big firms

that provide a hedge against volatility risk.

[Insert Table IV here]

Is Volatility Risk Priced?

Up to now, the documented evidence suggests that straddle returns are

useful explanatory variables over the sample period studied, but we can not

conclude whether volatility risk is priced in security returns or not. In an attempt

to answer this question, Fama-MacBeth two-pass regressions are performed and

Panel A of Table V reports the results of these tests for the conditional and
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unconditional versions of various CAPM specifications. More specifically, risk

premiums estimated according to Equation 6, their associated Shanken-corrected

and uncorrected t-statistics, and adjusted R2 statistics for the cross-sectional

regressions are shown.

The first row of Table V presents results for the traditional unconditional

CAPM taking the form

[ ] m
imiitrE βλα += .

The statistically insignificant t-statistic for the market risk premium shows

the inability of the value-weighted market beta to explain the cross-section of

average returns. Moreover, the negative sign of the market risk premium

contradicts the CAPM theory. These findings are also supported by the very low

explanatory power for the model. The results are in line with the Fama and French

(1992) findings.

 Next, we test the significance of volatility risk as a priced factor with the

following model

[ ] st
ist

m
imiitrE βλβλα ++= .

Row 2 of Panel A shows that adding straddle betas significantly

contributes to the explanatory power of the two-factor model. The adjusted R2

increases dramatically from 3 percent to 32 percent. Although the volatility risk

premium is positive, the insignificant t-statistic shows that it is not a priced risk

factor. This result needs further exploration, as it contradicts the previous findings
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of significant volatility betas in time-series regressions. One explanation for this

contradiction could be the time variation inherent in the volatility risk premium

and the inadequacy of the unconditional models to capture this time variation. The

literature on time-varying risk premiums argues that conditional versions of factor

models better explain this time variation than their unconditional counterparts.

Hence, a natural extension is to perform the preceding analysis with conditional

factor models.

Conditional Factor Models

Cochrane (1996, 2001) argues that conditional factor models can be

represented in an unconditional form by using appropriate scaling variables. We

posit that investors use time t straddle returns when forming their expectations

about time t+1 returns. For the conditional model with one factor (market return)

and one scaling variable (straddle return), the scaled market factor would take the

form, m
t

st
t rr 1+⋅ , and the cross-sectional regression for this scaled model would be

[ ] scaled
iscaled

st
ist

m
imiitrE βλ+βλ+βλ+α=

where scaled
iβ is the beta of the scaled market factor. Row 4 of Table 5 reports the

estimated coefficients of the proposed conditional model. The estimated risk

premia for straddle and market returns are still not statistically significant;

however, the coefficient of the scaled market beta is negative and statistically
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significant at the 5% level. The explanatory power of the model also improves

from an R2 of 0.32 to 0.42.

Besides the statistical significance of the scaled factor in the conditional

model, we examine the effect of a one standard deviation change in the estimated

betas on average returns of various portfolios. This is done to see the sensitivity of

average portfolio returns to changes in betas that are estimated in the first-pass.

For example, taking the big-growth portfolio, a one standard deviation increase in

the beta of the scaled factor causes a 0.19% decrease in the average return of the

portfolio. The effect of a one standard deviation increase in the market beta results

in a decrease of 0.03% in the average return, whereas a one standard deviation

increase in straddle beta increases the average return of the big-growth portfolio

by 1.25%. However, one need to be careful while interpreting the risk-premiums

associated with the scaled returns. Lettau and Ludvigson (2001) argue that

individual risk-premium estimates for the scaled multifactor model should not be

interpreted as risk prices as in unconditional models. Cochrane (2001) note that

scaled returns act as payoffs to managed portfolios, thus in incomplete market

settings state contingencies can be provided through trading strategies using

conditioning information. The significance of the scaled market factor in the

conditional model indicate that investors use straddle returns in forming their

expectations about the future prices of securities. This also supports the non-

redundancy of options hypothesis by Vanden (2004). Overall, these results
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suggest that there exist time variation in the volatility risk premium and that the

scaled market return is an important factor for asset pricing.

Lettau and Ludvigson (2001) show that conditional versions of CAPM

perform much better than the unconditional models, using the log consumption-

wealth ratio as a conditioning variable. They document that these models perform

about as well as the Fama-French three-factor model. In our case, Row 4 of Table

V demonstrates that the conditional CAPM, using straddle returns as a

conditioning variable, performs slightly worse than the Fama-French three factor

model, where none of the risk premia is statistically significant. Furthermore, we

test whether or not the addition of Fama-French factors can explain the cross-

section of expected returns not explained by our model. The model to be tested is

[ ] scaled
iscaled

HML
iHML

SMB
iSMB

m
im

st
istiitrE βλβλβλβλβλα +++++= ,

where scaling is done in a similar manner as in the one factor model. Row 5 of

Table 1 reports the results of this estimation. Although the explanatory power of

the model increases to an R2 of 52%, the coefficients of the Fama-French factors

are still insignificant. The only significant risk premium is that of the scaled

market factor. This confirms that the conditional model using straddle returns as a

scaling variable is successful in explaining the cross-section of average returns.
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GMM-SDF Tests

Because the Fama-MacBeth regressions is criticized for having errors-in-

variables problem, we also examine whether the volatility risk is priced or not by

using a GMM framework in various SDF representations. Panel B of Table V

reports the estimates of SDF coefficients and their associated t-statistics, p-values,

and Hansen-Jagannathan distances (HJ-dist.).14 The first model to be tested is the

unconditional CAPM, i.e.,

( )[ ] 10 =+ m
tmit rRE δδ

where itR  is the gross return of 25 Fama-French portfolios and m
tr is the return on

the value-weighted index of all NYSE, AMEX, and NASDAQ stocks. Row 6 of

Panel B presents the results of this estimation. Contrary to the previous findings,

the unconditional CAPM yields a statistically significant coefficient for the

market factor. However, the estimated HJ-dist. shows that the pricing error is very

high, and significantly different from zero, suggesting that this model is a poor

SDF representation.

Next we test whether straddle returns are a part of the stochastic discount

factor or not. This gives the following SDF specification

( )[ ] 10 =++ st
tst

m
tmit rrRE δδδ .

Row 7 shows that, including straddle returns in the unconditional model results in

slightly lower pricing errors. However, the insignificant coefficient for straddle
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returns suggests that volatility risk does not play a significant role in constructing

a stochastic discount factor in the unconditional form. This result is consistent

with the previous Fama-MacBeth results. Next, we test whether the Fama-French

factors are significant explanatory variables by the following SDF representation

( )[ ] 10 =+++ HML
tHML

SMB
tSMB

m
tmit rrrRE δδδδ .

As can be seen in Row 8, the coefficients are still insignificant and the pricing

errors are slightly better than that of the traditional CAPM.

Row 9 of Panel B presents the results for the conditional CAPM using

straddle returns as the conditioning variable. The model to be tested is

( )[ ] 10 =+++ scaled
tscaled

st
tst

m
tmit rrrRE δδδδ ,

where scaled
tr is calculated as before. The statistically significant coefficient for the

conditioning variable suggests that this variable plays an important role in

constructing a stochastic discount factor. This finding is consistent with our

previous results and also confirms that there exists time variation in the volatility

risk premium. However, although the pricing error is considerably lower, it is still

significantly different from zero. Due to the small-sample problems with GMM

estimation, it is not surprising to obtain large HJ-distances that are statistically

different from zero. Altonji and Segal (1996), Cochrane (2001), and Lettau and

Ludvigson (2001) suggest that using GMM estimates with the identity matrix is

far more robust to small-sample problems. The last column of Panel B reports
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estimates of Hansen-Jagannathan distances using the identity matrix. Note that,

HJ-distances estimated with the identity matrix, and therefore pricing errors

decrease drastically for all the models. However, only for the conditional models

(Row 9 and 10) are the pricing errors not significantly different from zero.

Furthermore, the addition of Fama-French factors to the conditional model does

not considerably improve the explanatory power of the model, as reported in Row

10.

Consistent with the earlier findings from Fama-MacBeth regressions,

conditional models using straddle returns as a scaling variable perform better than

unconditional models examined in this study. Besides this statistical significance,

in order to check the economic significance of the results, we examined the

impact on the SDF of a one standard deviation change in factor returns. For

example, for the conditional model in Row 9 in Table 5, a one standard deviation

increase in scaled factor returns corresponds to a 0.15 standard deviation increase

in the SDF. The effect of a one standard deviation increase in straddle returns is

0.47 standard deviation increase in the SDF, and a one standard deviation increase

in market returns cause a 1.22 standard deviation increase in the SDF. As for the

economic interpretation of the scaled returns, we can think of them as payoffs to

managed portfolios as in Cochrane (2001). For example, an investor who observes

high zero-beta straddle returns is expected to decrease her holdings in the market

portfolio. Our findings confirm that investors use straddle returns as a
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conditioning variable when forming their expectations of securities returns. Thus,

they are important for asset pricing since they help capture the time variation in

the SDF.

Effect of the 1987 Crash

The effect of time variation in the volatility risk premium on asset returns

can be tested by the threshold regression methodology.  We applied the sup-LM

test used in Hansen (1996) to explore the question of whether there are

statistically significant discrete regime shifts in the risk factors due to certain

instrumental variables.  VIX Volatility of at-the-money options and the difference

between volatilities of at-the-money and out-of-money options are used as

instrumental variables, but no significant regime shifts are detected.  However, the

bootstrap p-values are likely to be poorly estimated in samples of the size

encountered here.

Nevertheless, in an attempt to explore the possible effects of a high

volatility periods on our results, the sample is divided into two sub-samples, one

including the crash period and one excluding it.

  [Insert Table VI here]

As can be seen from Table VI, when the crash period is excluded from the

sample, the significance of the volatility risk factor vanishes for 9 of the 10 size

portfolios. This result confirms that there exists time variation in the volatility risk



27

premium and it has several implications regarding the redundancy of options.

According to Vanden (2004), options effectively complete the market when

agents face non-negative wealth constraints. That is, options are non-redundant,

because they help agents to avoid insolvency while still allowing them to obtain a

degree of leverage that is not possible through direct borrowing. Thus, the high

explanatory power of the proposed 2-factor model through the crash period makes

sense in this manner. Straddles explain asset returns in periods of high volatility,

because they allow their investors to hedge volatility risk and help them avoid

insolvency in those periods. The failure of straddle returns to explain security

returns in periods of low volatility arises because straddles are redundant

securities at those times. As the highest volatility period in our sample is around

October 1987 (see Figure 1), the exclusion of this time period results in less

explanatory power for the volatility risk factor. Thus, although volatility risk is

priced for all classes of assets at times of high volatility, we cannot assert the

same for times of low volatility.

Asset return volatility literature documents that high volatility periods tend

to coincide with business cycle downturns and recessions. (Turner, Startz, &

Nelson (1989), Schwert (1989), Hamilton and Lin (1996), and Perez-Quiros and

Timmerman (2001)) Also, Chauvet and Potter (2000) argue that bear markets

have higher volatility than bull markets. Our finding of a significant volatility beta

in a high volatility period like 1987 is in line with the literature. However, we also
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report an insignificant volatility beta for the time period of 1991-1992, which is

often cited as a period of poor business conditions and high volatility, is at odds

with the above literature. We offer two possible explanations for this. First, as can

be seen from Figure 1, VIX volatility index is much higher in the 1987 crash

period compared to the volatility around 1991-1992 downturn. This large

difference in the level of volatility, which is captured by straddle returns, might

lead the volatility betas to be insignificant for the latter period. One can also argue

that it might be the fear of a crash that drives these results. VIX measure is also

considered to be a fear indicator among the professionals. High VIX levels are

associated with a pessimistic market sentiment and conversely a low level of VIX

is considered to be a sign of optimistic market sentiment. The relatively low levels

of VIX measure for the second period studied might indicate that investors are

optimistic about the market and hence lead the volatility betas to be insignificant

for this period. Altogether, these results should be further investigated since the

time period studied here covers only one peak and one trough, which makes it

hard to reconcile our findings with that of the business cycle literature.
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CONCLUSION

The notion that volatility risk is priced in options markets is now widely

documented. However, until recently, very few studies focused on the question of

whether volatility risk is priced in the securities market. The answer to this

question has important implications for asset pricing, portfolio and risk

management, and hedging strategies.

The empirical findings in this article suggest that volatility risk explains a

significant amount of variation in securities returns, especially during high

volatility periods. In addition, the findings suggest that options are non-redundant

securities during those periods. Investors use straddle returns when forming their

expectations about securities returns. This implies that straddle returns can be

used to price volatility risk.

The findings also indicate different patterns for different classes of firms.

For example, during high volatility periods, small firms and value firms are more

prone to downside market risk, hence they are associated with negative volatility

coefficients. Thus, at times of high volatility, investors see value firms and small

firms riskier than their growth and big counterparts and price this risk in their

returns via an important factor, volatility risk. Furthermore, investors see big-

growth firms as hedges against volatility, regardless of the level of volatility in the
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market. This could be a potential explanation to why growth firms underperform

value firms.

In conclusion, this article presents clear evidence that volatility risk,

proxied by straddle returns, is an important factor in asset pricing since it helps

capture time variation in the stochastic discount factor. Thus, options play an

important role in pricing securities, and allocation of wealth among agents in the

economy.
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ENDNOTES

1 See Engle and Ng (1993), Canina and Figlewski (1993), Duffee (1995), Braun,
Nelson, and Sunier (1995), Andersen (1996), Bollerslev and Mikkelsen (1999), and
Bekaert and Wu (2000) for a theoretical discussion and distributional aspects of
stochastic volatility of equity returns.

2 Banz (1981) and Reinganum (1981) document that portfolios formed on small
sized firms earn returns higher than the CAPM predicts. Rosenberg, Reid and Leinstein
(1985) find that firms with high book-to-market ratios (value firms) earn higher returns
than firms with low book-to-market ratios (growth firms). Davis, Fama, and French
(2000) report that the value premium in United States’ stocks is robust.

3 See Ferson (1989), Ferson and Harvey (1991), Ferson and Korajczyk (1995),
Jagannathan and Wang (1996), Lettau and Ludvigson (2001), and Altay-Salih, Akdeniz,
and Caner (2003) for the theory behind time-varying beta and conditional CAPM
literature.

4 This is because increased market volatility coincides with downward market
moves, a phenomenon which is reported by French, Schwert, and Stambaugh (1987), and
Glosten, Jagannathan, and Runkle (1993). Engle and Ng (1993) show that volatility is
more associated with downward market moves due to the leverage effect.

5 We are grateful to Ramazan Gencay for providing the data.

6 According to Buraschi and Jackwerth (2001), most of the trading activity in
S&P500 options is concentrated in the nearest (0-30 days to expiry) and second nearest
(30-60 days to expiry) contracts.

7 Stoll and Whaley (1987) report abnormal trading volumes for options close to
expiry.

8 Macbeth and Merville (1979) report that the Black-Scholes prices of at-the-
money call options are on average less than market prices for in-the-money call options.
Also, Gencay and Salih (2001) document that pricing errors are larger in the deeper-out-
of-money options compared to at-the-money options.

9 In order to check the robustness of the results, we set the theoretical position
beta in Equation 2 to a constant such that the in-sample straddle beta is exactly zero.
Negative mean and median volatility risk premium still persists and furthermore
conclusions from time series regressions do not change.  Overall these results are in line
with the literature on negative volatility risk premium, and the findings in Coval and
Shumway (2001).
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10 Vanden (2004) uses a similar model, where he includes call and put option
returns and a market factor as explanatory factors.

11 The returns on 25 portfolios formed on size and book-to-market equity are
obtained from Kenneth French's data library.

12 Rolling regression approach is not appropriate in samples, which have fewer
than 150 time series observations, as pointed out in Lettau and Ludvigson (2001).

13  This finding is in line with Moise (2005)

14 For a detailed discussion on the calculation of HJ-dist., see Jagannathan and
Wang (1996).
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TABLE I

Summary Statistics for Daily Zero-Beta Straddles

Daily Straddle Returns (%)
Mean -1.06
Median -1.58
Minimum -87.77
Maximum 441.79
Skewness 17.03
Kurtosis 520.03
Correlation -0.54

Note. This table reports the summary statistics for the returns of daily zero-beta at-the money
straddles. The sample covers the period January 1987 to October 1994 (1980 days). After
adjusting for moneyness and maturity criteria, we end up with 1937 days of data. Correlation is the
correlation of straddle returns with market returns.
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 TABLE II
2-Factor Time Series Regressions

rit - rf = αi + βim (rmt -rf) + βiv (rvt -rf) +εit

rit - rf αi t-statistic βim t-statistic βiv t-statistic Adj. R2

Small 10 -0.0024 -0.61 0.7555 6.91*** -0.0109 -4.55*** 0.64
Decile 9 -0.0039 -1.23 0.9612 11.37*** -0.0080 -4.29*** 0.78
Decile 8 -0.0004 -0.18 1.0106 13.69*** -0.0063 -3.98*** 0.84
Decile 7 -0.0017 -0.70 1.0612 14.86*** -0.0052 -3.33*** 0.86
Decile 6 0.0009 0.40 1.0553 14.83*** -0.0040 -2.74*** 0.88
Decile 5 0.0009 0.51 1.0337 20.91*** -0.0031 -3.02*** 0.92
Decile 4 0.0004 0.37 1.0343 27.10*** -0.0024 -2.31** 0.95
Decile 3 0.0007 0.60 1.0917 27.76*** 0.0003 0.36 0.96
Decile 2 0.0004 0.55 1.0801 34.26*** 0.0019 2.67*** 0.98
Big 1 0.0006 0.56 0.9953 32.97*** 0.0024 2.99*** 0.96

GRS F-Test = 2.3314 (p=0. 0179)

Note. This table reports monthly time-series regression results of excess returns of CRSP's size
deciles on market factor and excess straddle returns. The dependent variable is the excess return of
CRSP's size-decile portfolio, rmt is the return of CRSP's value-weighted index on all NYSE,
AMEX, and NASDAQ stocks, , rvt, is the monthly zero-beta straddle return, and rf is the 1-month
T-bill rate. ***, ** , *  denote 0.01, 0.05, and 0.10 significance levels, respectively. All t-values are
corrected for autocorrelation (with lag=3) and heteroskedasticity as suggested by Newey and West
(1987). GRS F-Test reported at the bottom of the table is from Gibbons, Ross, and Shanken
(1989).
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TABLE III

25 (5x5) Portfolio Regressions

rit - rf = αi + βim (rmt -rf) + βiv (rvt -rf) +εit

Size B/M αi t-statistic βim t-statistic βiv t-statistic Adj. R2

S L -0.0115 -2.67*** 1.0271 9.51*** -0.0100 -3.89*** 0.70
S 2 -0.0018 -0.48 0.9158 9.06*** -0.0098 -4.33*** 0.70
S 3 -0.0012 -0.37 0.8589 9.63*** -0.0085 -4.53*** 0.76
S 4 0.0011 0.36 0.7602 8.20*** -0.0105 -4.91*** 0.72
S H 0.0018 0.41 0.7808 8.08*** -0.0105 -4.82*** 0.65
2 L -0.0052 -1.67* 1.2560 14.09*** -0.0041 -1.95** 0.81
2 2 -0.0014 -0.47 1.0796 14.50*** -0.0067 -4.16*** 0.82
2 3 0.0026 1.05 0.8742 11.08*** -0.0080 -5.19*** 0.84
2 4 0.0011 0.49 0.7999 12.43*** -0.0080 -5.70*** 0.82
2 H 0.0012 0.35 0.9861 10.79*** -0.0062 -2.90*** 0.77
3 L -0.0013 -0.45 1.2517 18.22*** -0.0014 -0.83 0.83
3 2 0.0010 0.45 1.0854 16.14*** -0.0045 -2.96*** 0.88
3 3 -0.0001 -0.07 0.8722 13.27*** -0.0047 -3.03*** 0.86
3 4 0.0024 1.07 0.8723 13.77*** -0.0033 -2.27** 0.85
3 H 0.0027 0.98 0.9250 15.26*** -0.0062 -4.08*** 0.82
4 L 0.0013 0.73 1.1890 26.99*** 0.0013 1.13 0.89
4 2 -0.0006 -0.35 1.0294 25.29*** -0.0050 -4.69*** 0.93
4 3 -0.0011 -0.53 1.0834 13.95*** -0.0005 -0.27 0.90
4 4 0.0023 1.35 0.9081 15.45*** 0.0022 1.81* 0.89
4 H 0.0027 1.11 0.9264 12.16*** -0.0038 -2.19** 0.82
B L 0.0012 0.52 1.1202 24.26*** 0.0037 3.39*** 0.88
B 2 0.0002 0.10 1.1129 24.46*** 0.0027 2.55** 0.92
B 3 0.0005 0.25 0.8575 17.83*** -0.0025 -2.54** 0.87
B 4 0.0004 0.26 0.9113 24.29*** 0.0043 2.91*** 0.83
B H 0.0027 0.79 0.9354 14.67*** 0.0008 0.38 0.70

GRS F-Test =  2.7293 (p=0. 0071)

Note. This table reports monthly time-series regression results of excess returns of CRSP's 25 size
and book-to-market portfolios on market factor and excess straddle returns The returns on 25
portfolios formed on size and book-to-market equity are obtained from Kenneth French's data
library. The 25 portfolios constructed at the end of each June, are the intersections of 5 portfolios
formed on size (market equity, ME) and 5 portfolios formed on the ratio of book equity to market
equity (BE/ME). The size breakpoints for year t are the NYSE market equity quintiles at the end of
June of t. BE/ME for June of year t is the book equity for the last fiscal year end in t-1 divided by
ME for December of t-1. The BE/ME breakpoints are NYSE quintiles. S and B stands for the
smallest and biggest size quintiles; L and H stands for the lowest and highest book-to-market
quintiles. rit is the dependent variable which denotes the return on each of the 25 portfolios from
January 1987-October 1994. rmt is the return of  CRSP's value-weighted index on all NYSE,
AMEX, and NASDAQ stocks, rvt is the monthly zero beta straddle return, and rf is the 1-month T-
bill rate obtained from Ibbotson and Associates. ***, ** , *  denote 0.01, 0.05, and 0.10 significance
levels, respectively. All t-values are corrected for autocorrelation (with lag=3) and
heteroskedasticity as suggested by Newey and West (1987). GRS F-Test reported at the bottom of
the table is from Gibbons, Ross, and Shanken (1989).
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TABLE IV
6 (2x3) Portfolio Regressions

rit - rf = αi + βim (rmt -rf) + βiv (rvt -rf) +εit

Size B/M αi t-statistic βim t-statistic βiv t-statistic Adj. R2

S L -0.0046 -1.57 1.1557 14.74*** -0.0058 -3.30*** 0.83
S 2 0.0056 2.52** 0.8997 13.06*** -0.0066 -4.43*** 0.86
S H 0.0059 2.07** 0.8642 11.58*** -0.0076 -4.52*** 0.80
B L 0.0053 3.24*** 1.1287 35.50*** 0.0027 3.54*** 0.94
B 2 0.0047 4.21*** 0.9329 32.55*** 0.0010 1.60 0.94
B H 0.0056 2.97*** 0.8659 25.07*** -0.0002 -0.15 0.86

GRS F-Test = 2.3260 (p=0. 0178)

Note. This table reports monthly time-series regression results of excess returns of CRSP's 6 size
and book-to-market portfolios on market factor and excess straddle returns. Portfolios are
constructed at the end of each June, which are the intersections of 2 portfolios formed on size
(market equity, ME) and 3 portfolios formed on the ratio of book equity to market equity
(BE/ME). The size breakpoint for year t is the median NYSE market equity at the end of June of
year t. BE/ME for June of year t is the book equity for the last fiscal year end in t-1 divided by ME
for December of t-1. The BE/ME breakpoints are the 30th and 70th NYSE percentiles. S and B
stands for the smallest and biggest size quintiles; L and H stands for the lowest and highest book-
to-market quintiles. rit is the dependent variable which denotes the monthly return on each of the 6
portfolios from January 1987-October 1994. rmt is the monthly return of  CRSP's value-weighted
index on all NYSE and AMEX stocks, rvt is the monthly zero beta straddle return, and rf is the 1-
month T-bill rate obtained from Ibbotson and Associates. ***, ** , *  denote 0.01, 0.05, and 0.10
significance levels, respectively. All t-values are corrected for autocorrelation (with lag=3) and
heteroskedasticity as suggested by Newey and West (1987). GRS F-Test reported at the bottom of
the table is from Gibbons, Ross, and Shanken (1989).
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TABLE V

Evaluation of Various CAPM Specifications using 25 Fama-French Portfolios

Panel A: Risk premium estimates using two-pass Fama-MacBeth regressions

ROW iα mλ stλ SMBλ HMLλ scaledλ Adj. R2

1 1.4486
(2.17**)
(2.16**)

-0.7850
(-0.96)
(-0.95)

0.03

2 1.4274
(2.16**)
(2.15**)

-0.7254
(-0.92)
(-0.91)

23.4020
(0.79)
(0.78)

0.32

3 0.7525
(1.81*)
(1.80*)

-0.0643
(-0.10)
(-0.10)

-0.1794
(-0.68)
(-0.67)

0.2110
(0.83)
(0.82)

0.44

4 1.6442
(2.43**)
(2.34**)

-1.1322
(-1.42)
(-1.32)

37.8143
(1.20)
(1.11)

-5.6965
(-2.37**)
(-2.21**)

0.42

5 1.2121
(3.05***)
(2.94***)

-0.6912
(-1.17)
(-1.08)

15.4201
(0.71)
(0.66)

-0.1077
(-0.41)
(-0.38)

0.2964
(1.17)
(1.08)

-6.0019
(-2.37**)
(-2.20**)

0.52

Panel B: Stochastic Discount Factor (SDF) estimates using GMM

0δ mδ stδ SMBδ HMLδ scaledδ
HJ-dist. HJ-dist.

identity
6 0.9179

(8.55*** )
5.8378
(2.13** )

1.0445
(0.00)

0.0121
(0.00)

7 0.9288
(8.59*** )

5.9155
(1.49)

0.0765
(0.44)

1.0440
(0.00)

0.0116
(0.01)

8 0.9108
(8.06*** )

6.2797
(1.92* )

0.6760
(0.15)

-1.0204
(-0.20)

1.0438
(0.00)

0.0112
(0.00)

9 0.9390
(8.63*** )

6.2940
(1.38)

0.0845
(0.42)

0.3772
(1.82* )

1.0155
(0.00)

0.0100
(0.11)

10 0.9435
(8.35*** )

6.0327
(1.23)

0.0857
(0.40)

0.2176
(0.04)

-0.7585
(-0.15)

0.3794
(2.15** )

1.0153
(0.00)

0.0096
(0.13)

Note. This table gives the estimates for the cross-sectional Fama-MacBeth regression model
[ ] scaled

iscaled
HML
iHML

SMB
iSMB

m
im

st
istiitrE βλβλβλβλβλα +++++=

and the model for the moments
( )( )[ ] 11 0 =++++++ scaled

tscaled
HML

tHML
SMB

tSMB
m

tm
st

tstit rrrrrrE δδδδδδ
with either a subset or all of the variables. Panel A reports the individual risk-premium, λj,
estimates from the second-pass cross-sectional regressions. In the first stage, the time-series betas
are computed in one multiple regression of the portfolio of excess returns on the factors. The term

itr  is the return on 25 Fama-French portfolios (i=1,2,…,25) in month t (January 1987-October
1994). The numbers in parantheses are the two t-statistics for each coefficient estimate. The top
statistic uses uncorrected Fama-MacBeth standard errors; the bottom statistic uses Shanken (1992)
correction. The term adjusted R2 denotes the cross-sectional R2 statistic adjusted for the degrees of
freedom. Panel B reports GMM estimates for various SDF representations and their associated t-
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and p-values. The model for the moments are estimated using the GMM approach with the
Hansen-Jagannathan weighting matrix. st

tr is the straddle return, m
tr is the return on the value-

weighted index of all NYSE, AMEX, and NASDAQ stocks, SMB
tr , and HML

tr are the returns on

Fama-French mimicking portfolios related to size and book-to-equity ratios, and scaled
tr is the

return of the scaled variable, i.e. m
t

st
t rr 1+⋅ . The numbers in parantheses are the t-statistics for each

coefficient estimate. ***, ** , *  denote 0.01, 0.05, and 0.10 significance levels, respectively. The
minimized value of the GMM criterion function is the first item under the "HJ-dist.", with the
associated p-values immediately below it. The final column reports HJ-dist. using the identity
matrix as suggested by Lettau and Ludvigson (2001).
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TABLE VI

10 Size Regressions With and Without 1987 Crash

rit - rf = αi + βim (rmt -rf) + βiv (rvt -rf) +εit
January 1987 - November 1990

rit - rf αi t-statistic βim t-statistic βiv t-statistic Adj. R2

Small 10 -0.0111 -2.54** 0.7806 9.64*** -0.0097 -5.73*** 0.85
Decile 9 -0.0099 -2.37** 0.9141 13.64*** -0.0085 -6.23*** 0.90
Decile 8 -0.0039 -1.12 0.9848 13.55*** -0.0066 -4.44*** 0.91
Decile 7 -0.0062 -1.63 1.0383 13.85*** -0.0055 -3.35*** 0.90
Decile 6 -0.0038 -1.24 1.0139 12.72*** -0.0047 -2.93*** 0.92
Decile 5 -0.0029 -1.16 1.0052 16.74*** -0.0035 -2.85*** 0.94
Decile 4 -0.0003 -0.16 1.0172 24.49*** -0.0029 -2.60** 0.96
Decile 3 -0.0014 -0.79 1.0868 20.06*** 0.0004 0.29 0.97
Decile 2 -0.0009 -0.69 1.0770 26.37*** 0.0019 2.09** 0.98
Big 1 0.0024 1.51 1.0035 28.42*** 0.0025 2.67** 0.97

GRS F-Test = 2.3249 (p=0. 0183)
December 1990- October 1994

rit - rf αi t-statistic βim t-statistic βiv t-statistic Adj. R2

Small 10 0.0080 1.58 0.7413 2.31** -0.0043 -0.25 0.24
Decile 9 0.0030 0.71 1.0906 4.36*** -0.0009 -0.05 0.53
Decile 8 0.0047 1.37 1.1021 6.00*** 0.0027 0.22 0.65
Decile 7 0.0058 1.97* 1.1727 8.24*** 0.0099 1.06 0.74
Decile 6 0.0087 2.63** 1.2120 11.02*** 0.0131 1.04 0.80
Decile 5 0.0062 2.45** 1.1301 15.73*** 0.0057 0.54 0.85
Decile 4 0.0033 1.94* 1.1127 15.10*** 0.0084 1.63 0.92
Decile 3 0.0034 2.50** 1.1162 34.07*** 0.0034 0.90 0.96
Decile 2 0.0028 3.08*** 1.1091 40.15*** 0.0072 2.29** 0.97
Big 1 -0.0023 -1.78* 0.9564 17.42*** -0.0027 -0.62 0.93

GRS F-Test = 2.8324 (p=0. 0045)

Note. This table reports monthly time-series regression results of excess returns of CRSP's size
deciles on market factor and excess straddle returns. The effect of the crash is examined by
dividing the sample period into two sub-samples, one from January 1987-November 1990 (47
months), and the other from December 1990-October 1994 (47 months). ***, ** , *  denote 0.01,
0.05, and 0.10 significance levels, respectively. All t-values are corrected for autocorrelation (with
lag=3) and heteroskedasticity as suggested by Newey and West (1987). GRS F-Test reported at the
bottom of the table is from Gibbons, Ross, and Shanken (1989).
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 FIGURE 1

Monthly Average Implied Volatility of the S&P 500 Index

Note. This figure shows the monthly implied volatilities of the S&P 500 index (VIX) for the
period January 1987 through October 1994.. Daily VIX data for the sample period is obtained
from the Chicago Board of Options Exchange. Monthly implied volatility is the average of daily
VIX levels for that month.
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