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Abstract

This paper models the implied volatility of the S&P 500 index, with the aim of
producing useful forecasts for option traders. Numerous time-series models of the
VIX index are estimated, and daily out-of-sample forecasts are calculated from all
relevant models. The directional accuracy of the forecasts is evaluated with market-
timing tests. Option trades are simulated based on the forecasts, and their prof-
itability is also used to rank the models. The results indicate that an ARIMA(1,1,1)
model enhanced with exogenous regressors has predictive power regarding the direc-
tional change in the VIX index. GARCH terms are statistically significant, but do
not improve forecasts. The best models predict the direction of change correctly for
over 60 percent of the trading days. Out-of-sample option trading over a period of
fifteen months yields positive returns when the forecasts from the best models are
used as the basis for investment decisions.

∗Correspondence: Helsinki School of Economics, Department of Economics, P.O. Box 1210, 00101
Helsinki, Finland. E-mail: katja.ahoniemi@hse.fi. The author wishes to thank Markku Lanne, Pekka
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1 Introduction

Professional option traders such as hedge funds and banks’ proprietary traders are inter-
ested primarily in the volatility implied by an option’s market price when making buy
and sell decisions. If the implied volatility (IV) is assessed to be too high, the option
is considered to be overpriced, and vice versa. Returns from volatility positions in op-
tions, such as straddles, depend largely on the movements in IV, and the trader does not
necessarily need a directional view regarding the price of the option’s underlying asset.

The forecast accuracy of IV has been researched extensively, i.e. how well IV fore-
casts the realized volatility over the life of an option. Christensen and Prabhala (1998)
find that the volatility implied by S&P 100 index options predicts the actual volatility in
the underlying index, but the forecasts are biased. Blair et al. (2001) find that volatil-
ity forecasts provided by the VIX index are unbiased, and they outperform forecasts
augmented with GARCH effects and high-frequency observations. Similar results were
reported early on by Chiras and Manaster (1978) for individual stock options as well as
by Jorion (1995) for foreign exchange options. In summary, most prevailing studies find
that IV is most likely the best, although perhaps a biased, predictor of future realized
volatility.

A clearly contradictory result comes from Canina and Figlewski (1993), who conclude
that the IV of S&P 100 options has virtually no correlation with the future realized
volatility. However, Christensen and Prabhala (1998) assert that an extreme degree of
overlap in the data used by Canina and Figlewski may be the cause of this result. Day
and Lewis (1992), who analyze S&P 100 index options, and Lamoureux and Lastrapes
(1993), who study stock options, find that IV is biased and inefficient, as historical
volatility can improve forecasts based on IV alone.

Relatively little work has been done on modeling IV, compared with the extensive
literature on volatility modeling that exists today. Brooks and Oozeer (2002) and Har-
vey and Whaley (1992) use regression models to forecast implied volatility and trade
accordingly. Both studies suggest profits for a market maker, but not for a trader fac-
ing transaction costs. Mixon (2002) uses regression models to find that domestic stock
returns explain changes in IV well.

Also, few studies explore option trading in connection with IV analysis, and those
studies that do simulate trades employ strategies that are not favored among actual mar-
ket participants. Harvey and Whaley (1992), Brooks and Oozeer (2002) and Corredor
et al. (2002) employ simple buy or sell option trading strategies, whereas typical option
trades involve various types of spreads, such as the straddle. Noh et al. (1994) simulate
straddle trades, and in the trading simulation of Poon and Pope (2000), S&P 100 call
options are bought and S&P 500 call options simultaneously sold, or vice versa. Coval
and Shumway (2001) focus on pure option trading, calculating returns for long call, long
put, and long straddle positions, with no time series analysis or other decision rule in
the background.

The objective of this study is to model and forecast implied volatility, with the
ultimate aim of producing relevant information for option traders. The goal of the
model-building is to find a model that would reliably forecast the future direction of IV,
thus providing valuable signals to option traders. The success of the forecasts will be
evaluated with their directional accuracy, with a market timing test, and by simulating
option trades with true market prices and calculating the profitability of the trades.

This paper proceeds as follows. Section 2 describes the data used in this study,
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Section 3 presents the models estimated for the VIX time series, Section 4 contains the
analysis of forecasts, and Section 5 discusses the option trading simulations. Section 6
concludes.

2 Data

2.1 Implied volatility

Implied volatility is calculated by solving an option pricing model for the volatility when
the prevailing market price for an option is known. Volatility is the only ambiguous
input into e.g. the Black-Scholes option pricing formula, which is shown below for a call
option:

C = SN(d1)−Xe−rT N(d2) (1)

where

d1 = ln(S/X)+(r+σ2/2)T

σ
√

T

d2 = d1 − σ
√

T

C denotes the price of a European call option, S is the market price of the underlying
asset, X is the strike price of the option, r is the risk-free interest rate, T is the time to
maturity of the option, N is the cumulative normal distribution function, and σ is the
volatility in the returns of the underlying asset during the life of the option.

The Black-Scholes pricing model makes two assumptions that are in contrast with
what is observed in actual financial markets. First, the model assumes that the volatility
in the price of the underlying asset will remain constant throughout the life of the
option. Second, the logarithmic returns of the underlying asset are assumed to follow a
normal distribution, whereas financial market returns exhibit both skewness and excess
kurtosis. The non-normality of financial returns is manifested in the fact that when IVs
are calculated from prevailing market prices with the Black-Scholes model, the so-called
volatility smile or volatility skew emerges: IVs vary with the strike price of options, even
for options with the same maturity date.

2.2 The VIX index

The core data in this study consists of daily observations of the VIX volatility index
calculated by the Chicago Board Options Exchange1. The VIX, introduced in 1993, is
derived from the bid/ask quotes of options on the S&P 500 index. It is widely followed by
financial market participants and is considered not only to be the market’s expectation
of the volatility in the S&P 500 index over the next month, but also to reflect investor
sentiment and risk aversion. If investors grow more wary, the demand for above all put
options will rise, thus increasing IV and the value of the VIX. Also, e.g. Blair et al.
(2001) and Mayhew and Stivers (2003) use the VIX as an indicator of market implied
volatility.

1see www.cboe.com/micro/vix
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The calculation method of the VIX was changed on September 22, 2003 to bring
it closer to actual financial industry practises. From that day onwards, the VIX has
been based on S&P 500 rather than S&P 100 options: the S&P 500 index is the most
commonly used benchmark for the U.S. equity market, and the most popular underlying
for U.S. equity derivatives. A wider range of strike prices is included in the calculation,
making the new VIX more robust. Also, the Black-Scholes formula is no longer used, but
the methodology is independent of a pricing model. In practise, the VIX is calculated
directly from option prices rather than solving it out of an option pricing formula. Values
for the VIX with the new methodology are available from the CBOE from 2.1.1990. The
data set used in this study consists of daily observations covering fifteen years, from
2.1.1990 to 31.12.2004. Public holidays that fall on weekdays, when the CBOE is closed,
were omitted from the data set.

The VIX is calculated using the two nearest expiration months of S&P 500 options
in order to achieve a 30-calendar-day period2. Rollover to the next expiration occurs
eight calendar days prior to the expiry of the nearby option. The value of the index
is derived from the prices of at-the-money and out-of-the-money calls and puts. The
closer the option’s strike price to the at-the-money value, the higher the weight its price
receives in the calculation. The formula for calculating the VIX index is:

σ2 =
2
T

∑

i

∆Ki

K2
i

erT Q(Ki)− 1
T

[
F

K0
− 1

]2

(2)

where σ is the value of the VIX divided by 100, T is the time to expiration of the option
contract, F is the forward index level derived from option prices, Ki is the strike price of
the ith out-of-the-money option (call if Kt > F and put if Kt < F ), ∆Ki is the interval
between strike prices, or (Ki+1 −Ki−1)/2, K0 is the first strike below F , r is the risk-free
interest rate up to the expiration of the option contract, and Q(Ki) is the midpoint of
the bid-ask spread for each option with strike Ki. Calls and puts are included up to the
point where there are two consecutive strike prices with a bid price equal to zero.

The use of the VIX index considerably alleviates the problems of measurement errors
and model misspecification. The simultaneous measurement of all variables required by
an option pricing model is often difficult to achieve. When the underlying asset of an
option is a stock index, infrequent trading in one of the component stocks of the index
can lead to misvaluation of the index level. Also, there is no correct measure for the
volatility required as an input in a pricing model such as Black-Scholes. The chosen
option pricing model for IV calculation is critical, as the assumptions of the model can
greatly affect the resulting value for IV. If a European option valuation model is used
to determine the IV of an American option, an erroneous value will result.

2.3 Other data

Data on various financial and macroeconomic indicators was also obtained from the
Bloomberg Professional service to test whether they could help explain the variations in
the VIX. The data set contains the S&P 500 index, the trading volume of the S&P 500
index, the MSCI EAFE (Europe, Australasia, Far East) index, the three-month USD

2See www.cboe.com/micro/vix/vixwhite.pdf for details on calculating the new VIX
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LIBOR interest rate, the 10-year U.S. government bond yield, and the price of crude
oil from the next expiring futures contract. Data on the S&P 500 trading volume is
available only from 4.1.1993 onwards.

The out-of-sample performance of option trades executed based on the analysis of the
VIX time series will be tested with the daily open and close quotes of near-the-money
S&P 500 index options, which are quoted on the Chicago Board Options Exchange.
The options in the data set were selected on a monthly basis so that all options that
were at-the-money at least momentarily during the month in question were included as
possibilities. Only the two nearest expirations are considered, as they are overwhelm-
ingly the most liquid3. The S&P 500 option quotes were obtained from the Bloomberg
Professional service for the 15-month period of 1.10.2003 to 31.12.2004.

3 Modeling the VIX

The VIX index was relatively stable in the early 1990s, but more volatile from the last
quarter of 1997 to the first quarter of 2003. Figure 1 shows the daily level of the VIX for
the entire sample. Clear spikes in the value of the VIX coincide with the Asian financial
crisis of late 1997, the Russian and LTCM crisis of late 1998, and the 9/11 terrorist
attacks. A visual inspection of the VIX first differences points to heteroskedasticity in
the data, as can be seen in Figure 2.

Figure 1: VIX index 1.1.1990 - 31.12.2004

Logarithms of the VIX observations were taken in order to avoid negative forecasts
of volatility. The daily logarithmic levels of VIX display high autocorrelation, as shown
in Figure 3. The autocorrelations for the differenced time series are shown in Figure 4.
A unit root is rejected by the augmented Dickey-Fuller (ADF) test for both the level
(p-value 0.0006) and differenced (p-value 0.0000) time series at the one-percent level of
significance. The lag lengths in the ADF tests are four for the level series and ten for
the differenced series, based on selection with the Bayesian Information Criterion. The

3Poon and Pope (2000) analyze S&P 100 and S&P 500 option trading data for a period of 1,160
trading days and find that contracts with 5-30 days of maturity have the highest number of transactions
and largest trading volume. At-the-money and slightly out-of-the-money options are most heavily traded.
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Figure 2: VIX first differences 1.1.1990 - 31.12.2004

test rejects a unit root for the level series at the five-percent level of significance until
36 lags are included.

ARMA and ARFIMA models were estimated for the VIX levels, but despite the
high persistence in the time series, even the ARFIMA models failed to produce useful
forecasts (directional accuracy of over 50 percent). Also, the value received for d exceeded
0.49 when its value was restricted to be less than 0.5, and fell within the non-stationary
range of [0.5, 1] when no restrictions were placed on its value. In light of this evidence,
the models in this study were built for log VIX first differences rather than levels.

Figure 3: Log VIX autocorrelations

Descriptive statistics for the VIX first differences are provided in Table 1. The VIX
is skewed to the right, and it displays excess kurtosis.

Several time periods were used in the model-building phase in order to determine the
robustness of the results and stability of coefficients over time. The time periods are listed
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Figure 4: Autocorrelations of log VIX first differences

Full sample In-sample
Maximum 0.416861 0.416861
Minimum -0.275054 -0.275054

Mean -0.000069 0.000155
Median -0.002547 -0.001691

Standard deviation 0.055931 0.057527
Skewness 0.595536 0.607743

Excess kurtosis 3.62725 3.63307

Table 1: Descriptive statistics for VIX first differences. Full sample: 1.1.1990-31.12.2004, in-sample:

1.1.1990-31.12.2002.
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in Table 2. Period 1 covers the entire in-sample. The dates chosen for Period 2 reflect the
starting point of more volatile behavior in the VIX. Periods 3 and 4 were chosen based
on the number of observations. Studies such as Noh et al. (1994) and Blair et al. (2001)
use 1,000 observations when calculating forecasts from GARCH models. Forecasts were
also calculated with only 500 observations to see whether forecast performance would
improve with only a short period of observations: conditions in financial markets can
change rapidly, and perhaps only the most recent information is relevant for forecasting
purposes. The in-sample estimation period ends for all time periods on 31.12.2002, and
the first forecasts are calculated for 2.1.2003.

Period Dates No. of observations
Period 1 1.1.1990-31.12.2002 3260
Period 2 1.10.1997-31.12.2002 1314
Period 3 4.1.1999-31.12.2002 1000
Period 4 29.12.2000-31.12.2002 500

Table 2: Time periods in coefficient estimation

3.1 Linear models

Based on tests for autocorrelation and the p-values of the coefficients, an ARIMA(1, 1, 1)
specification was found to be the best fit for the log VIX time series from the family of
ARMA models. The ARIMA(1, 1, 1) model was then augmented with GARCH errors
and exogenous regressors. Goodness-of-fit was compared primarily with the Bayesian
Information Criterion (BIC), and secondly with the coefficient of determination R2.
Heteroskedasticity-robust standard errors were used throughout the analysis. In all esti-
mation with GARCH errors, the estimation method was Gaussian maximum likelihood.

A number of macroeconomic indicators were included in the regressions to see whether
they could improve ARIMA models of the VIX. These variables were the returns in the
S&P 500 index, the one-month, or 22-trading-day, historical volatility of the S&P 500
index and its first difference, the spread between the VIX and the historical volatility of
the S&P 500 index and its first difference, the trading volume of the S&P 500 index and
its first difference, the returns of the MSCI EAFE (Europe, Australasia, Far East) index,
the first difference of the three-month USD LIBOR interest rate, the first difference of
the slope of the yield curve proxied by the 10-year rate less the 3-month rate, and the
first difference of the price of oil from the next expiring futures contract. Many variables
similar to these have been used by e.g. Franks and Schwartz (1991).

Logarithms were used for all variables except the slope of the yield curve. Use of
the S&P 500 trading volume, the short-term interest rate, and the slope of the yield
curve without differencing was ruled out by the ADF test (see Table 3). The p-values
from the ADF test indicate that the null hypothesis of a unit root cannot be rejected at
the one-percent level for the above-mentioned time series. Also, returns must naturally
be used for the S&P 500 and MSCI EAFE index returns. The returns of the S&P 500
index, its trading volume, and returns in the MSCI EAFE index in particular could be
assumed to have some effect on changes in the VIX. High trading volume could be a
signal of e.g. panic selling, linked to rising IV.

Positive and negative returns in the S&P 500 index were separated by forming sep-
arate variables for each, as negative shocks have a tendency of raising volatility more
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than positive shocks. Dividend payouts are not taken into account in calculating the
returns of the S&P 500 index.

Variable p-value (level) p-value (1st difference)
S&P 500 index 0.7269 0.0001

1-month historical volatility of S&P 500 index 0.0080 0.0000
VIX less the historical volatility of S&P 500 index 0.0000 0.0000

Trading volume of S&P 500 index 0.5400 0.0000
MSCI EAFE index 0.5438 0.0000

3-month USD LIBOR interest rate 0.7293 0.0000
10-year interest rate less 3-month rate 0.2770 0.0001

Price of oil 0.0316 0.0000

Table 3: P-values from ADF tests for a unit root in explanatory variables.

The six linear models that were estimated for the differenced VIX time series are
listed in Table 4. The regression results indicate that an ARIMA(1, 1, 1) model is the
best ARIMA specification. The exogenous regressors that were found to improve the
fit of the model and have statistically significant coefficients were the returns of the
MSCI EAFE index as well as the positive and negative returns of the S&P 500 index.
Data on the S&P 500 index trading volume was available for all time periods except
Period 1. Its first differences were added to the analysis (Models 5 and 6) in order to
check for possible improvements to forecasts, although its coefficient was not statistically
significant. Models 5 and 6 were not estimated with observation Period 1, as data on
the S&P 500 trading volume was not available for the whole period. The addition of
a GARCH specification fits the chosen models, with statistically significant coefficients
for both the ARCH and GARCH terms. GARCH models were only estimated with
a minimum of 1,000 observations, as estimates of conditional heteroskedasticity may be
unreliable with a small sample size4.

Linear models
Model ARIMA / GARCH Exogenous regressors

Model 1 ARIMA(1,1,1) -
Model 2 ARIMA(1,1,1) + GARCH(1,1) -
Model 3 ARIMA(1,1,1) W P N
Model 4 ARIMA(1,1,1) + GARCH(1,1) W P N
Model 5 ARIMA(1,1,1) W P N V
Model 6 ARIMA(1,1,1) + GARCH(1,1) W P N V

Table 4: Linear models. W=log returns of the MSCI EAFE index, P=positive log returns of the S&P

500 index, N=negative log returns of the S&P 500 index, V=first differences of log S&P 500 trading

volume.

In practise, the estimated linear equation is:

V IXRt = c + β1V IXRt−1 + β2εt−1 + β3Wt + β4Pt−1 + β5Nt−1 + β6Vt−1 + εt (3)
4This is the minimum number of observations used by e.g. Blair et al. (2001) and Noh et al. (1994)

when calculating volatility forecasts from GARCH models. Engle et al. (1993) calculate variance
forecasts for an equity portfolio and find that ARCH models using 1,000 observations perform better
than models with 300 or 5,000 observations.
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where V IXR=first differences of the logarithms of the VIX index, W=log returns of
the MSCI EAFE index, P=positive log returns of the S&P 500 index, N=negative log
returns of the S&P 500 index, V =log first differences of S&P 500 trading volume. As
in the models of e.g. Davidson et al. (2001) and Simon (2003), P is equal to the return
of the S&P 500 index when the return is positive, and zero otherwise. Likewise for N ,
it is equal to the return of the S&P 500 index when the return is negative, and zero
otherwise. The time indexing of W differs from the other variables, as its value is known
to traders in the U.S. markets before the local market opens for trading: W is calculated
from the returns of Asian and European markets. Therefore, Wt can be used to explain
V IXRt, and information that is as up-to-date as possible is utilized.

In Models 2, 4, and 6, GARCH(1, 1) errors with a Gaussian distribution are used.
GARCH models are based on the autoregressive conditional heteroskedasticity model
introduced by Engle (1982) and generalized by Bollerslev (1986). In the GARCH(1, 1)
model, ε is defined as:

εt = zth
1/2
t

where zt is a sequence of i.i.d. ∼ (0, 1) random variables and

ht = α0 + α1ε
2
t−1 + β1ht−1

The coefficients and their p-values for all six models are presented in Table 5 for
Periods 1 and 2 and in Table 6 for Periods 3 and 4. The AR(1) and MA(1) terms are
statistically significant at the one-percent level throughout, and the returns of the MSCI
EAFE index and the S&P 500 index are significant at the five-percent level.

The changes in S&P 500 trading volume are not statistically significant, but the
possible improvement V will provide to forecasts will be evaluated in Section 4. GARCH
terms are significant at the five-percent level throughout, with the exception of Models
4 and 6 in Period 3, or when the number of observations in GARCH estimation is
smallest. The coefficients in the models evolve over time, as was to be expected based
on the visual analysis of the VIX time series. In Period 4, with only 500 observations,
the impacts of MSCI EAFE and S&P 500 returns are largest.

The coefficients of N are larger in absolute value than the coefficients of P for all
the linear models. In other words, negative returns impact the VIX more than positive
returns, which is consistent with earlier findings about the larger effect of negative shocks
in financial markets. This finding has been reported by e.g. Fleming et al. (1995) for
the VIX index and by Simon (2003) for the VXN, or the Nasdaq 100 Volatility Index.
They estimated negative coefficients for contemporaneous positive and negative returns
in the underlying index. Thus, positive contemporaneous returns lower the VIX, but
negative contemporaneous returns raise IV and thus the index level.

In this study, S&P 500 index returns are not contemporaneous, but lagged. The
option trader opens her positions at the start of the day, without knowing how the stock
market will develop during the day. Therefore, the best available information comes
from day T − 1. The positive coefficients in this study can be interpreted as a reflection
of mean reversion: a positive S&P 500 return may have lowered the VIX during day T ,
so in day T + 1, the VIX rises. Similarly for negative returns, a rise in the VIX in day
T is followed by a fall in day T + 1. On the other hand, the negative coefficient for the
MSCI EAFE index is in line with the results of Fleming et al. (1995) and Simon (2003).
The foreign stock market return is contemporaneous, so a negative coefficient leads to
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a drop in the VIX if the return in foreign markets has been positive, and vice versa for
negative foreign market returns.

The residuals for Model 3 in Period 1 are shown in Figure 5 and the conditional vari-
ances for Model 4 in Period 1 are shown in Figure 6. The clustering in the residuals and
the spikes in the conditional variances again point to the conditional heteroskedasticity
in the time series of VIX first differences. These figures are provided as representa-
tive examples, and the equivalent figures from other pairs of models with and without
GARCH errors are similar.

Figure 5: Residuals for Model 3, period 1

Goodness-of-fit measures and test statistics are given in Table 7. The BIC and R2

measures reveal that the goodness-of-fit of the models improves clearly with the addition
of exogenous regressors. However, the addition of V to the set of regressors (Models 5
and 6) no longer improves the goodness-of-fit. Based on the BIC, Model 3 is the best
specification in all periods except Period 1, where it is outperformed by Model 4.

GARCH errors make a pronounced change to the test results for the models in Peri-
ods 1 and 2. After adding GARCH errors to the models, the null hypotheses of tests for
neglected ARCH and heteroskedasticity are rejected at the five-percent level. Accord-
ing to the tests, Models 3 and 5 are free of neglected ARCH and heteroskedasticity in
Periods 3 and 4, but this may be due to weaker power of the tests with a small number
of observations used in the estimation. The Breusch-Godfrey test for autocorrelation
indicates that the null hypothesis of no autocorrelation cannot be rejected for any of the
considered models in any of the time periods.

3.2 Probit models

As the focus in this study is on obtaining the correct direction of change in the VIX
index (up or down) rather than the correct magnitude, binary probit models were also
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Panel A - Period 1
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

c
0.00006 -0.00032 0.00167 0.00193 - -
(0.904) (0.513) (0.23) (0.191)

AR(1) 0.78007** 0.81778** 0.69054** 0.70546** - -
(0) (0) (0) (0)

MA(1) 0.88433** 0.91241** 0.80254** 0.80236** - -
(0) (0) (0) (0)

W
- - -1.67649** -1.60998** - -

(0) (0)

P
- - 0.25862** 0.27492** - -

(0.004) (0.001)

N
- - 0.42792** 0.49155** - -

(0) (0)

V
- - - - - -

α0
- 0.04495 - 0.04507 - -

α1
- 0.08065** - 0.08678** - -

(0.002) (0.005)

β1
- 0.78585** - 0.72635** - -

(0) (0)

Panel B - Period 2
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

c
0.00016 -0.0009 0.00426 0.00368 0.00441 0.0039
(0.872) (0.37) (0.14) (0.193) (0.123) (0.161)

AR(1) 0.79614** 0.78849** 0.56189** 0.58745** 0.54067** 0.56886**
(0) (0) (0) (0) (0) (0)

MA(1) 0.87117** 0.86875** 0.65435** 0.67827** 0.62844** 0.65587**
(0) (0) (0) (0) (0) (0)

W
- - -2.38305** -2.31763** -2.39542** -2.3293**

(0) (0) (0) (0)

P
- - 0.40256* 0.38945** 0.41195* 0.39562**

(0.011) (0.004) (0.016) (0.006)

N
- - 0.8074** 0.76877** 0.83005** 0.79118**

(0.001) (0) (0.001) (0)

V
- - - - -0.01162 -0.01129

(0.182) (0.173)

α0
- 0.04154 - 0.04208 - 0.04221

α1
- 0.05749** - 0.0317* - 0.03183*

(0.003) (0.027) (0.027)

β1
- 0.88295** - 0.91038** - 0.90864**

(0) (0) (0)

Table 5: Coefficients from linear model estimation (Periods 1 and 2). P-values in parentheses. (**)

denotes statistical significance at the 1% level, and (*) at the 5% level.
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Panel A - Period 3
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

c
0.00015 -0.00063 0.00638 0.00542 0.00652 0.00556
(0.877) (0.572) (0.034) (0.088) (0.029) (0.077)

AR(1) 0.75053** 0.72521** 0.59257** 0.59504** 0.58931** 0.5922**
(0) (0) (0) (0) (0) (0)

MA(1) 0.85265** 0.8365** 0.70476** 0.70401** 0.69988** 0.69991**
(0) (0) (0) (0) (0) (0)

W
- - -2.32019** -2.29166** -2.32275** -2.29324**

(0) (0) (0) (0)

P
- - 0.33108* 0.35548** 0.3275* 0.35192**

(0.014) (0.009) (0.016) (0.01)

N
- - 0.84622** 0.82678** 0.84569** 0.82648**

(0) (0) (0) (0)

V
- - - - -0.0074 -0.00688

(0.374) (0.407)

α0
- 0.04126 - 0.04225 - 0.04241

α1
- 0.04381* - 0.02 - 0.01992

(0.027) (0.193) (0.2)

β1
- 0.90216** - 0.93261** - 0.9316**

(0) (0) (0)

Panel B - Period 4
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

c
0.00011 - 0.00342 - 0.00336 -
(0.946) (0.404) (0.411)

AR(1) 0.79601** - 0.48044** - 0.45008** -
(0) (0) (0.008)

MA(1) 0.85692** - 0.54115** - 0.50425** -
(0) (0) (0.008)

W
- - -2.52352** - -2.53129** -

(0) (0)

P
- - 0.57528** - 0.59944** -

(0.005) (0.008)

N
- - 0.95194** - 0.98057** -

(0.001) (0.001)

V
- - - - -0.0085 -

(0.549)

α0
- - - - - -

α1
- - - - - -

β1
- - - - - -

Table 6: Coefficients from linear model estimation (Periods 3 and 4). P-values in parentheses. (**)

denotes statistical significance at the 1% level, and (*) at the 5% level.
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Panel A - Period 1
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

BIC -4716.05 -4764.08 -4840.91 -4878.03 - -
R2 0.0281 0.0278 0.1065 0.1062 - -

Test for Autocorrelation 0.900 0.771 0.634 0.457 - -
Test for Neglected ARCH 0.000 0.86 0.000 0.836 - -
Test for Heteroskedasticity 0.000 0.418 0.000 0.496 - -

Panel B - Period 2
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

BIC -1871.22 -1876.04 -1993.02 -1988.48 -1990.4 -1985.86
R2 0.0151 0.0151 0.1951 0.1949 0.1962 0.1961

Test for Autocorrelation 0.481 0.680 0.722 0.592 0.652 0.558
Test for Neglected ARCH 0.000 0.185 0.000 0.410 0.000 0.424
Test for Heteroskedasticity 0.000 0.729 0.006 0.630 0.003 0.618

Panel C - Period 3
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

BIC -1463.39 -1459.36 -1546.55 -1537.99 -1543.44 -1534.84
R2 0.0233 0.0232 0.1899 0.1898 0.1904 0.1904

Test for Autocorrelation 0.442 0.382 0.506 0.482 0.509 0.482
Test for Neglected ARCH 0.020 0.400 0.575 0.801 0.575 0.803
Test for Heteroskedasticity 0.004 0.638 0.430 0.459 0.469 0.457

Panel D - Period 4
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

BIC -725.595 - -787.59 - -784.692 -
R2 0.01 - 0.2557 - 0.2563 -

Test for Autocorrelation 0.630 - 0.664 - 0.716 -
Test for Neglected ARCH 0.318 - 0.842 - 0.846 -
Test for Heteroskedasticity 0.052 - 0.546 - 0.558 -

Table 7: Statistics and tests for linear models. The tests are Lagrange multiplier tests, with p-

values provided. Five lags are used in the tests for autocorrelation and neglected ARCH. The test for

autocorrelation is the Breusch-Godfrey LM test statistic. The test for neglected ARCH is Engle’s LM

test statistic, computed from a regression of squared residuals on lagged squared residuals. The test

for heteroskedasticity is computed from a regression of squared residuals on squared fitted values. The

asymptotic distribution of all the test statistics is χ2.
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Figure 6: Conditional variances for Model 4, period 1

estimated. This will enable a check of whether the linear models, which are estimated
with more precise information, provide added value to the forecasts, even though the
focus is on the direction of change. With probit models, a move upwards was marked 1
and a change downwards as 0:

yt = 1[V IXRt > 0], t = 1, 2, ..., T

where 1[·] is an indicator function.
The same explanatory variables that were used in linear models were found to be

significant in probit models as well. In addition, the lagged binary variable was also
included as a regressor in two of the four models (see Table 8). The explanatory power
of the lagged binary variable is not likely to be very good, however, as the VIX is a mean
reverting time series. Models 3 and 4 were not estimated from Period 1, as data on the
S&P 500 index trading volume is only available from the beginning of 1993.

Probit models
Model Lagged binary variable Exogenous regressors

Model 1 - W P N
Model 2 X W P N
Model 3 - W P N V
Model 4 X W P N V

Table 8: Probit models. W=log returns of the MSCI EAFE index, P=positive log returns of the S&P

500 index, N=negative log returns of the S&P 500 index, V=first differences of log S&P 500 trading

volume.

The probit model specifies the conditional probability:

15



p = F (Z) =
∫ Z

−∞
f(Z)dZ (4)

where F (·) is the cumulative standardized normal distribution, and its derivative is:

f(Z) =
1√
2π

e−
1
2
Z2

(5)

The equation for Z that is estimated in this study is given in Equation 6:

BINt+1 = c + β1Wt+1 + β2Pt + β3Nt + β4Vt + β5BINt + εt+1 (6)

where BIN is a binary variable that receives the value 1 when the VIX index rises, and
the value 0 when the VIX index falls.

The coefficients from the probit estimation are given in Table 9. The lagged binary
variables and V are not statistically significant, but W , P , and N are all significant
at the five-percent level. Similar to the linear models, the impact of negative S&P 500
returns is larger than the impact of positive returns (with the exception of Model 3 in
Period 4). The signs of the coefficients in the probit models are the same as the signs in
the linear models.

Panel A - Period 1 Panel B - Period 2
Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4

c
0.008 -0.0131 - - -0.0006 -0.0889 -0.0079 -0.0964

(0.802) (0.743) (0.99) (0.196) (0.882) (0.163)

W
-28.830** -28.848** - - -43.911** -44.378** -44.214** -44.683**

(0) (0) (0) (0) (0) (0)

P
8.2160* 9.2004* - - 14.051** 18.131** 15.011** 19.094**
(0.03) (0.02) (0.004) (0) (0.002) (0)

N
20.102** 21.264** - - 24.174** 28.938** 23.243** 28.010**

(0) (0) (0) (0) (0) (0)

V
- - - - - - -0.2599 -0.2616

(0.167) (0.165)

BIN
- 0.0433 - - - 0.1884* - 0.1888*

(0.403) (0.039) (0.039)

Panel C - Period 3 Panel D - Period 4
Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4

c
0.0327 -0.0461 0.0283 -0.0480 -0.0621 -0.1561 -0.071 -0.164
(0.591) (0.55) (0.643) (0.526) (0.479) (0.155) (0.422) (0.135)

W
-45.634** -46.259** -45.830** -46.438** -57.854** -58.305** -58.238** -58.67**

(0) (0) (0) (0) (0) (0) (0) (0)

P
13.220* 16.844** 13.773* 17.288** 22.571** 26.594** 23.831** 27.785**
(0.014) (0.004) (0.011) (0.003) (0.001) (0) (0.001) (0)

N
27.372** 32.036** 26.824** 31.456** 24.420** 30.000** 23.604** 29.126**

(0) (0) (0) (0) (0.002) (0) (0.003) (0.001)

V
- - -0.1788 -0.1657 - - -0.3911 -0.3851

(0.417) (0.454) (0.202) (0.211)

BIN
- 0.1735 - 0.1707 - 0.2168 - 0.2140

(0.094) (0.1) (0.157) (0.165)

Table 9: Coefficients from probit estimation. P-values in parentheses. (**) denotes statistical signifi-

cance at the 1% level, and (*) at the 5% level.
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Measures of goodness-of-fit and p-values from tests for autocorrelation and het-
eroskedasticity are provided in Table 10. The addition of the changes in S&P 500
trading volume does not improve the goodness-of-fit of the models, and neither does the
inclusion of the lagged binary variable. The BIC indicates that Model 1 outperforms
the other models in all periods. Coefficients of determination are clearly best for models
estimated in Period 4, or with 500 observations.

The LM test for autocorrelation rejects the null hypothesis at the five-percent level
for nine of the fourteen probit models. Heteroskedasticity is rejected at the five-percent
level only for the models in Period 2. The rejections in Periods 3 and 4 may again be
due to weaker power with smaller numbers of observations, however.

Panel A - Period 1
Model 1 Model 2 Model 3 Model 4

BIC 2204.08 2207.77 - -
R2 0.042 0.042 - -

Test for Autocorrelation 0.002 0.002 - -
Test for Heteroskedasticity 0.052 0.078 - -

Panel B - Period 2
Model 1 Model 2 Model 3 Model 4

BIC 853.484 854.889 856.164 857.561
R2 0.1012 0.1041 0.1028 0.1057

Test for Autocorrelation 0.022 0.073 0.032 0.091
Test for Heteroskedasticity 0.005 0.008 0.010 0.020

Panel C - Period 3
Model 1 Model 2 Model 3 Model 4

BIC 653.111 655.172 656.249 658.356
R2 0.1005 0.1029 0.1014 0.1037

Test for Autocorrelation 0.008 0.007 0.011 0.008
Test for Heteroskedasticity 0.286 0.376 0.406 0.540

Panel D - Period 4
Model 1 Model 2 Model 3 Model 4

BIC 310.726 312.831 313.04 315.173
R2 0.1744 0.1785 0.1782 0.1821

Test for Autocorrelation 0.058 0.043 0.080 0.062
Test for Heteroskedasticity 0.104 0.139 0.174 0.261

Table 10: Statistics and tests for probit models. Five lags are used in the LM tests for autocorrelation

and heteroskedasticity, whose p-values are provided. The R2 is the squared correlation between the

predictions from the normal CDF and the binary actuals.

4 Forecasts

The next step in the analysis is to obtain forecasts from the models described in Section
3. Out-of-sample, one-step-ahead forecasts were calculated for the VIX first differences.
In practise, the predicted direction of change was calculated on a daily basis.

Forecasts were calculated from all models presented above, estimated with numbers
of observations equal to those used in the four time periods. Therefore, the first series of
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forecasts are estimated with 3,260 observations, the second series with 1,314 observations,
the third series with 1,000 observations, and the fourth series with 500 observations.

The forecasts were calculated from rolling samples, keeping the sample size constant
each day. In other words, after calculating each forecast, the furthest observations are
dropped, the observations for the most recent day are added to the sample, and the
model is re-estimated. For comparison, Model 3 was also estimated with an incremen-
tal (growing) sample size starting with 3,260 and 1,314 observations, i.e. by adding
the newest observations to the sample each day, but dropping no observations5. This
introduces a third linear model into the analysis, Model 3I.

Once each model is estimated up to day T , the values of the regressors for day T are
plugged in to obtain the forecast for the change in the VIX from day T to day T + 1.
Again, the only variable that is treated differently is the MSCI EAFE index, whose value
for T + 1 is used when calculating the forecasts.

Successful forecasting of IV from an option trader’s point of view involves forecasting
the direction of IV correctly; a correct magnitude for the change is not as relevant. This
is because positions such as the straddle will generate a profit if the IV moves in the
correct direction, ceteris paribus (the size of the profit is affected by the magnitude of
change, however). The forecasting accuracy of the various models is evaluated based on
sign: how many times does the sign of the change in the VIX correspond to the direction
forecasted by the model.

The first forecast is calculated for 2.1.2003, and the last for 31.12.2004. This amounts
to 501 days of forecasts. Table 11 shows the forecast performance of the various models,
measured with the correct direction of change. The linear and probit models succeed in
predicting the direction of change correctly for 52-62 percent of the trading days. This
performance is in line with the results of e.g. Pesaran and Timmermann (1995) and
Gençay (1998).

For linear models, the addition of exogenous regressors clearly improves the forecast
performance, but improvements from adding GARCH errors are negligible. The number
of observations used in the model estimation affects the accuracy of the sign predictions
hardly at all. The best accuracy, or 310 correct signs out of 501 days, comes from both
Model 6 with 1,000 observations and Model 3 with 500 observations. No clear conclusion
can be drawn on whether or not it is beneficial to include V as a regressor.

With probit models, the forecasts are probabilities that the outcome will be 1. All
forecasts over 50 percent were interpreted as a move upwards, and forecasts below 50
percent were taken as a forecast of the value of the VIX falling. The best performer is
Model 4 with 1,000 observations, which produces 299 correct directional forecasts. How-
ever, the share of correct signs is close to equal for all the probit models. The addition
of the lagged binary variable both improves and weakens the forecasting performance,
depending on the model and number of observations. Thus, the number of observations
and exact model specification from among the four alternatives seem to hold little rel-
evance. It can be noted that all linear models, with the exception of Models 1 and 2,
provide better forecasts than the best probit model.

In the spirit of the particular nature of this study, the predictive ability of the models
was tested using the market timing test for predictive accuracy developed by Pesaran
and Timmermann (1992). The Pesaran-Timmermann test (henceforth PT test) was
originally developed with the idea that an investor switches between stocks and bonds

5E.g. Lamoureux and Lastrapes (1993) use both rolling and incremental sample size in their variance
forecasts.
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depending on the returns expected from each asset class.

Actual outcome
UP DOWN

Forecast
UP Nuu Nud

DOWN Ndu Ndd

Table 12: 2x2 contingency table for forecast evaluation

The PT test is calculated with the help of a contingency table (Table 12). The
contingency table shows how many times the actual outcome was up if the forecast was
up (Nuu), and likewise for the other combinations. The formula for the PT test is given
in Equation 7. This version of the test statistic is provided by Granger and Pesaran
(2000).

PT =
√

NKS(
π̂f (1−π̂f )
π̂a(1−π̂a)

) (7)

where

KS = Nuu
Nuu+Ndu

− Nud
Nud+Ndd

π̂a = Nuu+Ndu
N

π̂f = Nuu+Nud
N

KS is the Kuiper score, commonly used in meteorological forecasting, π̂a is the proba-
bility that actual outcomes are up, and π̂f is the probability that outcomes are forecast
to be up. The limiting distribution of PT is N(0, 1) when the null hypothesis is true.

The PT test confirms that the estimated models do possess market timing ability, i.e.
the directional forecasts are statistically significant (see Table 13). The forecasting ability
of the models is statistically significant for all models except linear Model 1 with 500
observations. In the contingency tables, both linear and probit models receive a higher
value for Ndd than for Nuu, i.e. the directional accuracy of the models is better for moves
downward. Linear models are more likely to forecast up too often, i.e. Nud > Ndu. For
probit models, negative forecasts lead to more mistakes, i.e. Ndu > Nud.

The mean squared errors for the forecasts from the linear models are also provided
in Table 11. This type of traditional measure of forecast performance is not extremely
relevant in the context of this study, as the direction of change determines the option
trading returns. However, MSE (Equation 8) was used to establish that the forecasts
outperform a random walk, where the predicted value for day T + 1 is equal to the
value of day T , i.e. the forecasted change is zero. If the forecasts have no value over a
prediction for zero change, they are useless for option traders, who require an indication
of change in order to take a position in the market.

MSE =
1
N

∑

N

(V̂ IXRt − V IXRt)2 (8)
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The test for superior predictive ability (SPA) developed by Hansen (2005) was used
for this purpose. The SPA test of Hansen allows for the simultaneous comparison of m
series of forecasts, in contrast to e.g. the forecast accuracy test of Diebold and Mari-
ano (1995), which evaluates two series at a time. Hansen defines relative performance
variables as:

dk,t ≡ L(ξt, δ0,t−h)− L(ξt, δk,t−h)

or equivalently

dk,t ≡ L(Yt, Ŷ0,t)− L(Yt, Ŷk,t)

where dk,t denotes the relative performance of model k compared to the benchmark
(k = 0) at time t, L is the loss function, δk is a decision rule, h shows how many
periods in advance the decision must be made, ξt is a random variable, Yt is the actual
realization, and Ŷk,t is the prediction from model k. When

µk ≡ E(dk,t)

the null hypothesis can be stated as:

H0 : µk ≤ 0 (9)

Model k is better than the benchmark only if E(dk,t) > 0. The studentized test
statistic itself is provided in Equation 10. This test statistic should decrease the influence
of poor, irrelevant series of forecasts. The null distribution is sample-dependent, which
also helps to identify the relevant series of forecasts.

TSPA
n ≡ max

[
max

k=1,...,m

n1/2dk

ω̂k
, 0

]
(10)

ω̂2
k is a consistent estimator of ω2

k ≡ var(n1/2dk), and

dk = 1
n

∑
n dk,t

In the SPA test, one series of forecasts is defined to be the benchmark; in this case, it
is the random walk. The other series of forecasts are provided by the models described
above. The loss function used to evaluate the models is the mean squared error. The
p-values for each respective number of observations are given in Table 14. The p-values
are calculated with 1,000 bootstrap resamples. The null hypothesis of the test is that
the benchmark is not inferior to the alternative forecasts, and it is thus rejected for all
four time periods. In other words, the at least one series of forecasts from the evaluated
models is more accurate than a random walk.
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# of obs. p-value
3260 0.00100
1314 0.00100
1000 0.00200
500 0.00300

All alternatives 0.00100

Table 14: P-values from SPA test against the benchmark of a random walk (linear models). 1,000

bootstrap resamples. The p-value for all alternatives is from a SPA test using all series of forecasts, i.e.

forecasts with 3,260, 1,314, 1,000 and 500 observations.

5 Option trading

The purpose of the VIX forecasts is to provide useful information for option traders.
The forecasts from the models presented above were used to simulate option trades with
S&P 500 option market prices. The trades that were simulated were straddles, which
are spreads that involve buying or selling an equal amount of call and put options.

Straddles are so-called volatility trades that are commonly used in practise by pro-
fessional option traders. Their use in this simulation should be more realistic than the
buy-or-sell strategies simulated by Brooks and Oozeer (2002) and Harvey and Whaley
(1992). Straddles are employed in a trading simulation by e.g. Noh et al. (1994). A
long straddle, i.e. an equal number of bought call and put options, yields a profit if
IV rises. A short straddle, which involves selling call and put options, profits when IV
falls. The classic payoff graphs of both straddle types are shown in Figure 7. This figure
relates the payoffs of straddles to the value of the underlying asset upon option maturity.
The relation between straddle price and volatility, much more relevant for this study, is
depicted in Figure 8. Both figures show that the sold straddle is the riskier strategy, as
the losses from this position are unlimited in theory.

Figure 7: Payoff graphs of long (above) and short straddles (below) upon option expiration. The price

of the underlying asset is on the x-axis. The solid line is the total payoff, the dashed line (- - -) is the

payoff from a call option, and the dotted line (· · ·) is the payoff from a put option.
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Figure 8: The prices of long (upper line) and short straddles (lower line). The volatility used to

price the options is on the x-axis. The straddle prices are calculated from the Black-Scholes formula for

hypothetical options with S = 100, X = 100, r = 0.04, T = 1/12, and σ varying between 5% and 65%.

The options are thus at-the-money, and the time to maturity mimics the 30-day maturity of the VIX.

All other values except σ are held constant.

The prices for call and put options on the S&P 500 index were obtained for 1.10.2003-
31.12.2004, a period of fifteen months, or 313 trading days. The fifteen-month period is
equal to that analyzed by Brooks and Oozeer (2002), whose sign predictions were correct
for the IV of options on long gilt futures for 52.5 percent of trading days. Daily straddle
positions were simulated with this data by utilizing the out-of-sample forecasts from the
linear and probit models.

The option positions are opened with the open quotes and closed with the closing
quotes of the same day. This strategy allows for using options that are as close-to-the-
money as possible on each given day. The strike price was chosen so that the absolute
gap between the actual closing quote of the S&P 500 index from the previous day and
the option’s strike price was the smallest available. In practise, the moneyness (S/X)
of the options that were traded varied between 0.994 and 1.010 when the trades were
opened. Options with the nearest expiration date were used, up to ten trading days
prior to the expiration of the nearby option, when trading was rolled over to the next
expiration date. This is necessary as the IV of an option close to maturity may behave
erratically. This analysis does not incorporate transaction costs, as the main purpose of
the exercise is not to obtain accurate estimates of actual profits, but to use the trading
profits and losses to rank the forecast models.

The option positions are technically not delta neutral, which means that the trading
returns are sensitive to large changes in the value of the options’ underlying asset, or the
S&P 500 index, during the course of the day. However, this problem was not deemed
critical for this analysis. The deltas of at-the-money call and put options offset each
other6, so that the positions are close to delta neutral when they are opened at the
start of each day. The deviation from delta neutrality in this study comes from the
fact that strike prices are only available at certain fixed intervals, so the straddles may
not be exactly delta neutral even at the moment they are entered into. The positions

6see Noh et al. (1994)
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are updated daily, so the strike price used can be changed each day. Also, Engle and
Rosenberg (2000) note that straddles are sensitive to changes in volatility but insensitive
to changes in the price of the options’ underlying asset.

Although the straddle is a volatility trade, its returns are naturally not completely
dependent on the changes in IV. Even a trader with perfect foresight would lose on her
straddle position on 119 days out of the 313 days analyzed, or on 38 percent of the days.

In practise, if the forecasted direction of the VIX was up, near-the-money calls and
near-the-money puts were bought. Equivalently, if the forecast was for the VIX to fall,
near-the-money calls and near-the-money puts were sold. The exact amounts to be
bought or sold were calculated separately for each day so that 100 units (dollars) were
invested in buying the options each day, or a revenue of 100 was received from selling
the options. This same approach of fixing the investment outlay was used by Harvey
and Whaley (1992) and Noh et al. (1994).

The average price of the calls and puts was used to determine the exact share of each
to be traded. The return from a long straddle was calculated as in Equation 11, and
the return from a short straddle is shown in Equation 12. In this analysis, the proceeds
from selling a straddle are not invested during the day, but held with zero interest.

Rl =
100

Co + Po
(−Co − Po + Cc + Pc) (11)

Rs =
100

Co + Po
(Co + Po − Cc − Pc) (12)

Co is the open quote of a near-the-money call option, Po is the open quote of a near-the-
money put option, and Cc and Pc are the respective closing quotes of the same options
at the end of the same trading day.

Although the emphasis is on directional accuracy, filters have also been used in the
option trading simulations. These filters leave out the weakest signals, i.e. signals that
predict the smallest absolute or percentage changes, as they may not be as reliable in
the directional sense. This use of filters is in the spirit of Hartzmark (1991), who inves-
tigated separately whether traders predict large changes with better accuracy. Harvey
and Whaley (1992) and Noh et al. (1994) employ two filters to leave out the small-
est predictions of changes, and Poon and Pope (2000) use three filters in order to take
transaction costs into account.

The filters employed are provided in Table 15. Filter I for linear models considers the
absolute value of the predicted change, and Filters II-V leave out the smallest predicted
percentage changes. For probit models, the five filters eliminate signals that are close to
50 percent.

The returns from trading options on all days, or when employing a filter, are pre-
sented in Table 16 for linear models and Table 17 for probit models. No trading signals
are left for linear Models 1 and 2 with Filter V (with the exception of two trades for
Model 1 with 3,260 observations). The theoretical return with perfect foresight would
be 464.4 units. For the linear models, Model 3 yields the best return when trading on
all days with the exception of 3,260 observations. The effect the number of observations
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Linear models Probit models
Filter Rule Filter Rule

Filter I |V̂ IXR| < 0.001 Filter I 49.5% < p̂ < 50.5%
Filter II |V̂ IXRt+1/V IXt| < 0.1% Filter II 49.0% < p̂ < 51.0%
Filter III |V̂ IXRt+1/V IXt| < 0.2% Filter III 47.5% < p̂ < 52.5%
Filter IV |V̂ IXRt+1/V IXt| < 0.5% Filter IV 45.0% < p̂ < 55.0%
Filter V |V̂ IXRt+1/V IXt| < 1.0% Filter V 40.0% < p̂ < 60.0%

Table 15: Filters used in simulated option trading

has on the option trading returns is not obvious. The largest profits in absolute value
are generated by models with 3,260 or 1,314 observations.

For most models, profits improve when refraining from trading on days when the
forecasted change in the VIX is very small. Filter II performs best overall for the linear
models. The largest absolute return is generated by using Filter III with Model 2 with
3,260 observations, but in light of the analysis from previous sections, this result is
most likely a coincidence: ARIMA(1, 1, 1) models are outperformed by models with
exogenous regressors. In light of all the above analysis, the recommendation would be
to trade based on the forecasts of Model 3 with Filter I or II.

Filters IV and V are never optimal for linear models, but for probit models, it is
often best to leave out all signals between 40 and 60 percent, or use Filter V. In fact,
the use of no filter or Filter II would lead to negative returns in all of the 14 probit cases
evaluated, and Filter I leads to positive returns in only one case. Filter V performs best
for 7 of the 14 cases. As even Filters IV and V generate negative returns for a part of the
probit models, and earlier analysis failed to find a clear ranking for the models, it would
seem that linear modeling provides more reliable results for option traders. Therefore,
the conclusion is drawn that trading should not be based on the forecasts from probit
models.

The statistical significance of the option trading returns using linear model forecasts
was evaluated with the Hansen SPA test. Only linear models were considered at this
stage, as they were deemed more reliable in predicting the changes in the VIX index and
in producing positive option trading returns. The opposite numbers of trading returns
were used as the loss function in the test. The filters used in this study can be thought
of as the trading rules described in Hansen (2005): these trading rules tell the investor
how to react to a binary signal of the directional change expected for the next day.

In Panel A of Table 18, the returns from trading on all days are first compared. The
benchmark is the model that generates the best returns when using no filters. The test
does not reject for any period, indicating that there is little evidence against the null
hypothesis that the benchmark is the best model. In Panel B, all possible returns are
included in the analysis, i.e. all models and all filters are considered for each period.
The best return is again chosen as the benchmark. The high p-values show that the null
hypothesis cannot be rejected7.

The SPA tests were also run for one model at a time, in order to determine the
7The absolute difference in returns between the 3,260 observation benchmark (Model 2, Filter III)

and Model 3, Filter I and Model 3I with no filter are very small. As discussed above, the returns for
Model 2 are most likely a coincidence. The SPA test with M3, FI or M3I, no filter as the benchmark
also fails to reject these models as the best trading rule.
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Panel A - 3260 observations
Trading P/L Filter I Filter II Filter III Filter IV Filter V

Model 1 -18.5 -3.1 (282) -28.7 (240) 21.0 (165) -15.8 (12) -10.2 (2)
Model 2 45.9 27.6 (279) 41.5 (236) 96.4 (146) 23.2 (9) 0.0 (0)
Model 3 64.6 94.6 (284) 58.7 (251) 42.2 (219) -12.2 (102) 17.6 (15)
Model 4 79.7 74.1 (285) 52.7 (252) 33.9 (200) -28.0 (98) 21.1 (13)
Model 5 - - - - - -
Model 6 - - - - - -
Model 3I 93.4 74.8 (283) 42.2 (244) 21.3 (208) -6.1 (93) 8.0 (13)

Panel B - 1314 observations
Trading P/L Filter I Filter II Filter III Filter IV Filter V

Model 1 18.0 -12.8 (272) 0.3 (219) 90.7 (132) 14.2 (7) 0.0 (0)
Model 2 19.9 -22.3 (277) 28.3 (213) 33.4 (120) 9.4 (10) 0.0 (0)
Model 3 66.0 82.8 (291) 66.3 (262) 40.4 (216) 31.9 (127) 14.3 (27)
Model 4 42.9 47.2 (291) 58.3 (259) 56.4 (229) 23.0 (121) 34.0 (22)
Model 5 59.1 18.4 (292) 60.1 (273) 37.1 (217) 2.1 (129) -5.4 (25)
Model 6 -6.8 32.4 (290) 36.4 (258) 69.0 (218) 22.5 (121) 29.6 (23)
Model 3I 30.9 57.6 (289) 71.0 (261) 73.0 (223) -9.3 (125) 22.2 (27)

Panel C - 1000 observations
Trading P/L Filter I Filter II Filter III Filter IV Filter V

Model 1 -4.5 -5.0 (267) 34.7 (195) 24.7 (81) 12.7 (2) 0.0 (0)
Model 2 -26.4 7.1 (279) 15.4 (200) -1.9 (92) 14.2 (7) 0.0 (0)
Model 3 52.9 16.8 (293) 77.7 (267) 70.8 (229) 15.9 (120) -12.0 (28)
Model 4 4.3 31.6 (289) 60.8 (266) 50.6 (220) 24.5 (117) -0.1 (23)
Model 5 23.5 21.6 (295) 64.6 (264) 68.9 (226) 0.0 (120) -17.4 (27)
Model 6 24.9 25.1 (287) 59.7 (266) 27.6 (218) 23.9 (118) 5.5 (25)
Model 3I - - - - - -

Panel D - 500 observations
Trading P/L Filter I Filter II Filter III Filter IV Filter V

Model 1 -57.7 6.1 (261) -19.7 (191) -20.2 (72) -9.8 (4) 0.0 (0)
Model 2 - - - - - -
Model 3 38.4 37.8 (284) 53.0(261) 48.7 (225) 16.3 (126) 2.2 (26)
Model 4 - - - - - -
Model 5 20.7 16.2 (287) 79.4 (263) 32.6 (223) -1.8 (126) 20.7 (26)
Model 6 - - - - - -
Model 3I - - - - - -

Table 16: Option trading returns from linear models (number of days traded out of 313 in parentheses).

Best return for each model in boldface.
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Panel A - 3260 observations
Trading P/L Filter I Filter II Filter III Filter IV Filter V

Model 1 -88.7 -71.5 (294) -36.2 (276) 18.2 (243) -7.2 (173) 33.3 (84)
Model 2 -60.4 3.1 (295) -15.2 (286) -25.5 (235) 1.5 (169) 15.2 (85)
Model 3 - - - - - -
Model 4 - - - - - -

Panel B - 1314 observations
Trading P/L Filter I Filter II Filter III Filter IV Filter V

Model 1 -72.2 -77.2 (298) -63.5 (288) 28.8 (256) -26.4 (210) 31.5 (125)
Model 2 -87.7 -42.7 (298) -25.0 (285) -51.0 (248) 21.0 (206) 7.4 (124)
Model 3 -70.0 -66.6 (299) -66.9 (289) 49.9 (253) -44.4 (203) -7.1 (129)
Model 4 -40.4 -58.7 (295) -10.7 (284) -54.4 (252) 25.8 (202) 21.8 (126)

Panel C - 1000 observations
Trading P/L Filter I Filter II Filter III Filter IV Filter V

Model 1 -85.2 -65.9 (299) -67.7 (290) 24.9 (261) 17.5 (222) 3.3 (135)
Model 2 -15.6 -16.6 (298) -25.8 (289) -45.5 (257) -21.6 (229) 14.8 (134)
Model 3 -49.1 -51.7 (297) -63.3 (291) -55.5 (262) 13.0 (217) 11.3 (137)
Model 4 -35.3 -11.2 (295) -8.5 (284) -54.4 (254) 19.8 (218) 16.1 (134)

Panel D - 500 observations
Trading P/L Filter I Filter II Filter III Filter IV Filter V

Model 1 -58.6 -54.8 (297) -21.3 (285) 3.7 (258) -22.5 (213) 42.7 (133)
Model 2 -88.2 -81.1 (297) -82.7 (289) 7.2 (262) -25.8 (216) 20.6 (133)
Model 3 -76.9 -54.4 (298) -34.4 (286) 17.7 (253) -8.1 (209) 25.8 (135)
Model 4 -70.4 -74.9 (299) -74.6 (288) 24.0 (261) -14.0 (210) 22.4 (136)

Table 17: Option trading returns from probit models (number of days traded out of 313 in parentheses).

Best return for each model in boldface.

Panel A: Trading on all days
# of obs. No. of models Benchmark p-value

3260 5 Model 3I 0.934
1314 7 Model 3 0.922
1000 6 Model 3 0.948
500 3 Model 3 0.89

Panel B: Trading on all days; all filters
# of obs. No. of models Benchmark p-value

3260 30 M2, F III 0.947
1314 42 M1, F III 0.956
1000 36 M3, F II 0.998
500 18 M5, F II 0.998

Table 18: P-values from SPA test for option trading returns
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significance of the filter choice once the model selection has been made. Table 19 provides
the p-values from this analysis. Again, the test does not reject the null hypothesis that
the model with the highest absolute return provides the best trading rule.

Panel A - 3260 obs. Panel B - 1314 obs.
Model Benchmark p-value Model Benchmark p-value

Model 1 Filter III 0.921 Model 1 Filter III 0.981
Model 2 Filter III 0.965 Model 2 Filter III 0.846
Model 3 Filter I 0.983 Model 3 Filter I 0.979
Model 4 No filter 0.863 Model 4 Filter II 0.931
Model 5 - - Model 5 Filter II 0.931
Model 6 - - Model 6 Filter III 0.965
Model 3I No filter 0.965 Model 3I Filter III 0.916

Panel C - 1000 obs. Panel D - 500 obs.
Model Benchmark p-value Model Benchmark p-value

Model 1 Filter II 0.912 Model 1 Filter I 0.878
Model 2 Filter II 0.842 Model 2 - -
Model 3 Filter II 0.954 Model 3 Filter II 0.937
Model 4 Filter II 0.959 Model 4 - -
Model 5 Filter III 0.919 Model 5 Filter II 0.985
Model 6 Filter II 0.98 Model 6 - -
Model 3I - - Model 3I - -

Table 19: P-values from SPA test for option trading returns, model-by-model analysis

6 Conclusions

This paper has sought to find well-fitting linear and probit models for the VIX index,
to analyze their predictive ability, and to calculate the returns from an option trading
simulation based on forecasts from the models. The positive and negative returns of
the S&P 500 index and foreign stock market returns, measured by the first differences
of the MSCI EAFE index, are statistically significant explanatory variables for the first
differences of the VIX. Despite the high persistence in the time series of the VIX index,
ARFIMA models do not fit the data.

GARCH terms are statistically significant in ARIMA(1, 1, 1) models, but GARCH
errors do not improve the forecast accuracy of the various models considered. The best
models forecast the direction of change of the VIX correctly on 62 percent of the trading
days in the 501-day out-of-sample period, with the linear models outperforming probit
models. The Pesaran-Timmermann test confirms that the forecast accuracy of the best
models is statistically significant.

Different amounts of observations are used in estimating the models in order to
capture the effect of a possible structural shift in the behavior of the VIX in 1997, and
to account for the possibility that only the most recent observations are relevant when
operating in financial markets. However, the significance of the number of observations
is unclear based on the results obtained.

In the option trading application, straddle trades based on forecasts from the best
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linear models yield positive profits. The use of a filter to leave out the signals for a
very small change in the VIX improves the results in most cases. Trading based on the
forecasts from probit models leads to heavy losses with many of the models and filter
strategies considered. Therefore, ARIMA models outperform probit models when both
forecast accuracy and option trading returns are considered.

Based on the results, there seems to be a certain degree of predictability in the
direction of change of the VIX index that can be exploited profitably by option traders,
at least for certain periods of time. Given the nature of financial markets, it may not be
possible to replicate the results in e.g. more volatile market conditions.
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