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Abstract

Literature has found that the large investments in the US cannot be explained by standard portfolio

allocation models or diversification motives. In this paper, we explain the overweighting of the US equity

in the market portfolio by asymmetric excitation. We employ the mutually exciting jump diffusion with

an asymmetric excitation structure to account for the fact that crashes in the US can get reflected quickly

in smaller economies but not the other way round. We solve in closed-form the portfolio optimization

problem and find that the optimal portfolio is biased towards the US equity market compared to classic

portfolio choice models. The US bias comes from the fact that it is more capable of transmitting domestic

jumps risks worldwide than other geographical markets, which results in a larger hedging potential in the

US equity against state variables. We further show that the welfare loss of the suboptimal strategy that

ignores the excitation nature of jumps is substantial. By calibrating the model to historical returns on

US, Japanese, and European equity indices, we show that our model is able to reproduce the observed

biases in the market portfolio.
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1 Introduction

The potential benefits of international diversification have been known to equity investors for long (see,

for example, Solnik (1974)). Nevertheless, the actual equity portfolios held by investors appear to be

far from optimally diversified as measured by classic models. The equity home bias, for instance, is a

well-recognized pattern of under-diversification. It refers to the empirical finding that investors overinvest

in domestic equities relative to the theoretically optimal investment portfolio.1 Since the seminal paper

by French and Poterba (1991), there has been extensive research on the measurement and explanation

of home bias. Information asymmetry and familiarity are commonly offered as potential explanations for

the equity home bias.2

However, the equity home bias is only part of the under-diversification puzzle. Taking the perspective

of a world investor, free from home bias, we find that even the international market portfolio is not

optimally diversified according to the classic asset allocation theory. Figure 1 plots the dynamics of the

market portfolio on the right and on the left the Merton mean-variance portfolio (see Merton (1969)) of

US, Japan and European equities from 2007 to the end of 2012 with expected returns estimated over the

full sample and covariances estimated from an expanding window. We see that the market portfolio is

consistently over-weighting the US equity and under-weighting the other two.

1Home bias is also found at the local level. For example, Coval and Moskowitz (1999) and Sialm et al. (2013) find that
US investors over-weight local assets that are geographically close.

2See, e.g., Epstein and Miao (2003), Uppal and Wang (2003), Bekaert and Wang (2009), Boyle et al. (2012).
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Figure 1: Market equity portfolio weights (rights panel) and the Merton mean-variance (left panel) equity

portfolio weights on US, Japanese and European equity markets from the beginning of 2007 to the end of 2012.

The market portfolio weights are calculated by dividing the market values (US dollar denominated) of MSCI US,

Japan and Europe by their sum at each time point. The Merton mean-variance portfolio is computed using excess

log returns of MSCI indices over local risk free rates. US 3 month TBill rates, Japan base discount rates, UK 3

month Libor rates are used as proxies for the local risk free rates. Expected excess returns are estimated using

the total returns data from January 1970 to December 2012. The variance is estimated using daily price index

from January 1972 to December 2012 with an expanding window. Weights are normalized to add up to 1.

Acknowledging the fact that expected returns cannot be estimated consistently in samples of finite

length (Merton 1980), we can equivalently ask the question of what expected returns would explain the

market weights, under the assumption that investors are mean-variance optimizers and put their wealth

in the equity markets of US, Japan and Europe. Table 1 compares the empirical expected excess returns

with the implied expected excess returns for different sample periods. Following French and Poterba

(1991), the implied expected excess returns are calculated such that mean-variance investors choose to

hold the market equity portfolio. Denote the portfolio weights on the (currency-hedged) risky assets by

w and the weights within the equity portfolio by w̄. For a Merton mean variance investor, the equity

portfolio composition is irrespective of the risk aversion coefficient and is given by

w̄ =
w

w′ι
=

Σ−1µ

ι′Σ−1µ
,

where Σ is the estimated covariance matrix of excess log returns of MSCI indices of the corresponding

sample, ι a vector of ones. The implied expected excess log return is the µ that delivers the observed
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market equity portfolio weights adjusted for the half squared volatility. We normalize the implied expected

excess log returns such that either the implied Japanese return (JA as reference) or the implied European

return (EU as reference) is the same as its historical estimate. In the full sample estimate, the implied

expected excess log return for US is over 500 basis points higher than its empirical value when the

Japanese equity is used as reference, and is 200 basis points higher when the European equity is used as

reference. If we exclude the turbulent period of the global financial crisis and terminate the sample as of

the end of 2006, we find the US implied return to be 2000, 200 basis points higher using the Japanese

and the European equity as reference, respectively. Although the expected excess returns measured as

the sample mean are not precise, it is unlikely that the US equity can deliver such a high expected excess

return consistently based on the historical data. In other words, the risk return trade off of the US equity

is not good enough to attract so much investment as it does.

Empirical vs implied expected excess log returns (% per annum)

Full sample As of the end of 2006

Empirical Implied Implied Empirical Implied Implied

(JA as reference) (EU as reference) (JA as reference) (EU as reference)

US 4.12 9.53 6.05 4.55 24.65 6.03

JA 2.45 2.45 1.12 4.46 4.46 0.34

EU 4.16 6.61 4.16 3.67 16.26 3.67

Table 1: Empirical and implied expected excess returns denoted in % per annum. Empirical expected excess

returns are estimated using MSCI index returns over local risk free rates. Implied expected excess returns are

computed based on the market values of MSCI US, Japan and Europe, and are solutions of w̄ = Σ−1µ
ι′Σ−1µ

, with w̄

the observed market equity portfolio weights, ι a vector of ones, Σ the estimated covariance matrix of excess log

returns of MSCI indices using daily returns. Empirical expected excess log returns are estimated using the MSCI

total returns index over local risk free rates, for which US 3 month TBill rates, Japan base discount rates, UK 3

month Libor rates are used as proxies. Both samples start from January 1972. The full sample ends December

2012, and the sub sample terminates as of the end of 2006.

To be consistent with the composition of the market portfolio, investors should demand a higher

expected return in the US market. However, Figure 1 and Table 1 show that the question that why an

equity market remains larger (smaller) than others cannot be answered by differences in Sharpe ratios

alone. Forbes (2010) finds that the foreign investment in the US cannot be explained by standard portfolio

allocation models and diversification motives and thus puts forward the question:

“Why are foreigners willing to invest an average of well over 5 billion every day in the United

States – especially given low returns relative to comparable investments in other countries...?”
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It brings us to an equally interesting phenomenon, the “US bias”, i.e., the extent to which the market

portfolio over-weights the US equity compared to classic asset allocation models. It is a well-documented

fact that investors hold biased equity portfolios not only towards the home equities but also towards

some other equities. Kang et al. (1997) study the foreign ownership in Japanese firms and show that

investors hold foreign portfolios tilted towards large firms with good accounting performance rather than

those with better Sharpe ratios. Chan et al. (2005) find that markets that are more developed and

larger in market capitalization attract foreign investors. Ferreira and Matos (2008) study the preference

of institutional investors worldwide and conclude that institutional investors prefer firms that are cross-

listed in the US and constituents of the Morgan Stanley Capital International World Index. Bekaert and

Wang (2009) compare country actual equity holdings to a theoretical optimal allocation given by the

CAPM framework and find that investors significantly over-invest in the US and under-invest in Japan.

Forbes (2010) states that both size and liquidity contribute to the attractiveness of US financial markets

on top of the risk-return tradeoff. Diyarbakirlioglu (2011) studies the mutual fund holdings and finds that

investors’ foreign portfolio tend to be concentrated in large stock markets and well-developed economies.

While some controversy remains whether investors universally bias their equity portfolio towards the

US equity, another strand of the literature suggests that the US plays a special role in the international

financial market. For instance, King and Wadhwani (1990) investigate high-frequency returns for US,

Japan and UK and find that when New York opens, there is a jump in the London price reflecting the

information contained in the New York opening price. Eun and Shim (1989) employ a vector autoregres-

sion system and find that innovations in the US are rapidly transmitted to other markets whereas no

single foreign market can significantly explain US market movements. Similarly, Hamao, Masulis, and

Ng (1990) find significant volatility spillover effects from New York to London and Tokyo but no price

volatility spillover effects to New York are observed. Bollerslev, Tauchen, and Zhou (2009) find that the

US plays a leading role in terms of variance premia. In an interesting paper, Rapach et al. (2013) show

that lagged US equity returns significantly predict returns in numerous non-US countries, while lagged

non-US returns display limited predictive ability with respect to US returns. They state that

“...the lead-lag relationships are an important feature of international stock return predictabil-

ity, with the United States generally playing a leading role...our results call for an international

asset pricing model that explicitly incorporates the leading role of the United States.”

Inspired by the empirical results from both strands of the literature, we propose an asset pricing

model that explicitly takes into account the leading feature of the US equity. We model the lead-lag

relation using asymmetric jump excitation, which enables a price plunge in the US equity to get reflected

in future prices of foreign equities but not the other way around. As a result, our model suggests that
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investors should take a larger stake in the US market than classic model predictions, since the US equity

has a larger hedging potential against economic state variables than equities in the other markets, thereby

generating a US bias as has been documented in the literature.

Specifically, we model a contagious financial market with mutually exciting jumps to account for

excess comovement during economic downturns led by the US market.3 Different from Lévy type models

that are widely applied in the literature, mutually exciting jumps are both cross sectionally and serially

dependent, meaning that a large price movement that happens in the domestic market today increases the

probability of experiencing further price jumps in the same market in the future as well as the probability

of experiencing price jumps in other regional markets. There are two important indicators that measure

the cross section excitation capability of an equity market – how much a domestic price crash can get

reflected in future foreign equity prices, which measures the capability of exciting other markets; and how

a foreign price crash can affect future domestic equity prices, which measures the inclination of getting

excited by other markets. Empirical evidence mentioned earlier suggests that these two measures are

typically not equal. Consistent with the empirical findings, we allow for asymmetric jump excitation

structure. The leading role of the US equity market is characterized by having a large cross section

excitor as the source jump component and a small cross section excitor as the target jump component,

indicating on one hand its capability of spreading domestic jump risks worldwide and on the other its

resistance to foreign equity risk spillover.

Apart from allowing for jump propagation, we deviate from the standard asset allocation literature

in two aspects. (1) Instead of using representative assets of every regional market, we assume that each

local market is made up of a great many individual assets which are exposed to regional risk factors

as well as idiosyncratic risks. While the regional risk factors are systematic and cannot be diversified

away, idiosyncratic risks can be eliminated by holding a well-diversified portfolio. (2) We adopt the factor

investing perspective and focus on allocation to risk factors rather than assets. Inspired by Ang (2014),

who remarks that “factors are to assets what nutrients are to food; factor risks are the driving force

behind risk premiums”, we derive optimal portfolio exposure to risk factors instead of optimal portfolio

weights on each individual asset. In this way, thousands of assets reduce to only a few manageable risk

factors.

These specifications allow us to solve in closed-form the portfolio optimization problem with multi-

ple regions and a large number of assets that are exposed to mutually exciting jump risks, systematic

Brownian risks, and idiosyncratic Brownian risks. The optimal portfolio exploits the diversification ben-

3Mutually exciting jump process is a multivariate version of the Hawkes process, which was originally developed by
Hawkes (1971a), Hawkes (1971b), and are introduced to modeling the dynamics of asset returns by Aı̈t-Sahalia, Cacho-
Diaz, and Laeven (2014), to portfolio optimization problems by Aı̈t-Sahalia and Hurd (2012), and to modeling credit default
by Aı̈t-Sahalia, Laeven, and Pelizzon (2014).
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efits among independent risk factors, and at the same time exploits the hedging potential within the

dependence structure among risk factors and state variables. As a result, the optimal portfolio in this

high-dimensional contagious market: (1) is sufficiently diversified, in the sense that it consists of a large

number of individual assets to diversify away idiosyncratic risks; (2) is biased towards the US equity as

compared to classic portfolio predictions. Intuitively, the reason of the bias is that the US leads inter-

national equity returns by being the major driving forth of the economic states and therefore the assets

there are better hedges against the state variables.

Generally speaking, incorporating jump risks in our model brings three effects to the traditional asset

allocation where equities are assumed to be driven by Brownian motions alone. First, as discovered by

Das and Uppal (2004), Aı̈t-Sahalia et al. (2009), given the same expected return, the investment in risky

assets is smaller for an investor who accounts for jumps. This is due to the fact that, when a jump occurs,

the wealth can drop significantly before the investor has a chance to adjust the portfolio as he/she would

when faced with Brownian risks. As a result, the investor prefers a smaller leverage to stay on the safe

side. Second, compared with the constant jump intensity case, jump excitation increases the demand of

risky assets. When a jump occurs, the state variables and the equity prices move in opposite directions.

To reduce the uncertainty in state variables, the investor should increase the exposure to risky assets in

order to exploit the hedging potential in the jump components. This effect is first seen in Liu, Longstaff,

and Pan (2003), who show in a univariate model, that jumps in volatility increase the optimal portfolio

weight on the risky asset. Hoever, the implications of stochastic jump intensities in a multivariate setting

are still not well explored, possibly due to the difficulty in formulating a flexible yet tractable model

which yields analytical solution for the optimal asset allocation. We extend the existing non-Poissonian

jump diffusion asset allocation literature to a multivariate setting using mutually exciting jumps, which

gives rise to the third effect, namely, the US bias, meaning that, compared to the Merton mean variance

portfolio, an investor over-invests in the US market whose jump component is more capable of exciting

the jump components in other markets but is less prone to be excited by the other jump components. We

find that the US bias arises when jump excitation is asymmetric, in which case jump components have

heterogeneous hedging potential against state variables. The investor thus tilts the portfolio towards the

US equity for a more effective hedging. Ignoring price discontinuities or the excitation nature of jumps

will result in substantial welfare losses. The first two effects are known to the literature while the last

effect is a novel finding in this paper.

We apply our model to historical prices of MSCI US, Japan and Europe. We estimate the parameters

of our model using daily return data. We show that neither Poisson jumps nor self exciting jumps are able

to reproduce the pattern of US bias in the market portfolio. Only when jumps are mutually exciting with

an asymmetric excitation matrix does the optimal portfolio exhibit the US bias. The portfolio prediction
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generated by the mutually exciting jump diffusion model closely resembles the risk profile of the market

portfolio.

Our paper belongs to the asset allocation literature pioneered by Merton (1969). The past two

decades have seen lots of efforts to address the portfolio optimization problem in richer stochastic envi-

ronments. To list a few, Wachter (2002) and Chacko and Viceira (2005) solve in closed form the con-

sumption/portfolio problem in a diffusion market with mean-reverting state variables; Liu (2007) solves

the asset allocation problem for general diffusion return processes; Das and Uppal (2004), Aı̈t-Sahalia

et al. (2009) study the portfolio implications of systemic jumps under constant investment opportunities;

Liu et al. (2003) look at the portfolio optimization problem when both price and volatility can jump; Jin

and Zhang (2012) consider the asset allocation for general Lévy processes.

To our knowledge, an analytical characterization of the US bias using the lead-lag relationships in

international returns cannot be easily replicated by other existing portfolio choice models in the literature.

Both jump propagation and a multivariate setting are essential ingredients that lead to the US bias. The

excitation asymmetry property is well defined only in a multivariate model. Sophisticated portfolio choice

models that admit closed form solutions often times focus on univariate settings with a single stock in the

market.4 Moreover, even in a truly multivariate framework, the asymmetric feature cannot be replaced by

stochastic volatility (see, e.g., Buraschi et al. (2010)) nor regime-switching models. The linear correlation,

as a measure of dependence used in such models, is a symmetric and simultaneous relation, from which

there cannot be a lead-lag or asymmetric relation between two equity markets. Ang and Bekaert (2002)

propose a regime-switching model to account for the fact that correlations between international equity

returns are higher during bear markets than during bull markets. While regime-switching models are

able to account for excess linear dependence during economic downturns, the dependence structure of

international equities can be nonlinear and asymmetric.5 More importantly, Rapach et al. (2013) show

that US shocks are only fully reflected in non-US equity prices with a lag. Therefore the dependence

structure of international equities is beyond conditional linear correlations. The nonlinearity, asymmetry

and lead-lag properties distinguish our asymmetric excitation model from stochastic volatility and regime-

switching models. Of course, one could expect to generate a bias towards a certain equity market in a

stochastic environment that is sophisticated enough. We believe that the mutually exciting jump diffusion

model is a natural, realistic and parsimonious way that gives rise to this interesting effect.

The remainder of this paper is organized as follows. Section 2 postulates a model of asset prices that

generates lead-lag relations in international equity returns featuring mutually exciting jumps. We solve

4For instance, see the stochastic volatility model solved by Liu (2007), stochastic volatility with jumps model proposed
in Liu and Pan (2003), the double jump model of Liu et al. (2003), and Branger et al. (2008) who extend Liu and Pan
(2003) to allow for multiple jumps in volatility but stay within the single stock framework.

5See Ang and Chen (2002), Christoffersen, Jacobs, and Ornthanalai (2012), for empirical evidence.
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for the optimal portfolio using the martingale method in a market with a large number of individual

assets. We show that the market is asymptotically complete, in the sense that the optimal portfolio path

can be closely tracked by investing in a large basket of individual stocks to diversify away idiosyncratic

risks. In Section 3, we study the property of the optimal exposure to jump risks using comparative statics

analysis, and show that the optimal portfolio exhibits the US bias. In Section 4, we quantify the certainty

equivalent loss in terms of annualized returns if the investor were to ignore jump excitation. Section 5

reports the calibration results and numerical findings. Section 6 concludes.

2 Optimal asset allocation in a contagious financial market

In this section, we propose a model of asset prices that generates lead-lag relations in international

returns. This is achieved by extending the pure diffusion processes of asset returns to include both

cross sectionally and serially dependent jump components, namely, mutually exciting jumps. We specify

a general contagious financial market with mutually exciting jumps in Section 2.1. In Section 2.2, we

discuss the general features of the optimal portfolio weights in this market without really solving for the

optimal portfolio weights. We impose additional structure on equity risk premiums in Section 2.3 which

enables us to solve the portfolio optimization problem in closed form using the martingale approach in

Section 2.4. In Section 2.5, we discuss the market completeness of the financial market.

2.1 A general model

We work in a filtered probability space (Ω,F , (Ft)t≥0, P ) that satisfies the usual conditions. Let Nt =

(N1,t, . . . , Nn,t)
′ be mutually exciting jumps with intensities λi,t, i = 1, . . . , n, following the dynamics

dλi,t = αi(λi,∞ − λi,t)dt+

n∑
j=1

βijdNj,t, αi, βij , λi,∞ ≥ 0, i, j = 1, . . . , n. (1)

The occurrence of a jump in component j at time t, i.e., dNj,t = 1, not only raises the intensity of

jump component j, λj,t, by a non-negative amount βjj , but also increases the intensities of other jump

components, λi,t, i 6= j, by a non-negative amount βij . After being excited, the intensity of each jump

component λi,t mean reverts to the steady state, λi,∞, at an exponential decaying rate αi, until it gets

excited by a next jump occurrence.
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In the remainder, we call β, defined as

β := (β1, . . . ,βn) =


β11 . . . β1n

...
. . .

...

βn1 . . . βnn

 ,

the excitation matrix ; βii is called the self-excitor of jump component i; βij is called the cross section

excitor of jump component j, in which jump component j is called the source jump component, and the

jump component i is called the target jump component.

The unconditional expectation of the jump intensity is given by E[λt] = (I − β./(αι′))−1λ∞. The

intensity processes can be made stationary by imposing (I − β./(αι′))−1 > 0. Here, I is an n by n

identity matrix; α,λ∞ are vectors of αi, λi,∞, i = 1, . . . , n, respectively; ι is a column vector of all ones.

We adopt the convention of denoting vectors and matrices using boldface characters to distinguish them

from scalars. We use ◦ to denote element-wise multiplication of matrices and ./ to denote element-wise

division. We use “,” for column breaks and “;” for row breaks in a matrix.

Let there be a risk-free asset S0
t , generating an instantaneous risk free return rt,

S0
t = S0

0 exp
(∫ t

0

rsds
)
, S0

0 > 0, rt ≥ 0, t ∈ [0, T ].

We assume that each S0
t -deflated security price process is in the space H2 containing any progressively

measurable and square integrable semi-martingale process Si,t, i = 1, . . . ,m, following


dSi,t
Si,t−

= µi,tdt+
∑m
j=1 σi,j,tdW

◦
j,t +

∑n
l=1 di,lzl,tdNl,t,

dλl,t = αl(λl,∞ − λl,t)dt+
∑n
j=1 βljdNj,t.

(2)

Here, µi,t > 0 is the (state-dependent) excess returns of asset i from the diffusion component; σi,j,t > 0

is the (state-dependent) exposure of asset i to the Brownian risk W ◦j . W ◦
t = (W ◦i,t, . . . ,W

◦
m,t)

′ is a vector

of standard and independent Brownian motions. We use Si,t− to denote the left-limit of Si,t. The (i, j)th

entry of the instantaneous covariance matrix Σt given by

Σt[i, j] =

m∑
k=1

σi,k,tσj,k,t. (3)

The exposure of asset i to jump component l is denoted by a constant di,l. The amplitude of jump

component l is denoted by i.i.d. random variables zl,t, t ∈ [0, T ], which determine the percentage change

in the asset price caused by an occurrence in jump component Nl at time t. The jump amplitudes are
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assumed to be independent of all risk factors.

The mutually exciting jump diffusion model postulated in (2) is able to produce important stylized

facts of asset returns. For example, the asset returns exhibit jump clustering as a result of the time series

excitation, and systemic jumps as a result of the cross section excitation. The model generates lead-lag

and asymmetric relations in international equity returns. Unlike dependence generated by (stochastic)

covariance, which is simultaneous and symmetric in the sense that Covt(X1, X2) = Covt(X2, X1), con-

tagion allows for lagged dependence. The dependence structure can be further made asymmetric by

setting βij 6= βji to indicate that some jump components have a larger potential to excite other jump

components. Equities with these jump components tend to lead international equity returns, since a price

plunge there can get reflected in future prices of other equities.

The model also generates excess comovement during market turmoil. During tranquil periods, inter-

national asset returns are correlated through the instantaneous covariance Σt, with uncommon large price

movements taking place occasionally. In periods of financial crises, initiated by the first few downside

jumps, jump intensities build up and give rise to clustered subsequent jumps in the initial market as well

as the other markets across the world, creating nonlinear excess tail dependence in economic downturns.

2.2 Optimal asset allocation

We consider an expected utility investor with power utility u(x) = 1
1−γx

1−γ , γ > 0. The investor is given

a non-stochastic initial endowment x0 > 0 to invest in the risk-free and risky assets. The investor neither

consumes nor receives any intermediate income. Assume that the investor can rebalance the portfolio

in continuous-time without incurring any transaction costs. The objective is to maximize the expected

utility over terminal wealth XT through optimal continuous time trading. Denote the portfolio weights

(percentage of wealth) on the risky assets at time t by wt = (w1,t; . . . ;wm,t), 0 ≤ t ≤ T , assumed to

be adapted cáglád processes, bounded in L2.6 We do not impose leverage restrictions, so the position

on the risk-free asset at time t is given by w0,t = 1 −
∑m
i=1 wi,t, which can be a negative amount. The

S0
t -deflated wealth process Xt is self-financing:

dXt

Xt−
=

m∑
i=1

wi,t
dSi,t
Si,t−

= w′tµtdt+w′tΣ
1/2
t dW ◦

t +

n∑
l=1

w′tdlzl,tdNl,t. (4)

Here, µt,dl are vectors containing µi,t and di,l introduced in Equation (2).

6Since portfolio weights cannot anticipate jumps, they are Ft− measurable and left continuous (cf. Aı̈t-Sahalia and Hurd
(2012)).

10



The asset allocation problem is formulated as

sup
{wt,0≤t≤T}

E[u(XT )|F0]. (5)

To solve the asset allocation problem, we employ initially the stochastic control theory. Define the indirect

utility function J at time t as

J(t, x,λ) = sup
{wt}

Et

[X1−γ
T

1− γ

]
,

where the expectation is conditional on the information available at time t.7 Bellman’s optimality prin-

ciple requires that

0 = sup
{wt}
AJ(t, x,λ),

where A denotes the infinitesimal generator operator. The Hamilton-Jacobi-Bellman (HJB) equation

reads (we omit the arguments t, x,λ of function J when no confusion is caused)

0 = sup
wt

{
Jt +w′tµtJxx+

1

2
w′tΣtwtJxxx

2 +

n∑
l=1

αl(λl,∞ − λl)Jλl

+

n∑
l=1

λlE[J(t, x(1 +w′tdlzl,t),λ+ βl)− J ]
}
. (6)

We use Jt, Jx, Jλl to denote the partial derivatives of J(t, x,λ) with respect to t, x, λl and similarly for

the higher order derivatives. The expectation is taken over the jump amplitude distribution of zl,t. βl

denotes the excitor vector when Nl is the source jump component, which is the lth column of the excitation

matrix, βl = (β1l; . . . ;βnl).

It is known that the indirect utility function for a power utility investor can be written as

J(t, x,λ) =
x1−γ

1− γ
f(t,λ),

where f(t,λ) is a deterministic function of time t and the value of state variables λ.8 We substitute for

this functional form in the HJB Equation (6), and solve the first order condition with respect to wt to

7We sometimes denote the conditional expectation E[·|Ft] as Et[·]. We use the two notations interchangeably.
8Since

J(t, cx,λ) = supEt,cx,λ

[ (cXT )1−γ

1− γ

]
= c1−γ supEt,x,λ

[X1−γ
T

1− γ

]
= c1−γJ(t, x,λ),

we conclude that the value function is homogeneous of degree 1− γ in the wealth level. Let c = 1
x

. It holds that

J(t, 1,λ) = x−(1−γ)J(t, x,λ).

Rearrange and get

J(t, x,λ) =
x1−γ

1− γ
f(t,λ),

where
f(t,λ) = (1− γ)J(t, 1,λ),

with terminal condition f(T,λ) = 1.
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get the following implicit function that characterizes the optimal portfolio weights w∗t . For 0 ≤ t ≤ T ,

the optimal portfolio weights w∗t solve

µt − γΣtw
∗
t +

n∑
l=1

f(t,λ+ βl)

f
λlE[(1 +w∗′t dlzt,l)

−γdlzt,l] = 0, (7)

with f(t,λ) satisfying

0 =ft + (1− γ)w∗′t µtf −
1

2
γ(1− γ)w∗′t Σtw

∗
t f +

n∑
l=1

αl(λl,∞ − λl)fλl

+

n∑
l=1

λlE[(1 +w∗′t dlzl,t)
1−γf(t,λ+ βl)− f ]. (8)

One can easily verify that the pair (w∗t , f(t,λ)) jointly determined by Equations (7) and (8) satisfies the

HJB Equation (6) and therefore w∗t is optimal.

The optimal portfolio weights given in Equation (7) can be decomposed into familiar components:

w∗t =
1

γ
Σ−1t µt︸ ︷︷ ︸
(I)

+
1

γ
Σ−1t

( n∑
l=1

λlMl,t︸ ︷︷ ︸
(II)

+

n∑
l=1

λl
f(t,λ+ βl)− f

f
Ml,t︸ ︷︷ ︸

(III)

)
, (9)

where

Ml,t := E[(1 +w∗′t dlzt,l)
−γdlzt,l].

The optimal portfolio weights consist of a mean-variance demand (I), a myopic buy-and-hold demand

(II), and an intertemporal hedging demand (III). The mean-variance demand (I) is given by the mean-

variance weights, exploiting diversification benefits of the instantaneous covariance structure.

The myopic buy-and-hold demand (II) arises because the asset prices have discontinuities. As ex-

plained by Liu et al. (2003), unlike continuous fluctuations, jumps may occur before the investor has the

opportunity to adjust the portfolio. Jump risks, therefore, are similar to “illiquidity risk”: the investor

has to hold the asset until the jump has occurred. Observe that

Ml,t ∝ ∇wtE[u(Xt)− u(Xt−)|Nl,t −Nl,t− = 1].

E[u(Xt)− u(Xt−)|Nl,t −Nl,t− = 1] is the expected utility gain at time t conditional on an occurrence in

jump component l at time t . Therefore (II) is the expected marginal utility increase induced by jump

component l from investing in one unit of risky assets at time t. The buy-and-hold demand is “myopic”

in the sense that it does not take into account the uncertainties of the future jump intensities.

The last term (III) is tailored to account for the fact that the jumps are mutually exciting. Since the
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asset prices St and the state variables λt are both driven by jumps Nt, the risky assets can be used to

hedge future realizations of the state variables. Intuitively, the mean-variance demand and the myopic

buy-and-hold demand exploit the risk-return trade-off of the risky assets, whereas the intertemporal

hedging demand is only concerned with state variable uncertainties.

All three components of the portfolio weights can be time-varying, but for different reasons. The

mean-variance demand (I) and myopic buy-and-hold demand (II) depend on the spot values of the asset

return parameters. Hence they change with the spot values instantaneously. The intertemporal hedging

demand, on the other hand, depends not only on the spot values of the asset return parameters, but

also on how the returns and the state variables evolve within the investment horizon. The information

of future outcomes is contained in f(·), which is horizon dependent.

Remark 1. In the most general case, we allow the state variable λt, similar to equities, to follow a jump

diffusion process

dλt = y0(λt)dt+ y1(λt)dW
◦
t + ỹ1(λt)dW̃t + y2dNt. (10)

Here, W̃t is a m× 1 vector of Brownian motions that are independent of W ◦
t ; y0(λt) is an n× 1 vector

of drift terms; y1(λt) and ỹ1(λt) are both n × m matrices; y2 is an n × n matrix of constants. The

optimal portfolio weights in (9) would thus include a fourth volatility hedging component (IV), 1
γy
′
1
∇λf
f ,

in order to use the risky assets to hedge the common Brownian risks W ◦
t in the state variables. In this

case, the model nests the stochastic volatility model of Liu (2007), the Poisson jump diffusion model

in Das and Uppal (2004) and Aı̈t-Sahalia et al. (2009), the contagion model in Aı̈t-Sahalia and Hurd

(2012), the univariate double jump model in Liu et al. (2003) and Branger et al. (2008). Although

jump-diffusion-driven state variables will not create additional difficulties in the analysis, we focus on

the more parsimonious mutually exciting jump diffusion model for simplicity. In case of the mutually

exciting jumps, it holds that

y0 = α ◦ (λ∞ − λt), y1 = ỹ1 = 0, y2 = β.

The purpose of this paper is to evaluate the impact of excitation asymmetry on the optimal portfolio

choice, rather than to develop a general multivariate jump diffusion model to nest existing models in the

literature.

2.3 Proportional risk premium

In general, the function f(·) in Equation (7) does not admit an analytical expression. In order to fully

solve the asset allocation problem, we impose additional structure on the equity risk premium. Inspired
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by Aı̈t-Sahalia et al. (2014), we propose a parsimonious model to focus on jump propagation through

time and across different geographic markets. Let there be n regions with mi assets in region i. Let

N1, . . . , Nn represent regional jump components to capture large price drops in equity indices.

Assume that each asset is only exposed to the jump risk of its own region but not to those of the

other regions. Equivalently, the jump exposure di,l in Equation (2) takes the form

di,l =


1, if i = l,

0, if i 6= l.

Even though jump components in the peripheral markets do not influence domestic asset prices directly,

jump risks are systemic in the sense that they mutually excite. The jump intensities λt follow

dλi,t = α(λi,∞ − λi,t)dt+

n∑
j=1

βijdNj,t, (11)

where for simplicity we assume that all jump intensities share the same mean-reversion rate α, as in

Aı̈t-Sahalia et al. (2014).

We model the “normal” (day-to-day) covariance among regions by correlated Brownian motions Wt =

(W1,t, . . . ,Wn,t)
′ given by

Wt = LW ◦
t .

Here, LL′ is a correlation matrix with ones on the diagonal and correlation coefficients off-diagonal.

Besides systematic Brownian risks, assets are also subject to idiosyncratic fluctuations, captured by stan-

dard and independent Brownian motions Zt = (Zki,t), i = 1, . . . , n, k = 1, . . . ,mi, which are independent

of the regional Brownian risks Wi,t, i = 1, . . . , n.

Following, among others, French and Poterba (1991), we further assume that the representative

investor hedges 100% of the exchange rate risk using, say, forward exchange rate contracts. The hedged

return is given by

Rhedged
t = rt + (Rlocal

t − rlocalt ),

where rt is the risk free rate of a reference country and rlocalt is the local risk free rate. In other words,

the hedged excess log returns are computed as local returns denominated in local currency over local risk

free rates. Taking the risk free bond S0
t = S0

0 exp
( ∫ t

0
rsds

)
from a reference currency as numeraire, we

normalize all price processes as S0
t -deflated prices henceforth. According to the Numeraire Invariance

Theorem (see, for example, Duffie (2010)), such normalization should place essentially no economic effects.

To focus on the effect of jump propagation on the optimal asset allocation, we assume, for simplicity,
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that the expected return and volatility of equity prices are state independent. Denote individual asset

identities by superscripts and region identities denoted by subscripts. We suppose that the currency-

hedged deflated price of a risky asset k from region i is in the space S2 ∈ H2 containing Ski,t, i =

1, . . . , n, k = 1, . . . ,mi, t ∈ [0, T ], which follows

dSki,t
Ski,t−

= νki dZ
k
i,t + σki (dWi,t + ηidt) + zki (dNi,t − (1 + κi)λi,tdt), (12)

with constants σki , ηi, ν
k
i , κi ≥ 0 for all i, k. Within a given region, the price of any individual asset k is

driven by both region specific systematic risks, Wi,t, Ni,t as well as idiosyncratic risks, Zki,t.

Following Cox and Ross (1976) and Liu and Pan (2003), we assume that the jump amplitudes zki , i =

1, . . . , n, k = 1, . . . ,mi, are constant. In addition, we restrict that −1 < zki ≤ 0 to rule out probability

of ruin and to indicate that jumps are unfavorable events. Conditioning on an occurrence in jump

component Ni, each asset k in region i drops by a deterministic amount. This assumption simplifies the

analysis, allowing us to focus on the impact of adverse rare events and the contagious nature of such

events in a straightforward way.

Upon comparing Equation with Equation (2), the drift term of asset k from region i is a linear function

of the state variable λi,t,

µki,t = σki ηi − zki (1 + κi)λi,t.

The covariance matrix Σ is constant over time and has the structure

Σ[p, p] =
(
σpi
)2

+
(
νpi
)2
, Σt[p, q] = ρi,jσ

p
i σ

p
j ,

where i, j are the regional markets to which asset p and asset q belongs, respectively. ρi,j is the [i, j]th

entry of the correlation matrix LL′.

Equation (2.3) is the dynamics specified under the physical measure P . If the market is free of

arbitrage, there exists an equivalent martingale measure Q, under which the expected excess return of

any S0
t -deflated risky asset is zero, i.e., EQ

[
dSki,t
Sk
i,t−

]
= 0. We start with specifying a pricing kernel process

that uniquely prices the three sources of risks: the idiosyncratic Brownian risks, the systematic Brownian

risks, and the jump risks, and then show in Section 3.3 that the market is complete in the sense that any

random payoff that is consistent with this pricing kernel can be replicated by investing in the available

assets in the market.

Define the systematic Brownian risk premium vector η = (η1; . . . ; ηn) and the jump risk premium
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vector κ = (κ1; . . . ;κn). Following Liu and Pan (2003), consider a pricing kernel process πt given by

dπt
πt−

= −η′(LL′)−1dWt +

n∑
i=1

κi(dNi,t − λi,tdt), π0 = 1. (13)

It is clear from Equation (13) that π is a local martingale. If π is actually a martingale, one can verify

according to the Lenglart-Girsanov Theorem that π is the Radon-Nikodym derivative that changes the

measure P to a risk neutral measure Q, under which asset prices evolve according to

dSki,t
Ski,t−

= νki dZ
k,Q
i,t + σki dW

Q
i,t + zki (dNQ

i,t − (1 + κi)λi,tdt), (14)

where WQ
i,t, Z

k,Q
i,t are standard Brownian motions under Q. The jump process NQ

i,t has intensity (1+κi)λi,t

under Q, while the jump amplitude zki remains unchanged. Consequently, Ski,t is a local martingale under

risk measure Q.

Upon comparing the asset dynamics under P given by Equation (2.3) and those under Q given by

Equation (14), we can obtain an intuitive understanding of how the three types of risks are priced. First,

similar to Merton (1976), the idiosyncratic risk Zt is assumed to be perfectly diversifiable. As a result,

the market portfolio is free of idiosyncratic Brownian risks and the market price of idiosyncratic Brownian

risk Zt is zero. Only systematic risks are priced.

Second, note that the Brownian risk ∆Wi,t has constant variance ∆, while the jump risk ∆Ni,t has

variance λi,t∆ (approximately). Loosely speaking, we are assuming that the risk premium is proportional

to the “risk” of the risk factors – the Brownian risk is compensated with ηi∆ and the jump risk is

compensated with κiλi,t∆. Similar jump risk premium specification can also be found in Pan (2002),

Liu et al. (2003), and Boswijk et al. (2015). It implies that the expected stock returns are increasing in

the jump intensities λt. Intuitively, this risk premium is sensible, since during recessions when there is

a high probability of experiencing large price drops, the investor is compensated by a better risk-return

tradeoff. This jump premia specification is consistent with the empirical estimation results in Bollerslev

and Todorov (2011), who show that most peaks in the equity jump risk premia are associated with events

that mark the market turmoil, and also with Santa-Clara and Yan (2010), who find that the equilibrium

equity risk premium is a function of the jump intensity. In this way, the jump intensities under the risk

neutral measure are larger than the physical jump frequencies, an empirically relevant fact that has been

confirmed in the non-parametric estimation by Bollerslev and Todorov (2011).
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2.4 Optimal portfolio exposure to risk factors

We present the optimal portfolio results in this section from the perspective of a world representative

investor. Problem 1 defines the portfolio optimization problem.

Problem 1. Suppose there are no arbitrage opportunities in the market introduced in Section 2.3 and

all assets are priced according to the pricing kernel given by Equation (13). Let θZt be a
(∑n

i mj

)
× 1

vectored process, and θWt ,θ
N
t = (θNit ), i = 1, . . . , n, be n×1 vectored processes, which are adapted, cáglád,

and bounded in L2. Define the portfolio optimization problem for an expected utility investor with power

utility, u(x) = x1−γ

1−γ , γ > 0 as

sup
{θZt ,θWt ,θNt }

E0

[X1−γ
T

1− γ

]
, (15)

subject to the budget constraint:

dXt

Xt−
=θZ′t dZt + θW ′t (dWt + ηdt) +

n∑
i=1

(
exp(θNit )− 1

)
(dNi,t − (1 + κi)λi,tdt). (16)

We invoke the martingale method developed by Cox and Huang (1989) to solve for the optimal

portfolio exposure to risk factors. The main results are stated in the following proposition.

Proposition 1 (Optimal portfolio exposure to risk factors). Consider Problem 1. The optimal portfolio

exposure to risk factors is given by


θZ∗t =: θZ∗ = 0,

θW∗t =: θW∗ = 1
γ (LL′)−1η,

θNi∗t = − 1
γ log(1 + κi) + β′iB(t),

(17)

and the indirect utility function at t = 0 is given by

J(0, x0,λ0) =
(erTx0)1−γ

1− γ
exp

(
γ(A(0) +B(0)′λ0)

)
. (18)

Here, A(t),B(t) satisfy


Ḃ(t) = γ−1

γ κ+ αB(t)− (κ+ 1)
γ−1
γ ◦ eβ′B(t) + 1,

Ȧ(t) = γ−1
2γ η

′(LL′)−1η − αB′(t)λ∞,
(19)

with A(T ) = 0,B(T ) = 0.

Notice that the optimal exposure to Brownian risks (both idiosyncratic and systematic) is time-
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independent and that the optimal exposure to jump risks is a continuous deterministic process. Therefore

the optimal portfolio exposure to all risk factors satisfy the cáglád assumption.

Alternatively, we may also use the stochastic control method outlined in Section 2.2 with risk exposure

(θZt ,θ
W
t ,θ

N
t ) as control variables. The HJB equation is given by

0 = sup
{θZt ,θWt ,θNt }

{
Jt +

(
θW ′t η −

n∑
i=1

(
exp(θNit )− 1

)
(1 + κi)λi,t

)
Jxx+

1

2

(
θW ′t LL′θWt + θZ′t θ

Z
t

)
Jxxx

2

+

n∑
l=1

α(λl,∞ − λl)Jλl +

n∑
l=1

λl

(
J
(
t, x exp(θNlt ),λ+ βl

)
− J

)}
. (20)

From Proposition 1, we already know that the indirect utility is exponentially affine in jump intensities.

Let J(t, x, λ) = x1−γ

1−γ exp(A(t) + B(t)λt). Plugging it into the HJB equation and taking first order

conditions with respect to θZt ,θ
W
t , θ

Ni
t , respectively. One can easily show that the optimal risk exposure

coincides with θZ∗,θW∗, θNi∗t given by Equation (17).

We show that the Merton mean-variance portfolio can be recovered as a special case. Define regional

representative assets as those free of idiosyncratic risks. Let the assets be representative assets from each

region and free of jump risks, i.e., mi = 1, νki = zki = 0,∀k, i. The representative assets therefore follow

dSi,t
Si,t

= σi(dWi,t + ηidt), i = 1, . . . , n.

The portfolio choice problem thus becomes the following.

Problem 2. Consider the setting in Problem 1 with the following budget constraint:

dXt

Xt−
=θW ′t (dWt + ηdt). (21)

The next lemma states that when we consider representative assets only driven by Brownian motions,

the optimal portfolio exposure to risk factors coincide with that of the Merton mean-variance portfolio.

Lemma 1 (The Merton mean-variance portfolio). Consider Problem 2. The solution is the Merton

mean-variance portfolio and the optimal wealth follows

dX∗Merton

X∗Merton

=θW ′Merton(dWt + ηdt),

with the optimal exposure to Brownian risks given by

θW∗Merton = θW∗ =
1

γ
(LL′)−1η.
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There are three features of the optimal portfolio exposure we would like to point out. First, the

exposure to risk factors at time t, (θZ∗,θW∗,θN∗t ), is independent of the wealth level xt and the realization

of the state variables λt. Even if mutually exciting jumps give rise to stochastic investment opportunities,

under the assumption of proportional risk premia, the optimal portfolio composition does not vary with

the investor’s wealth or realizations of the state variables that indicate economic cycles. In other words,

there is no market timing of the portfolio strategy. The independence of the wealth level is a result

of the wealth homogeneity property of the power utility. The reason that the optimal risk exposure is

independent of the realization of the state variables λt stems from the assumption that the jump risk

premium κiλi,t is a multiple of λi,t. In general, one may expect that when the current jump intensities

λt are high, the optimal portfolio exposure to jump risks should be low to stay away from the high

probability of a price plunge. In our model, the investor is rewarded proportionally to jump intensities.

When the probability of jump occurrences is high, the risk premium is also high to the extent that the

demand for the jump risk is independent of the jump intensity.

The second property of the optimal risk exposure is that, although state independent, the optimal

jump risk exposure is horizon dependent. In the special case where β = 0, the jumps are not mutually

exciting and the investment opportunities are constant. In this case, there are no hedging incentives,

hence no horizon dependence in the jump risk exposure. When β 6= 0, the investment opportunities are

stochastic, giving rise to incentives to hedge against changes in the investment opportunities. Observe

that B(t) in Equation (18) measures the sensitivity of the log indirect utility function to the values of

the state variables, i.e.,

B(t) =
1

γ
∇λt log J(t, xt,λt).

The longer the investment horizon, the further away B(t) is from zero, implying a larger impact of state

variables on indirect utility, which in turn leads to a stronger motivation for the investor to hedge against

the changes in the state variables.

The third property of the optimal portfolio is that the optimal portfolio has no exposure to idiosyn-

cratic risks, i.e., θZ∗ = 0. Naturally, since the exposure to idiosyncratic risks are not compensated by

any risk premium, the investor stays away from these risk factors. In practice, it means that the investor

should invest in a large basket of assets in every region to diversify away the idiosyncratic risks as much

as possible.

2.5 Market completeness

Suppose for now that the idiosyncratic risks Zt are absent. Each region introduces two risk factors – a

systematic Brownian motion Wi,t and a jump component Ni,t. As long as there are two investable assets
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(which are not linearly dependent) from each region, we have a complete market in the sense that any no

arbitrage payoff path in the space S2 can be replicated. Denote the S0
t -deflated value of the replicating

portfolio at time t by Pt with weight wki,t on asset k of region i. It holds that

Pt =

n∑
i=1

mi∑
k=1

wki,tS
k
i,t, t ∈ [0.T ].

The following lemma states the complete market result.

Lemma 2 (Market completeness). Let there be two non-redundant assets (not linearly dependent) from

each region following

dSki,t
Ski,t−

= νki dZ
k
i,t + σki (dWi,t + ηidt) + zki (dNi,t − (1 + κi)λi,tdt), k = 1, 2, i = 1, . . . , n,

with νki ≡ 0,∀k, i. For any payoff {Ft} ∈ S2 which follows

dFt
Ft−

=

n∑
i=1

gi(dWi,t + ηidt) +

n∑
i=1

hi

(
dNi,t − (1 + κi)λi,tdt

)
, (22)

there exists a 2n×1 vector wt containing portfolio weights, with wki,t being the weight on asset k of region

i, such that the resulting portfolio value Pt is equal to Ft almost surely, i.e.,

Pt = Ft, a.s. ∀t.

When assets are exposed to idiosyncratic risks, however, we need more than two assets each region so

as to diversify away idiosyncratic risks. Let m = (m1, . . . ,mn) be a vector containing mi as the number

of available assets in region i. In fact, the result in Lemma 2 holds when the number of assets in each

region goes to infinity. The next proposition formalizes this result.

Proposition 2 (Market completeness in the asymptotic sense). Let there be mi non-redundant assets

(i.e., not linearly dependent) in region i following:

dSki,t
Ski,t−

= νki dZ
k
i,t + σki (dWi,t + ηidt) + zki (dNi,t − (1 + κi)λi,tdt),

with νki ≥ 0,∀k, i. For any portfolio {Ft} ∈ S2, there exist portfolio weights wki,t, k = 1, . . . ,mi, i =

1, . . . , n, such that for any 0 ≤ t ≤ T , the replicating portfolio Pt(m) satisfies

Pt(m)
P−→ Ft,
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as the number of assets mi, i = 1, . . . , n, all go to infinity. As a result, there exist portfolio weights

wki,t, k = 1, . . . ,mi, i = 1, . . . , n, such that for any 0 ≤ t ≤ T ,

Pt(m)
P−→ X∗t ,

as the number of assets mi, i = 1, . . . , n, all go to infinity.

Proposition 2 shows that the investor is indeed able to construct the optimal portfolio by investing in

a large number of assets in each region. Appendix B gives one explicit example of how this can be done.

3 Analysis of the optimal portfolio exposure to jump risks and

the effect of excitation asymmetry

In Section 2.2 we show that the optimal portfolio weights consist of a mean-variance demand, a myopic

buy-and-hold demand and an intertemporal hedging demand. In Lemma 1, we have shown that the

optimal Brownian risk exposure θW∗ corresponds to the Merton mean-variance demand. In this section,

we will be analyzing the properties of the optimal portfolio exposure to jump risks. In Section 3.1, we

decompose the jump risk exposure θN∗t into a Poisson jump risk exposure and a contagion risk exposure.

In Section 3.2, we conduct comparative statics analysis of the contagion risk exposure with respect to

jump risk parameters. In Section 3.3, we study the effect of excitation asymmetry on portfolio exposure

to jump risks. We show that the optimal portfolio can be biased towards an equity market when the

excitation structure is asymmetric.

3.1 Decomposition of exposure to jump risks

In this section we are going to show that the jump risk exposure θN∗t can be decomposed into a Poisson

jump risk exposure θJ which corresponds to the myopic buy-and-hold demand, and a contagion risk

exposure θCt which corresponds to the intertemporal hedging demand.

Note that the exposure to a jump component θNit is equal to log(1+wi,tzi), where wi,t is the portfolio

weight, zi < 0 is the jump amplitude. If the investor longs the asset, i.e., wi,t > 0, then it holds that

θNit = log(1 + wi,tzi) < 0. The more negative the exposure is, the more appealing the jump factor is to
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the investor. The portfolio exposure to the jump factor of region i can be written as

θNi∗t = − 1

γ
log(1 + κi) +

n∑
j=1

βjiBj(t)

= − 1

γ
log(1 + κi)︸ ︷︷ ︸
θJi

+

θ
tsi
t︷ ︸︸ ︷

βiiBi(t) +

n∑
j 6=i

θ
csi,j
t︷ ︸︸ ︷

βjiBj(t)︸ ︷︷ ︸
θ
Ci
t

=: θJi + θCit . (23)

The static component θJi is the portfolio exposure to Poisson jump risk. When β = 0, the jumps are

Poissonian with constant intensities, in which case the investor’s optimal portfolio exposure to jump risks

reduces to θJi . The exposure to Poisson jump risks does not take into account the stochastic nature of

the jump intensities and therefore plays the role of a myopic buy-and-hold demand.

An interesting comparison is to see what happens when the uncertainties brought by the jump risk

are generated by Brownian motions that generate the same mean and variance. The jump factor (dNi,t−

(1 + κi)λi,tdt) has mean −κiλi,tdt and variance λi,tdt. The instantaneous correlation between the jump

components is 0. Consider instead a Brownian motion with the same mean and variance. Then, the

investor will have an exposure of

θ̂Ji = − 1

γ
κi. (24)

One can show that

|θJi | < |θ̂Ji |.

It implies that the exposure to a risk factor is smaller when it is recognized as a Poisson jump than

a Brownian motion, given its mean (risk premium) and volatility (risk). In a situation where asset

prices move continuously, the investor can rebalance the portfolio after any infinitesimal changes in value

to avoid large losses. However, since the investor cannot anticipate jumps, his/her wealth can change

substantially before the investor has an opportunity to perform any adjustment. For this reason, the

investor is reluctant to take too much risk exposure for fear of disastrous events.

The horizon-dependent component θCit is the portfolio exposure to contagion risks. Because jump

risk factors drive the latent state variables as well as the asset prices, risky assets can be used to hedge

the uncertainties in the state variables, which gives rise to the additional term in optimal portfolio jump

exposure. θCit therefore serves as an intertemporal hedging demand for jump risks.

The contagion risk exposure, θCit , can be decomposed further into exposure to time series contagion

risk, θtsit , as a result of self excitation of jump component i, and exposure to cross section contagion risk,
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θ
csi,j
t , as a result of cross section excitation from jump component i to jump component j, j 6= i.

3.2 Comparative statics analysis of the optimal portfolio exposure to conta-

gion risks

In this section, we numerically show how the optimal portfolio exposure to contagion risks θCit depends on

the stochastic characteristics of the jump intensities. If risks are compensated properly so that investors

long risky assets, then the exposure to Poisson jump risks θJi is negative. The exposure to contagion

risks increases the overall demand for jump risk in region i, if it has the same sign as θJi . For better

interpretation, we plot the negative of the exposure to contagion risks of the jump component Ni, −θCi , at

the beginning of the investment horizon, understood as the hedging demand of the jump component. We

suppress the time subscript to indicate that the exposure to contagion risks is evaluated at the beginning

of the investment horizon. Larger hedging demand implies larger stake of the region in the portfolio.

We implement the model in a two-region market and calculate the optimal portfolio exposure to

contagion risks given in Equation (23). We fix a set of base case parameter values and conduct comparative

statics analysis of parameters of the intensity processes. Specifically, we set the mean reversion rate at

α = 21, the investment horizon at T = 1. We specify a symmetric excitation matrix with reasonable

values, β = (15, 3; 3, 15), according to the parameter estimates in Aı̈t-Sahalia et al. (2014). We also

impose identical jump risk premia κ1 = κ2 = 0.3, so that the jump components of the two regions are not

distinguishable. Then we only need to analyze the contagion exposure to one of the jump components.

This allows us to see how parameters affect contagion exposure as straightforwardly as possible.

In addition, we fix the risk aversion parameter to be γ = 3. As noted by Liu (2007), when γ > 1,

investors are more risk averse than those with a log utility function and choose to hedge changes in

the state variables. When γ < 1, investors not only forgo the hedging potential, but seek the high risk

premium by betting on the future outcome.9 The comparative statics analysis in Figure 2 and 3 for

investors with γ < 1 has opposite patterns to those with γ > 1, as is the case in Liu and Pan (2003) and

Liu et al. (2003). Since it is unlikely that investors have such small risk aversion, we restrict our analysis

to the case where γ > 1.

9Note that the investors with 0 < γ < 1 are still risk averse.
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Figure 2: Comparative statics analysis of the hedging demand of jump component 1, −θC1 . The market consists

of two regions with identical jump risk factors. The hedging demand of jump component 1 (the other will

be symmetric) is plotted as functions of elements in the excitation matrix β. The base case parameters are

α = 21, β = (15, 3; 3, 15), T = 1, κ1 = κ2 = 0.3, γ = 3.
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Figure 3: Comparative statics analysis of the hedging demand of jump component 1, −θC1 . The market consists

of two regions with identical jump risk factors. The hedging demand of jump component 1 (the other will be

symmetric) is plotted as functions of the mean reversion rate α, jump risk premium κ1, risk aversion γ and

investment horizon T . The base case parameters are α = 21, β = (15, 3; 3, 15), T = 1, κ1 = κ2 = 0.3, γ = 3.

Figure 2 plots the hedging demand of jump component 1, −θC1 , as functions of excitation parameters.

The figure shows that increasing any element of the excitation matrix β leads to increasing demand for

jump component 1, whether it be the self excitor of jump component 1, β11 (top left), the cross section

excitor from jump component 1 to component 2, β21 (bottom left), the cross section excitor from jump

component 2 to component 1, β12 (top right), or the self excitor of the opponent jump component β22

(bottom right).

Figure 3 plots the hedging demand of jump component 1, −θC1 , as functions of the mean reversion

rate α (top left), jump risk premium κ1 (top right), risk aversion γ (bottom left) and investment horizon

T (bottom right). Larger risk premium and longer investment horizon result in increasing jump risk

demand. On the contrary, faster mean reversion rate decreases the exposure to contagion risks and in

turn decreases the demand for jump risk. Interestingly, increasing the risk aversion first increases then
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decreases the hedging demand.

Since a jump occurrence moves asset prices and state variables in opposite directions, jump excitation

enables the risky assets to be used as a static hedge against the effects of jumps in the state variables,

as pointed out by Liu, Longstaff, and Pan (2003). For instance, an occurrence in jump component i

decreases the asset price (since zki < 0) but increases the state variables λt by βi ≥ 0.10 When γ > 1,

investors take extra exposure to jump risks to hedge changes in the state variables to reduce uncertainties

of the indirect utility.

Larger excitation and slower mean reversion imply that the jump intensity process (11) is more

volatile. As one may expect, the more uncertainty there is in the state variables, the larger hedging

incentive investors have. Larger risk premium results in larger exposure to Poisson jump risks θJ , which

leads to larger jump risks in the portfolio to be hedged. Similarly, longer investment horizon leads to

increased sensitivity of indirect utility to state variables. In short, hedging demand rises when there are

increasing uncertainties in investor’s indirect utility.

The effect of increasing the risk aversion, however, is not clear. On one hand, increasing the risk

aversion decreases the exposure to Poisson jump risk θJ , implying a smaller amount to be hedged thereby

decreasing the hedging demand. On the other hand, a more risk averse investor is more inclined to hedge

the changes in the state variables, and has a larger hedging demand. The final result depends on which

effect is larger. Figure 3 shows that the effect of increasing risk aversion is not monotone: it first increases

the jump risk demand and then reduces it.

3.3 The effect of asymmetric excitation

Interesting phenomena arise when the excitation structure becomes asymmetric. The excitor βji, j 6= i,

measures the excitation capability of jump component Ni as the source jump component, i.e., how large

an occurrence in Ni raises the intensities of another jump component j, whereas the excitor βij , j 6= i,

measures the inclination to excitation of jump component Ni as the target jump component, i.e., how

large an occurrence in some jump component j raises the intensity of Ni. As we see in reality, equity

prices in other geographical markets usually crash in close succession with an equity plunge in the US,

whereas the transmission in the reverse order is not as often observed. It implies that βji > βij when Ni

represents the jump component in the US equity.

Recall from Equation (23) that θCi = βiiBi+
∑n
j 6=i βjiBj . The portfolio exposure to contagion risks of

jump component i depends on the potential of jump component i to excite other jump components as well

as itself. Observe that βji plays a different role from βij in determine θCi : a larger cross section excitor

10The fact that asset prices and jump intensities jump in different directions is essential to generate hedging demand.
If the equity jump zki > 0, investors take smaller exposure to jump risks as a result of jump excitation. This result is
consistent with Liu, Longstaff, and Pan (2003).
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βij leads to a larger increase in the jump intensity of region i (as a result of a jump occurrence in region

j), and a larger portfolio exposure to the jump risk factor of region j (instead of region i). Regions with

comparable expected jump intensities may be weighted differently in the optimal investment portfolio

due to asymmetric excitation.
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Figure 4: The hedging demand of the two jump components −θC1 (solid curve), −θC2 (dotted curve) as functions

of the cross section excitor β21. The excitation matrix is β = (18, 0;β21, β22). We let β21 increase and find the

corresponding β22 such that the expected jump intensities do not vary with the excitation matrix. The jump risk

premium is set to be equal with κ1 = κ2 = 0.3. The other parameters are α = 21, γ = 3, T = 1. Given the choice

of parameter values, the expected jump intensity is E[λ1,t] = E[λ2,t] = 2.1.

Figure 4 gives a numerical illustration of the effect of excitation asymmetry in a two-region market.

The figure plots the hedging demand −θC1 (solid curve), −θC2 (dotted curve) as functions of β21. It shows

how investors’ demand for jump risks changes as the excitation structure becomes more asymmetric. We

fix the first row of the excitation matrix to be β11 = 18, β12 = 0. We close the excitation channel from

region 2 to region 1 by setting β12 = 0, so that the jump risk only propagates from region 1 to region

2 but not the other way round. We let β21 increase while finding the corresponding β22 that delivers

the same expected jump intensity E[λ2,t]. As β21 increases, the excitation matrix gets more asymmetric

due to a larger difference between β21 and β12, strengthening the bias towards region 1, with everything

else (e.g., jump risk premia, expected jump intensities) unchanged. We observe from the figure that
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jump component 1 becomes more appealing to the investor as contagion becomes more asymmetric, even

though the jump components have the same risk profile in all other aspects.

As mentioned in the previous section, jump excitation increases demand for jump risks because of their

hedging potential. Consistent with this intuition, when jump components have heterogeneous capabilities

in raising jump intensities, the jump component with a higher excitation capability is the more favorable

risk factor due to its larger hedging potential against jump intensities. The end point on the x-axis in

Figure 4 stands for β = (18, 0; 15, 3). An occurrence in jump component 1 raises λ1,t by 18, and λ2,t by

15, while an occurrence in jump component 2 only raises λ2,t by 3. Apparently, jump component 1 has a

larger influence on the state variables (jump intensities) than jump component 2 and consequently larger

hedging potential. Investors therefore tilt the portfolio towards region 1 for a more effective hedge of the

state variables. One may expect that, everything else equal, the US equity will take a larger share in the

investor’s portfolio as compared to the classic model predictions due to excitation asymmetry.

4 Utility loss of suboptimal trading strategies

In the previous sections we have shown that jump propagation changes the risk profile of the optimal

portfolio. In particular, we see that excitation asymmetry leads to larger investment towards the equity

market which is capable of spreading jump risks. In this section, we examine the utility loss for an investor

who fails to construct the equity portfolio optimally. We only focus on the case when the suboptimal

portfolio is sufficiently diversified, i.e., θZ ≡ 0. A suboptimal portfolio is defined as the equity portfolio

whose risk exposure to the systematic Brownian and jump risk factors are different from the optimal

exposure. To quantify the utility loss of implementing suboptimal strategies, we adopt the measure

introduced in Liu and Pan (2003). The utility loss L of a suboptimal portfolio x̂ is defined as

L =
log x∗ − log x̂

T
, (25)

where x∗(x̂) is the certainty equivalent wealth of the optimal (suboptimal) portfolio strategy defined as

x∗1−γ

1− γ
:= E0,x,λ

[XT (θW∗,θN∗)1−γ

1− γ

]
= J(0, x,λ),

x̂1−γ

1− γ
:= E0,x,λ

[XT (θ̂W , θ̂N )1−γ

1− γ

]
,

where XT (·, ·) emphasizes the dependence of the terminal wealth on the portfolio risk exposure.

Effectively, L measures the loss in terms of the annualized, continuously compounded return in cer-

tainty equivalent wealth of the suboptimal portfolio strategy. The larger L is, the larger the utility loss
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of implementing the suboptimal portfolio strategy.

The next proposition computes the utility loss of implementing the portfolio strategy with a subop-

timal risk exposure (θ̂Wt , θ̂
N
t ).

Proposition 3 (Utility loss of suboptimal strategies). If the expected power utility investor implements

a suboptimal portfolio strategy with risk exposure (θ̂Wt , θ̂
N
t ), then the associated utility loss is given by

L =
1

(1− γ)T

(
γA(0)− Â(0) + (γB(0)− B̂(0))′λ0

)
, (26)

where B(0), A(0) are given by (19), and B̂(0), Â(0) can be solved from

˙̂
B(t) =(1− γ)(1 + κ) ◦ θ̂Nt + αB̂(t)− (θ̂Nt + 1)1−γ ◦ eβ

′B̂ + 1, (27)

˙̂
A(t) =− (1− γ)

(
θ̂W ′t η − 1

2
θ̂W ′t LL′θ̂Wt

)
− 1

2
(1− γ)2θ̂W ′t LL′θ̂Wt − αB̂′λ∞, (28)

with B̂(T ) = 0, Â(T ) = 0.

Two relevant cases are when the investor fails to recognize the exciting nature of jump components

and implements the portfolio strategy as if the equity price is generated by Poisson jump diffusion, and

when the investor simply ignores the discontinuities in equity returns and implements the Merton mean-

variance strategy. To calculate the utility loss associated with theses suboptimal strategies, according

to proposition 3, we simply replace θ̂Wt in Equation (28) by θW∗, and θ̂Nt in Equation (27) by θJ , θ̂J ,

respectively.

Figure 5 plots the utility loss of the aforementioned two cases as functions of the currency jump

intensity (top left), jump risk premium κ1 (top right), risk aversion γ (bottom left) and investment

horizon T (bottom right). The utility loss when the investor incorrectly recognizes the return generating

model as Poisson jump diffusion is plotted in the solid curve, and the case when the investor incorrectly

implements the Merton mean-variance strategy is plotted in the dotted curve. Notice that the two curves

move together with the PJD curve above the Merton curve most of the time.

Although neither the optimal portfolio nor the suboptimal portfolio depends on the realization of the

state variables, an investor’s utility over terminal wealth is dependent on the current jump intensities.

As a result, utility loss is sensitive to the current jump intensities, as shown in the upper left panel of

Figure 5. During a financial crisis, jump intensities may build up to as large as 100 or higher as found

by Aı̈t-Sahalia et al. (2014). Ignoring jump excitation then costs a loss of over 4000 basis points in

annualized portfolio returns.

The upper right panel plots the utility loss as a function of the jump risk premium, κ1. The graph

shows that the utility loss increases with the jump risk premium. For instance, when the jump risk
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premium κ1 = 0.5 (which gives an equity jump premium of 5% as estimated by Bollerslev and Todorov

(2011)), the expected annual return of a portfolio strategy that does not account for jump excitation is

1500 basis points lower than the true optimal portfolio. Recall from Figure 3 that the jump risk premium

increases contagion exposure. A larger jump risk premium leads to larger deviations from the optimal

jump exposure, which in turn leads to bigger utility loss. The same effect holds for the investment horizon

shown in the lower left panel.

The lower right panel plots the utility loss as a function of the risk aversion γ. When γ = 1, the

investor has log utility. Log utility investors are myopic, in the sense that they only care about the current

realization of the state variables, and therefore do not have an incentive to hedge against future changes

of the state variables. As a result, ignoring jump excitation generates no utility loss in PJD strategy for a

log utility investor. The utility loss of the Merton strategy, however, is non-trivial even when the investor

has log utility. As the investor becomes more risk averse, the utility loss of both suboptimal strategies

start to increase. This is because the more risk averse the investor is, the more concerned he/she is about

the changes in the state variables as a result of jump excitations.

A surprising fact is that the utility loss of ignoring jump excitation is even larger than that of ignoring

jumps in total (except when γ is close to 1). In other words, if the true return generating model is mutually

exciting jump diffusion, then it is better for the investor not to account for jumps at all than recognize

jumps but mistake them for the wrong type. In Section 3.1, we have shown that the exposure to a risk

factor is smaller when it is recognized as a Poisson jump than a Brownian motion. However, when jumps

are mutually exciting, the investor increases the exposure to the jump risk factor in order to exploit the

hedging potential inherited. The Poisson jump diffusion strategy turns out to be too conservative.
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Figure 5: Utility loss in terms of the annualized continuously compounded return (% per annum) if the investor

incorrectly assumes β = 0 and implements the portfolio strategy as if the model is Poisson jump diffusion (solid

curve), and if the investor implements the Merton mean-variance strategy (dotted curve). The “true” base

case parameters are η = (0.3; 0.3), α = 21, T = 1, λ∞ = (0.3; 0.3; 0.3), κ = (0.3; 0.3), λt=0 = (2; 2), β =

(15, 3; 3, 15), γ = 3. The top left panel plots the utility loss as a function of the current value of the intensity

of jump component 1, λ1,t=0, while all other parameters remain the same. The top right graph plots the utility

loss as a function of the risk premium of jump component 1, κ1. The bottom left panel plots the utility loss as

a function of the risk aversion γ. The bottom right graph plots the utility loss as a function of the investment

horizon T .

5 Application to international equity returns

In this section, we estimate the mutually exciting jump diffusion model to index returns of US, Japan and

Europe. We show that the underdiversification of the market portfolio, especially the over-weighting of

the US equity of the market portfolio compared to classic asset allocation models, can be explained by an

asymmetric excitation structure. In Appendix C, we also show how the portfolio tilts towards the home
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market for country representative investors who are ambiguity averse towards foreign equity markets. In

Section 5.1, we describe the equity index data we used in the empirical analysis. We disentangle jumps

from continuous returns and estimate the diffusion and jump parameters in Section 5.2. Section 5.3

compares the empirical market portfolio exposure to risk factors to model predictions and shows that

excitation asymmetry is able to generate the observed US bias in the market portfolio.

5.1 Data

We consider three well-developed stock markets: the United States, Japan, and Europe, and make the

simplifying assumption that these regions represent the global financial market. We choose these three

equity markets because: (1) these equity markets have little barriers to international investment; (2)

these three equity markets already represented around 63% of the world equity market capitalization at

the end of 2012. More markets could be included theoretically, but parameter estimation is likely to

become cumbersome. Therefore we do not go beyond three equity markets in the empirical analysis.11

We examine excess returns on Morgan Stanley Capital International (MSCI) indices of US, Japan and

Europe, over local risk free rates in local currencies. The MSCI indices are value weighted stock indices.

There are 609 individual stocks included in MSCI US index, 320 stocks in MSCI Japan index, and 434

stocks in MSCI Europe index by the end of 2012. Expected returns are estimated as the sample mean of

the log returns on the MSCI total return index from Jan 1970 to Dec 2012. The total return index has

been adjusted for dividends and other noncash payments to shareholders. We estimate the covariance

and jump parameters using the daily price index from Jan 3rd, 1972 to Dec 31th, 2012, a total of 10696

observations.12 Excitation parameters would not be estimated accurately on less frequent data such as

weekly or monthly, since multiple jumps could happen within adjacent observations. We use US 3 month

Treasury bill rates, Japan base discount rates, UK 3 month Libor rates as proxies for the local risk free

rates of the three regions.

Table 2 contains the descriptive statistics of the annualized excess returns on MSCI indices. Japan

has the lowest mean return of 2.45% and Europe the highest with 4.16% on an annual basis. Return

volatilities vary from around 15% to 19%. Comparing the risk return tradeoffs of these three major equity

markets, the European market generates a fairly high mean with the lowest volatility. By contrast, the

Japanese equity is characterized by the lowest expected return and the highest volatility. In spite of

11Similar assumptions that a few representative markets make up the world economy are also made in, for example, Ang
and Bekaert (2002), Uppal and Wang (2003), Das and Uppal (2004). A more extensive empirical analysis is beyond our
scope and left to future research.

12We do not model dividends separately in our model. Preferably we would like to use daily returns on the total return
index in all estimations. Unfortunately, the daily data of total returns of MSCI indices are only available since 2001. We
compare the sample covariance of the daily returns of price index and total return index in the overlapping period. They
turn out to be almost identical. Same holds for the jump intensities. We conclude that on an index level, most actions in
daily total returns come from price moves, not dividends.
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the unfavorable risk-return tradeoff of Japanese equity, the correlation between returns on the Japanese

market and those on the US market is as small as 0.11. The correlation between returns of Japan and

Europe is also lower than that between US and Europe. The relatively small dependence between the

Japanese market and the other two equity markets makes the Japanese equity a better candidate for

international diversification. All returns are left-skewed, implying larger extreme losses than gains. For

all regions, the excess kurtosis is substantially larger than 0, as would be caused by jumps.

Descriptive statistics of annualized excess returns

US JA EU

Number of constituents 609 320 434

Mean 4.12% 2.45% 4.16%

Standard deviation 17.50% 18.81% 15.26%

Correlation 1 0.11 0.46

1 0.31

1

Skewness -1.04 -0.31 -0.41

Excess kurtosis 25.96 12.05 9.86

Table 2: Descriptive statistics of annualized excess log returns on MSCI indices over local risk free rates. The

sample mean is computed using the total returns data from Jan 1970 to Dec 2012. Higher moments are computed

using daily price index data from Jan 3rd 1972 to Dec 31st 2012.

5.2 Parameter estimation of nested models

The equity indices, by construction, are well diversified local portfolios of a large number of individual

assets. We henceforth assume that the equity indices are representative assets free of idiosyncratic risks

and follow the dynamics

dSi,t
Si,t−

= σi(dWi,t + ηidt) + zi(dNi,t − (1 + κi)λi,tdt), i = 1, 2, 3, (29)

with instantaneous 3 by 3 covariance matrix of local portfolios Σ = σLL′σ, where σ is a diagonal matrix

with σi on the diagonals.

We consider the following nested models: the diffusion only model, Poisson jump diffusion model

(PJD), self exciting jump diffusion model (SEJD) and finally the full-fledged mutually exciting jump

diffusion model (MEJD). Table 3 lists nested models as special cases of the mutually exciting jump

diffusion model with proper parameter restrictions. If we restrict jump amplitudes z = (z1; z2; z3) = 0,
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i.e., asset prices do not jump at all, we have the classic diffusion only model in which asset prices follow

geometric Brownian motions. The model becomes a Poisson jump diffusion model if β = 0, implying

that jumps do not excite and intensities are kept constant at the level λ∞. More generally, if we only

close the cross section excitation channels and restrict β to be a diagonal matrix, asset prices will follow

self exciting jump diffusion processes. In the most general case where no restrictions are imposed, we

have a full-fledged mutually exciting jump diffusion model.

Nested models as special cases

Nested models Parameter restrictions

Diffusion only z = 0

PJD α = 0,β = 0

SEJD β diagonal

MEJD none

Table 3: Nested models as special cases of the mutually exciting jump diffusion model with proper parameter

restrictions. “PJD” stands for the Poisson jump diffusion model; “SEJD” represents the self exciting jump

diffusion model; “MEJD” represents the mutually exciting jump diffusion model.

We are going to estimate each model listed in Table 3 using the historical returns on MSCI indices.

Parameter estimates of the diffusion only model can be easily obtained through the first and second

moments of the log returns reported as the summary statistics in Table 2. For jump diffusion models,

similar to Liu, Longstaff, and Pan (2003), we disentangle jumps from the continuous part of log returns

in order to estimate diffusion and jump parameters separately.13 We define truncation thresholds as

negative three times the sample standard deviation. Daily log returns that fall below the thresholds are

regarded as jump returns. Figure 6 plots the filtered jump occurrences in US, Japan and EU. We observe

jump clustering during the Asian crisis (1997-1999), the stock market downturn (2002) and the Subprime

mortgage crisis (2007-2012) .

13Jumps are infrequent by nature. The parametrization of the mutually exciting jump diffusion model is rich and
econometrically challenging. Ideally, we would like to apply the Generalized Method of Moments used by Aı̈t-Sahalia
et al. (2014) which minimizes the effects of the “Peso problem” inherited. However, giving the 3-dimensional nature of our
problem, we use this informal two-step maximum likelihood approach to get some idea of the excitation structure of equity
markets. A formal econometric treatment is beyond the scope of this paper.
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Figure 6: Filtered jump occurrences in US, Japan and EU. Each mark indicates a jump occurrence. The top

row stands for the jump occurrences in the US equity market, the middle row Japan and the bottom row Europe.

Daily log returns that fall below negative three times the sample standard deviation thresholds are recorded as

jump occurrences.

Parameter estimates of the nested jump diffusion models are reported in Table 4. Jump amplitudes

of log returns, log(1 + z), are estimated as the differences between average jump returns and non-jump

returns. In a Poisson jump diffusion model, the constant Poisson jump intensities are obtained by dividing

the sum of total jump occurrences detected in each MSCI return by the number of years. In case of self

excitation and mutually excitation, jump excitation parameters α,β are estimated using the maximum

likelihood, while λ∞ is estimated such that the unconditional expected jump intensity E[λ] is equal to

the average jump occurrences per year. The algorithm of computing the likelihood functions is discussed

in Appendix D. Having identified the jumps, we construct the truncated returns by removing detected

jumps from returns, so that the truncated data can be regarded as being generated by the continuous

part of the model. We estimate the instantaneous volatility σ and the correlation matrix LL′ from the

truncated data for models with jumps.

We see from Table 4 that equities with higher volatility have larger jump amplitudes but not necessarily

more frequent jumps. This is not unreasonable since volatility measures the variation in the bulk of the

data, while jumps contribute to the very left tails of the return distribution. Among three regions, the
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Japanese market has the largest jump amplitude, −4.97% with an average of 2.02 jumps per year. Europe

has the smallest jump amplitude −4.07%, but has the most frequent jumps – average 2.63 jumps occur

per year. The US equity market has moderate jump amplitude and jump frequency. Jumps display

statistically significant self excitation as well as cross section excitation. The jump propagation from

US to the other two regions are significant and large in magnitude. US, on the other hand, can only

be excited by itself or the European market. The spillover effect from Japan to the US is almost zero.

No sound evidence of the cross section excitation between Japan and Europe is found. The estimated

excitation structure is in line with the pairwise estimation results in Aı̈t-Sahalia et al. (2014), who show

that US always has a larger cross section excitor as the source jump component than as the target jump

component when paired with other economies.

5.3 Empirical vs implied portfolio exposure to risk factors

In this section, we calculate the exposure to risk factors of the market portfolio and compare it to the

model predictions.

First, we infer the market exposure to systematic risk factors using market portfolio weights. In

Section 2.4, we show that the optimal wealth for an expected power utility investor is given by

dX∗t
X∗t−

=

n∑
i=1

{
θWi∗(dWi,t + ηidt) +

(
exp(θNi∗t )− 1

)
(dNi,t − (1 + κi)λi,tdt)

}
.

Denote the weight on the local equity index Si,t in the market equity portfolio Mt by hi,t, with∑
i hi,t = 1. The dynamics of Si,t are given by Equation (29). It holds that

dMt

Mt−
=

n∑
i=1

hi,t

(dSi,t
Si,t−

)
(30)

=

n∑
i=1

hi,t

(
σi(dWi,t + ηidt) + zi(dNi,t − (1 + κi)λi,tdt)

)
. (31)

In equilibrium, the market portfolio Mt should reflect the optimal wealth X∗t of the representative

investor:

Mt ≈ X∗t . (32)

Notice that we have an approximation instead of an equality here. As shown in Section 2.5, the replicated

portfolio converges to the optimal wealth process as the number of assets goes to infinity. In reality,

unfortunately, the equity indices are made up of finite (although many) individual assets. The market

portfolio Mt, therefore, are not completely free of idiosyncratic risks.
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Equation (32) implies that 
θWi∗ ≈ σihi,t,

θNi∗t ≈ zihi,t.
(33)

Note that Equation (33) holds as long as assets follow jump diffusion processes, regardless of whether the

jumps are mutually exciting, self exciting or Poissonian.

Table 5 reports the normalized portfolio weights and (approximated) exposure to risk factors, θW∗

ι′θW∗

and θN∗

ι′θN∗
, of the market portfolio. The market values (US dollar denominated) of MSCI US, Japan and

Europe at the end of 2012 serve as proxy of the market portfolio. The portfolio weights are calculated

by dividing the market values of each region by the sum of the market values, so that the weights on US,

Japan and Europe add up to 1. Risk exposure is calculated using the approximation (33). The reason

that the portfolio exposure to Brownian risks and that to jump risks are similar is that a region with

higher volatility has on average larger jump amplitude (see Table 4). Normalization further narrows the

differences. In fact, the over-exposure to the US Brownian risks and to the US jump risks stem from

different reasons, as we will see shortly.

Empirical market portfolio weights and exposure to risk factors

US JA EU

Portfolio weights 0.58 0.10 0.32

Exposure to systematic Brownian risks 0.60 0.11 0.29

Exposure to jump risks 0.61 0.11 0.28

Table 5: Empirical market portfolio weights and exposure to risk factors as of the end of 2012. The market

weights are computed from the MSCI market values. Risk exposures are calculated according to Equation (33).

Statistics are normalized to add up to 1 on the rows.

Next, we derive the model predicted risk exposure. As discussed in Section 3.1, optimal exposure

to mutually exciting jumps can be decomposed into three components (see Equation (23)): exposure

to Poisson jump risks, exposure to time series contagion risks, and exposure to cross section contagion

risks. The optimal jump exposure predicted by any nested model, as a result, is a combination of these

components, depending on the risk features of the jump factors. Table 6 lists the portfolio exposure

to risk factors predicted by nested models. Notice that although the term θts (exposure to time series

contagion risks) appears in the self exciting jump model as well as the mutually exciting jump model,

they have different values due to the fact the excitation matrices of SEJD and MEJD are different not

only in off-diagonal elements but also in diagonal elements (c.f. Table 4). For comparability, we also

include the risk exposure of a pure diffusion model. In a pure diffusion model, the Brownian risk factors
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remain unchanged. Investors regard the jump factors as if they were generated by Brownian motions.

θ̂J , the exposure to jump risk factors when jump components are recognized as Brownian motions, is

given by (24).

Optimal risk exposure of nested models

Nested models Brownian exposure Jump exposure

Diffusion only θW∗ θ̂J

PJD θW∗ θJ

SEJD θW∗ θJ + θts(βD)

MEJD θW∗ θJ + θts(β) + θcs(β)

Table 6: Model predicted exposure to risk factors. “PJD” stands for the Poisson jump diffusion model; “SEJD”

represents the self exciting jump diffusion model; “MEJD” represents the mutually exciting jump diffusion model.

Now that all models predict the same exposure to Brownian risks, we focus on the comparison of the

model prediction on the exposure to jump risks. We calibrate the Brownian risk premium η such that

θW∗ coincide with the Brownian risk exposure of the market portfolio. To do that, we first decompose the

equity premium into variance premium and jump premium. Let µ̄ be the variance-corrected expected

excess log return: µ̄ = E[dSt./St− ] = E[log(St)] + 1
2E[(log(St) − E[log(St)])

2].14 The total equity

premium µ̄ can therefore be divided into the variance premium and the jump premium:

µ̄ = µ̄variance + µ̄jump,

:= ση + (−κ ◦ z ◦ E[λt]). (34)

Since we consider the relative allocations to US, Japan and Europe, η is only identified up to a positive

constant: η ∝ LL′ θ
W∗

ι′θW∗
. The risk premium parameters reported in Table 7 are calibrated using

η = LL′
θW∗

ι′θW∗
, (35)

κ = (ση − µ̄)./z./E[λt]. (36)

As shown in Table 7, the market portfolio exposure to Brownian risk implies a large variance premium

in the US and a small variance premium in Japan. The jump premium, calculated as the equity premium

less the variance premium, is comparable across regions, with Europe having the largest jump premium

14We are aware of the fact that the first moment of equity returns cannot be consistently estimated using a sample of
41 years alone. The main purpose here is to show that for given risk premium estimates, while acknowledging this fact,
the estimated excitation structure gives rise to the US bias observed in the market portfolio. Other papers also use the
empirical first moment for asset allocation purposes. See, among others, French and Poterba (1991), Liu, Longstaff, and
Pan (2003), Liu and Pan (2003), Das and Uppal (2004), Jin and Zhang (2012).
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and Japan the lowest.

Calibrated risk premium parameters

η κ Variance premium Jump premium Total equity premium

US 0.11 0.42 1.82 3.60 5.43

JA 0.04 0.33 0.65 3.31 3.96

EU 0.09 0.37 1.17 3.93 5.10

Table 7: Calibrated risk premium parameters and the corresponding variance and jump risk premiums. The

parameters η,κ are calibrated using Equations (35), (36). The variance and the jump premium are calculated

with (34) and are denoted in percentage per annum.

The jump risk premium in US reported in Table 7 is consistent with Pan (2002), who estimates the

S&P 500 average mean excess rate of return demanded for the jump risk to be 3.5% per year. The

estimates of the jump risk premium from other papers can vary. For instance, Bollerslev and Todorov

(2011) non-parametrically estimate the average US jump risk premium to be approximately 5%. Santa-

Clara and Yan (2010) find that the jump risk premium is on average more than half of the total equity

premium. In a self-exciting jump diffusion model using the US equity and option data, Boswijk et al.

(2015) estimate the jump risk premium to be around 8.82 times the spot jump intensity, implying a κ

of the US market of 0.79. The actual choice of risk premiums does not have a qualitative impact on the

presence of the US bias.15

The property of no market timing of the optimal portfolio discussed in section 2.4 allows us to

construct unconditional optimal portfolios without having to estimate the latent state variable process –

jump intensities in our case. All portfolios are constructed using static parameter estimates in Table 4.

Table 8 reports the optimal jump risk exposure under the four nested models for various coefficients

of relative risk aversion and investment horizons. Observe that when jumps do not excite, the normalized

exposure to jump risks does not change with investors’ risk aversions or investment horizons. Compared

to the prediction generated by the classic diffusion only model, neither the jump itself nor jump self

excitation has a noticeable impact on the relative jump risk allocation of the optimal portfolio. Although

Poisson jumps and self exciting jumps reduce or increase the total investment in risky assets, they barely

affect the composition within the equity portfolio. The diffusion only, no excitation as well as the self

excitation model predict comparable exposure to jump risks of the three regions.

When jumps are mutually exciting, investors demand more US jump exposure than the cases of self

excitation or no excitation. As either risk aversion or investment horizon increases, the bias towards US

15See Appendix F1 for robustness checks on this matter.
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jump factors becomes more prominent. Self exciting jumps, which in fact have a symmetric excitation

structure, are not able to generate the US bias. It is only when an asymmetric excitation matrix β comes

into play do we observe a shift from Japanese jump factors to US jump factors. For example, when

γ = 5, T = 10 (bold cells), of the total jump exposure of the portfolio, around 58% comes from US, and

only 14% from Japan. Therefore we conclude that the serial dependence of jumps alone does not lead

to the US bias, but rather the excitation asymmetry contributes to the over-weighting of the US equity

market in the optimal portfolio.

It becomes clear that the over-exposure to the US Brownian risk is due to the large variance premium

in the US (as shown in Table 7), while the over-exposure to the US jump risk is due to the asymmetric

excitation structure. If the over-exposure to the US jump factor were, too, caused by a higher jump

premium in the US, then we would observe the US bias in the portfolio predictions of the other models

as well.
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Model implied exposure to jump risks

Risk aversion Horizon Diffusion only PJD SEJD MEJD

1.5 month 0.37 0.37 0.37 0.40

0.30 0.30 0.29 0.28

0.33 0.33 0.33 0.32

quarter 0.37 0.37 0.37 0.42

0.30 0.30 0.28 0.26

0.33 0.33 0.34 0.32

10-year 0.37 0.37 0.37 0.44

0.30 0.30 0.27 0.25

0.33 0.33 0.36 0.31

3 month 0.37 0.37 0.37 0.43

0.30 0.30 0.29 0.26

0.33 0.33 0.34 0.31

quarter 0.37 0.37 0.38 0.49

0.30 0.30 0.26 0.21

0.33 0.33 0.36 0.30

10-year 0.37 0.37 0.36 0.53

0.30 0.30 0.21 0.18

0.33 0.33 0.43 0.29

5 month 0.37 0.37 0.37 0.44

0.30 0.30 0.28 0.25

0.33 0.33 0.34 0.31

quarter 0.37 0.37 0.38 0.52

0.30 0.30 0.25 0.19

0.33 0.33 0.37 0.29

10-year 0.37 0.37 0.34 0.58

0.30 0.30 0.17 0.14

0.33 0.33 0.49 0.28

Table 8: Optimal exposure to jump risks in a jump diffusion market where investors specify the return generating

process to be pure diffusion (“Diffusion only”), Poisson jump diffusion (“PJD”), self exciting jump diffusion

(“SEJD”) and mutually exciting jump diffusion (“MEJD”). Each column is in the order of “US, Japan, Europe”.

Parameter values are contained in Table 4 and 7. The figures are normalized so that the exposure to the three

regions adds up to 1.
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6 Conclusion

Inspired by the empirical findings that investors tend to over-invest in US equities compared to classic

model implications and the finding that the US equity plays a leading role in international stock returns,

we postulate a mutually exciting jump diffusion model for equity prices that (1) accounts for the lead-lag

relationships of international returns; (2) theoretically generates the US bias in a representative investor’s

equity portfolio.

In particular, we allow for asymmetric jump excitation in international equity prices. We show that

the leading role of the US equity can be generated by having larger cross section excitor(s) as the source

jump component than the cross section excitor(s) as the target jump component. We solve the asset

allocation problem in closed form in this market using the martingale approach and apply the theoretical

work to historical returns on MSCI indices. We show that the optimal portfolio exhibits the US bias, i.e.,

the US equity is over-weighted in the market portfolio compared to the classic portfolio predictions.

The analytical nature of the solution helps establish the economic intuitions of the optimal portfolio

risk exposure, which can be summarized into the following properties: (1) The optimal portfolio is

sufficiently diversified in the sense that it includes a large number of individual stocks to diversify away

idiosyncratic risks; (2) Similar to the Merton mean-variance portfolio, it exploits the covariance structure

of the Brownian risks; (3) The exposure to jump risks includes exposure to Poisson jump risk, which is a

risk-return tradeoff term, and exposure to contagion risks, which increases the total jump risk exposure

since jump factors can be used to hedge against changes in the state variables; (4) The portfolio exposure

to jump risks is biased towards the US equity which is capable of spreading jump risks worldwide and is

not prone to foreign equity markets turmoil. Using parameter estimates on MSCI indices, we show that

the US bias observed in the market portfolio can be explained by excitation asymmetry.
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Appendix

A Proofs

Proof of Proposition 1. Since the market is free of arbitrage opportunities and admits a unique martingale

measure Q given by Equation (13), the portfolio optimization problem defined in (1) is equivalent to

sup
XT∈X

E0

[X1−γ
T

1− γ

]
,

where X is the set of admissible square integrable terminal wealth:

X = {XT is FT −measurable : E0[πTXT ] ≤ erTx0}.

The corresponding Lagrange function is constructed as

L =
X1−γ
T

1− γ
+ y(erTx0 − πTXT ).

Take the first order condition with respect to XT . The optimal terminal wealth is given by

X∗T = (yπT )−
1
γ ,

where y is the Lagrange multiplier that satisfies

E0[πTX
∗
T ] = erTx0,

which implies

y−
1
γ =

erTx0

E0[π
1−1/γ
T ]

.

Since the wealth process satisfies the no arbitrage assumption

Xtπt = Et[XTπT ],

we have

X∗t =
Et[X

∗
TπT ]

πt
=
Et[y

− 1
γ π

1− 1
γ

T ]

πt
= ert

x0
πt

Et

[
π
γ−1
γ

T

]
E0

[
π
γ−1
γ

T

] .
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The solution requires the computation of the expected value of the exponential of a stochastic integral.

Let Mt := log(πt). It holds that

dMt =
dπt
πt
− 1

2

d〈πt〉
π2
t

=
(
− 1

2
η′(LL′)−1η −

n∑
i=1

κiλi,t

)
dt− η′(LL′)−1dWt +

n∑
i=1

log(1 + κi)dNi,t.

Write Yt = (Mt;λt). We have

dYt = µ(Yt)dt+ σ(Yt)dWt + dNt.

One can easily check that Yt is well-behaved in the sense of Duffie et al. (2000), for finite T . In addition,

Yt admits the affine structure:


µ(Yt) = K0 +K1Yt,

[σ(Yt)σ(Yt)
′]ij = [H0]ij + [H1]ij · Yt,

λi(Yt) = li0 + li1 · Yt,

where

K0 =



− 1
2η
′(LL′)−1η

αλ1,∞
...

αλn,∞


, K1 =



0 −κ1 . . . −κn

0 −α . . . 0

...
...

. . .
...

0 0 . . . −α


,

H0 =



η′(LL′)−1η 0 . . . 0

0 0 . . . 0

...
...

. . .
...

0 0 . . . 0


, H1 = 0,

li0 = 0, li1 = (0; ei), i = 1, . . . , n.

Here, ei denotes a vector of zeros with 1 at the ith entry. The jump transform ζi(c) that determines

the jump size distribution of jump component i is ζi(c) = (1 + κi)
c1 exp(

∑n
j=1 cj+1βji), i = 1, . . . , n.

According to Duffie et al. (2000), the conditional expectation takes the form

Et

[
π
γ−1
γ

T

]
= π

γ−1
γ

t exp(A(t) +B′(t)λt),
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where A(t) and B(t) satisfy


Ḃ(t) = γ−1

γ κ+ αB(t)− (κ+ 1)
γ−1
γ ◦ eβ′B(t) + 1,

Ȧ(t) = γ−1
2γ η

′(LL′)−1η − αB′(t)λ∞,

with A(T ) = 0,B(T ) = 0. Therefore it holds that

X∗t = ertx0π
−1/γ
t exp(A(t) +B′(t)λt −A(0)−B′(0)λ0),

from which we derive the SDE of the optimal wealth path

dX∗t
X∗t−

=
(
r +

1

γ
η′(LL′)−1η

)
dt+

1

γ
η′(LL′)−1dWt

+

n∑
l=1

(
(1 + κl)

− 1
γ exp(β′lB(t))− 1

)
(dNl,t − (1 + κl)λl,tdt)

=θW∗′(dWt + ηdt) +

n∑
l=1

(
exp

(
θNl∗t

)
− 1
)(
dNl,t − (1 + κl)λl,tdt

)
.

Proof of Lemma 1. The economy has constant investment opportunity with asset prices generated by

geometric Brownian motions. Let σ be a diagonal matrix with σi on the diagonals. We can write the

asset price dynamics in matrix form as

diag(St)
−1dSt = (r + ση)dt+ σdWt.

Then according to Merton (1969), the portfolio weights are given by

w∗ =
1

γ
(σLL′σ′)−1ση.

The portfolio wealth process follows

dX∗t
X∗t

= (r +w∗′ση)dt+w∗′σdWt.

It holds that

θW∗Merton = σ′w∗ =
1

γ
(LL′)−1η = θW∗.
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Proof of Lemma 2. To follow the price dynamics of Ft ∈ S2 given by Equation (22), it requires that for

every i = 1, . . . , n, 
wk=1
i,t σk=1

i + wk=2
i,t σk=2

i = gi,

wk=1
i,t zk=1

i + wk=2
i,t zk=2

i = hi.

(37)

Hence at time t, for every region i, we have two unknowns and two equations that are not linearly

dependent. We can solve for the weighting vector at any time t and replicate the price dynamic of Ft in

continuous time. Since {Pt} and {Ft} are solutions of the same stochastic differential equations, they are

indistinguishable processes.

Proof of Proposition 2. Inspired by Merton (1980), the portfolio weights wki,t can be restricted such that

they satisfy 
∑mi
k=1 w

k
i,tσ

k
i = gi,∑mi

k=1 w
k
i,tz

k
i = hi,

(38)

and can be represented as

wki,t =:
ωki,t
mi

, (39)

where ωki,t is a finite constant, independent of the total number of assets.16 The replicating portfolio Pt

thus follows

dPt
Pt−

=

n∑
i=1

gi(dWi,t + ηidt) +

n∑
i=1

hi(dNi,t − (1 + κi)λi,tdt)

+

n∑
i=1

mi∑
k=1

wki,tν
k
i dZ

k
i,t

=
dFt
Ft−

+

n∑
i=1

dζi,t(mi),

where

dζi,t(mi) :=

mi∑
k

wki,tν
k
i dZ

k
i,t.

Let dεki,t = ωki,tν
k
i dZ

k
i,t. Then dεki,t is a random variable following normal distribution with zero mean and

variance (ωki,tν
k
i )2dt. The variance of dεki,t is bounded and independent of the total number of assets mi

by the assumption on ωki,t. We have that

dζi,t(mi) =

mi∑
k

wki,tν
k
i dZ

k
i,t =

∑mi
k=1 dε

k
i,t

mi
.

16Such representation is indeed possible due to Lemma 2. Appendix B gives an explicit example of such representation
in case of the optimal wealth path.
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Note that dεki,t are independent, since each dZki,t represents the idiosyncratic risk of asset k in region i.

By the Law of Large Numbers, it holds that, for all i,

dζi,t(mi)
P−→ 0,

which implies that

dPt
Pt−

P−→ dFt
Ft−

.

Therefore

Pt
P−→ Ft,∀t.

Proof of Proposition 3. For a given well-diversified portfolio (i.e., free of idiosyncratic risks), suppose its

exposure to the systematic Brownian risks is θ̂Wt , and its exposure to the jump risks is θ̂Nt . The wealth

process is given by

d log X̂t =
(
− 1

2
θ̂W ′t LL′θ̂Wt + θ̂W ′t η −

n∑
l=1

(
eθ̂
Nl
t − 1

)
(1 + κi)λl,t

)
dt+ θ̂W ′t dWt +

n∑
l=1

θ̂Nlt dNi,t,

with X0 = x0. Similar to the proof of Proposition 1, we employ the formula in Duffie, Pan, and Singleton

(2000) to evaluate the expected utility of terminal wealth and write Yt = (log X̂t,λt). We have

dYt = µ(Yt)dt+ σ(Yt)dWt + dNt.

Yt admits the affine structure:


µ(Yt) = K0 +K1Yt,

[σ(Yt)σ(Yt)
′]ij = [H0]ij + [H1]ij · Yt,

λi(Yt) = li0 + li1 · Yt,
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where

K0 =



− 1
2 θ̂

W ′
t LL′θ̂Wt + θ̂W ′η

αλ1,∞
...

αλn,∞


,

K1 =



0 −(1 + κ1)
(
eθ̂
Ni
t − 1

)
. . . −(1 + κn)

(
eθ̂
Nn
t − 1

)
0 −α . . . 0

...
...

. . .
...

0 0 . . . −α


,

H0 =



θ̂W ′t LL′θ̂Wt 0 . . . 0

0 0 . . . 0

...
...

. . .
...

0 0 . . . 0


, H1 = 0,

li0 = 0, li1 = (0; ei), i = 1 . . . , n.

The jump transform ζi(c) is given by ζi(c) = exp
(
c1θ̂

Ni
t +

∑n
j=1 cj+1βji

)
, i = 1, . . . , n. The conditional

expectation takes the form

1

1− γ
E[X̂1−γ

T ] =
(erTx0)1−γ

1− γ
exp(Â(0) + B̂′(0)λ0), (40)

where

˙̂
B(t) =(1− γ)(κ+ 1) ◦

(
eθ̂

N
t − 1) + αB̂(t)− exp

(
(1− γ)θ̂Nt + β′B̂

)
+ 1,

˙̂
A(t) =− (1− γ)

(
θ̂W ′t η − 1

2
θ̂W ′t LL′θ̂Wt

)
− 1

2
(1− γ)2θ̂W ′t LL′θ̂Wt − αB̂′λ∞,

with B̂(T ) = 0, Â(T ) = 0. The certainty-equivalent wealth is

x̂0 = x0e
rT exp

( 1

1− γ
(Â(0) + B̂′(0)λ0)

)
.

Proof of Corollary ??. If we restrict β = 0, to match the patterns of the mutually exciting jumps, we

need to impose that

λ = E[λt],
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α = 0, λ∞ = λ.

Since the optimal jump exposure θN∗t is only a function of β, independent of α,λ∞, the jump exposure

restricting β = 0 is simply the Poisson exposure:

θ̂Nt = − 1

γ
log(1 + κ).

The Brownian exposure remains unchanged:

θ̂Wt = θW∗.

Applying Proposition 3 using θ̂Wt = θW∗, θ̂Nt = − 1
γ log(1 + κ), one gets the desired results.

B Portfolio construction with a large basket of assets

In this section we demonstrate how to represent the portfolio weights by Equation (39) in a given region,

thereby completing the proof of Proposition 2.

Let (σk, νk, zk), k = 1, . . . ,m, characterize the price dynamics of individual asset k in a given region

(for which we omit the subscript denoting the region identify). First, we randomly pair the m assets into

m/2 pairs, denoted by p, p = 1, . . . ,m/2.17 For any pair p with asset Sk, Sl, let ωkt , ω
l
t be the weights on

assets Sk, Sl as if Sk, Sl make up the entire portfolio in that region. Since the optimal regional portfolio

produces the risk exposure f, g, it holds that


ωkt σ

k + ωltσ
l = f,

ωkt z
k + ωltz

l = g.

Since assets are not linearly dependent, the linear equation system has a unique solution for ωkt , ω
l
t. Define

the paired portfolio P pt as

dP pt := ωkt dS
k
t + ωltdS

l
t.

It holds that the price of any paired portfolio Xp
t follows the dynamic of the local optimal portfolio plus

some tracking errors:

dP pt
P pt−

= f(dWt + ηdt) + g(dNt − (1 + κ)λtdt) + dζpt ,

17In case m is odd, we simply create a m+ 1 asset by, for example, Sm+1 = 1
2
Sm + 1

2
Sm−1. Therefore we assume m is

even without loss of generality.
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where

dζpt := ωkt ν
kdZkt + ωkt ν

kdZlt =: νpt dZ
p
t .

Here, dZpt is the idiosyncratic Brownian motion of the paired portfolio, independent of all other paired

portfolios. The last equality of the previous equation holds in distribution.

Now that we have m/2 paired portfolios. Any weighted average of these paired portfolios produces

the optimal exposure to systematic risk factors. Denote the weights on the paired portfolios by a(m) =

(a1, . . . , am/2)′. The replicating portfolio Pt(m)is given by

dPt(m) = a(m)′dP pt .

For example, in an equal weighted scheme, each paired portfolio is assigned the same weight ap = 2/m, p =

1, . . . ,m/2. Then asset k in the m-asset portfolio gets weight

wkt =
2ωkt
m

,

in which 2ωkt is independent of the number of asset m. We have therefore showed that the representation

proposed in (39) is indeed feasible.

C Portfolios that exhibit home bias

The mutually exciting jump diffusion model proposed in Section 2.3 allows for ambiguity averse prefer-

ences, modeled by, for example, the multiple prior preferences proposed by Gilboa and Schmeidler (1989).

An investor from region i does not have the full knowledge of the true probability law of asset prices.

Instead of optimizing the expected utility under the physical measure, the investor specifies plausible

candidate ambiguity measures Gi ∈ G and optimizes the expected utility under the worst case scenario:

sup
θW ,θNt

inf
Gi∈G

EG0 [u(XT )]. (41)

In general, Investors from different regions have different ambiguity levels towards other regions. Equation

(41) describes the optimization problem for an investor from region i with ambiguity measure G. We

omit the region identity i for notation simplicity.

In order to have a tractable solution, we further assume that ambiguity comes from parameter uncer-

tainty. Instead of relying entirely on the point estimates of risk premiums, investors construct confidence

51



intervals of parameter estimates, and optimize under the worst case parameter values. Based on the

pure diffusion model in Garlappi, Uppal, and Wang (2007), we restrict the Brownian risk premium η to

lie within [η,η], and similarly, the jump risk premium parameter κ to lie within [κ,κ]. Then we may

characterize the ambiguity measure G by ηG,κG and write G(ηG,κG), where

ηG ∈ [η,η], 0 ≤ η ≤ η ≤ η, [ηG]i = ηi, (42)

κG ∈ [κ,κ], 0 ≤ κ ≤ κ ≤ κ, [κG]i = κi. (43)

All operators are element-wise comparisons. The constraints (42) and (43) specify the ambiguity level –

the larger the sets [η,η], [κ,κ], the more ambiguity averse the investor is. Nevertheless, however large

the investor’s ambiguity aversion is, he/she has no ambiguity towards the home equity, which is reflected

through [ηG]i = ηi, [κ
G]i = κi. Since η ∈ [η,η],κ ∈ [κ,κ], the ambiguity sets contain the true measure

P . Notice that the ambiguity set G is convex and compact.

Under the ambiguity measure G(ηG,κG), asset k from region i follows the dynamics

dSki,t
Ski,t−

= σki (dWG
i,t + ηGi dt) + νki dZ

k,G
i,t + zi(dN

G
i,t − (1 + κGi )λi,tdt),

where WG
t ,Z

G
t are martingales and NG

t are mutually exciting jumps with intensities
(
1 + (κ−κG)

)
◦λt

under the ambiguity measure G. Consistent with the asset dynamics under G is the measure change

process dG
dP |Ft= ξt that follows

dξt
ξt−

= −(η − ηG)′(LL′)−1dWt +

n∑
i=1

(
κi − κGi

)(
dNi,t − λi,tdt

)
, ξ0 = 1. (44)

Expected utility is nested when the ambiguity set G is a singleton in which the physical measure P is

the only element. The optimal risk exposure θW∗,θN∗t derived in Proposition 1 can therefore be regarded

as a special case of the more general function θW∗(ηG),θN∗t (κG), when ηG = η, κG = κ. The following

proposition is a generalization of Proposition 1 to incorporate ambiguity averse preferences.

Proposition 4 (Optimal portfolio choice with ambiguity aversion). In a contagious economy with asset

prices given by (2.3), suppose that a representative investor from a certain region is ambiguity averse and

aims to solve

sup
θW ,θNt

inf
G∈G

EG
[X1−γ

T

1− γ
|X0 = x0

]
, γ > 1, (45)

with

G =
{
G(ηG,κG) :

dG

dP

∣∣∣
Ft

= ξt

}
,
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where ξt is given by (44). Then the optimal portfolio X∗ follows the dynamics

dX∗t
X∗t−

=θW∗(η)′(dWt + ηdt)

+

n∑
i=1

(
exp(θNi∗t (κ))− 1

)(
dNi,t − (1 + κi)λi,tdt

)
,

where the risk exposure is given by


θW∗(η) = 1

γ (LL′)−1η,

θN∗t (κ) = − 1
γ log(1 + κ) + β′B(κ; t).

(46)

Here, B(κ; t) is given by

Ḃ(κ; t) =
γ − 1

γ
κ+ αB(κ; t)− (κ+ 1)

γ−1
γ ◦ eβ

′B(κ;t) + 1, (47)

with B(κ;T ) = 0.

Proof of Proposition 4. Since any prior G ∈ G is equivalent to P , and G is by construction convex and

compact, it holds that18

sup
θW ,θNt

inf
G∈G

EG
[X1−γ

T

1− γ
|X0 = x0

]
= inf
G∈G

sup
θW ,θNt

EG
[X1−γ

T

1− γ
|X0 = x0

]
.

For a given measure, we first solve the inner supremum problem. The result in Proposition 1 can be

directly applied. For any G(ηG,κG) ∈ G, the optimal portfolio exposure to risk factors is given by


θW∗(ηG) = 1

γ (LL′)−1ηG,

θN∗t (κG) = − 1
γ log(1 + κG) + β′B(κG; t).

where

Ḃ(κG; t) =
γ − 1

γ
κG + αB(κG; t)− (κG + 1)

γ−1
γ ◦ eβ

′B(κG;t) + 1,

with B(κG;T ) = 0. Having solved the inner supremum problem, one can easily show that the indirect

utility function given in (18) is strictly decreasing in η,κ for η ≥ 0,κ ≥ 0. Therefore it suffices to replace

ηG by η, and κG by κ in θW∗(ηG),θN∗t (κG).

The proposition confirms that the results of Garlappi et al. (2007), who find that ambiguity aversion

towards expected return in a pure diffusion market is equivalent to a lower risk premium, can be readily

18The proof of this equality can be found in, for example, Theorem 2 of Schied and Wu (2005).
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extended to our jump diffusion model. The coexistence of home bias and foreign bias found in investors’

equity portfolios can therefore be generated by taking realistic values of the ambiguity parameters.

D Transition density of jump arrivals

We first give the algorithm of computing the log transition density function of jump arrivals for the

univariate case.

Algorithm 1 (Univariate). The algorithm of computing the transition densities for a univariate self

exciting jump process, given the K jump arrival times {u1, . . . , uK} within a time span [0, T ], conditional

on λ0 = λ∞, N0 = 0:

1. Set the initial conditions: u0 = 0, λt = λ∞, t ∈ [0, u−1 ] and k ∈ {1, 2, . . . ,K}. Define uK+1 := T .

2. Denote the log likelihood of observing a jump occurrence at time uk conditional on the information

available by time uk−1 by f(uk|Fk−1). It holds that

f(uk|Fk−1) = log λu−k
− Λ(k),

where

Λ(k) := − 1

α
(λuk−1

− λ∞)(e−α(uk−uk−1) − 1) + λ∞(uk − uk−1).

3. Record the jump intensity at uk to be

λuk = λu−k
+ β.

4. Compute the intensity just before the next jump arrival uk+1:

λu−k+1
= (λuk − λ∞)e−α(uk+1−uk) + λ∞.

5. Repeat step 2-4 until k = K.

6. The total log likelihood L is

L =

K∑
1

f(uk|Fk−1)− Λ(K + 1).

Proof. Given the kth jump arrival uk, k = 1, . . . ,K, the intensity of the point process at t ∈ [uk−1, uk]

follows

dλt = α(λ∞ − λt)dt, uk−1 ≤ t < uk,
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with

λuk = λu−k
+ β.

Apparently, the differential equation admits the solution

λt =


(λuk−1

− λ∞)e−α(t−uk−1) + λ∞, if uk−1 ≤ t < uk,

(λuk−1
− λ∞)e−α(t−uk−1) + λ∞ + β, if t = uk.

Conditional on the jump arrival uk−1, until the next jump arrival, the point process is a time-inhomogeneous

Poisson jump process with exponentially decaying intensities. Denote the probability of a jump occur-

rence at time uk and no jump occurrences between time uk−1 and u−k by P (uk|Fuk−1
). It holds that

P (uk|Fuk−1
) = P (waiting time = (uk − uk−1)|Fuk−1

)

= λu−k
exp(−

∫ u−k

uk−1

λsds).

Define

Λ(k) :=

∫ u−k

uk−1

λsds.

It holds that

Λ(k) =

∫ uk

uk−1

(
(λuk−1

− λ∞)e−α(t−uk−1) + λ∞

)
dt

= − 1

α
(λuk−1

− λ∞)(e−α(uk−uk−1) − 1) + λ∞(uk − uk−1).

When k = K + 1, the probability of no jump occurrences until T can be computed as

P (uK+1|FuK ) := P (Nuk+1
−Nuk = 0|Fuk)

= P (waiting time > (T − uK)|FuK )

= exp(−
∫ T

uK

λsds)

= exp(−Λ(K + 1)).

The algorithm can be easily generalized to a multivariate setting.

Algorithm 2 (Multivariate). The algorithm of computing the transition densities for a D-dimensional

multivariate mutually exciting jump process, given the K joint jump times {u1, . . . , uK} within a time
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span [0, T ], conditional on λ0 = λ∞, N0 = 0:

1. Set the initial conditions: u0 = 0, λt = λ∞, t ∈ [0, u−1 ], and k ∈ {1, . . . ,K}. Define uK+1 := T .

2. Decide uk belongs to which jump component. Denote the jump component by d. The log transition

probability of uk is

f(uk|Fk−1) = log λd,u−k
−

D∑
j=1

Λ(k, j), (48)

where

Λ(k, j) := − 1

α
(λj,uk−1

− λj,∞)(e−α(uk−uk−1) − 1) + λj,∞(uk − uk−1). (49)

3. Record the jump intensity at uk to be

λuk = λu−k
+ βd,

where βd is the dth column of the excitation matrix β.

4. Compute the intensities just before the next jump arrival uk+1: for j = 1, . . . , D,

λj,u−k+1
= (λj,uk − λj,∞)e−α(uk+1−uk) + λj,∞.

5. Repeat step 2-4 until k = K.

6. The total log likelihood L is

L =

K∑
1

f(uk|Fk−1)−
D∑
j=1

Λ(K + 1, j). (50)

E Small sample behavior

To examine the small sample behavior of the maximum likelihood estimators, we run 5,000 Monte Carlo

simulation experiments. We set the data generating parameters (DGP) to be the MEJD parameter

estimates given in Table 4. We generate 41 years of jump arrivals using the exact simulation algorithm

proposed by Dassios and Zhao (2013). For each simulated sample, we estimate α,β using the maximum

likelihood, using the same starting values as in the empirical estimation. Table 9 reports the mean and

the quartiles of estimates.
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MEJD estimation

α β11 β21 β31 β12 β22 β32 β13 β23 β33

DGP 29.35 13.07 9.04 24.87 0.00 6.96 2.60 5.60 2.52 7.35

Mean 29.68 12.29 9.15 25.37 0.34 6.59 2.72 5.49 2.70 6.83

25% quantile 27.05 9.95 6.97 21.79 0.00 5.02 1.45 3.92 1.32 4.95

Median 29.46 12.39 9.03 25.05 0.00 6.56 2.45 5.38 2.51 6.79

75% quantile 32.05 14.63 11.18 28.53 0.45 8.09 3.66 6.98 3.83 8.58

Table 9: Mean and quartiles of parameter estimates from 5,000 Monte Carlo experiments.

F Robustness checks

F.1 Risk premium calibration

All parameters which are used to produce Table 8 are estimated from the historical data except for the

risk premium parameters η,κ. In this section, we vary the risk premium parameters, while keeping the

sum of the variance and jump premium equal to the historical equity premium. We will see in Table 10

and 11 that varying the risk premiums does not have a qualitative impact on the US bias.

Table 10 reports the model predicted jump exposure for different combinations of the variance pre-

mium and the jump premium. The variance premium is restricted such that the predicted Brownian

exposure θW∗ coincide with the Brownian risk exposure of the market portfolio.
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Optimal portfolio exposure to jump risks

Variance premium Jump premium Diffusion only PJD SEJD MEJD

0.73 4.70 0.40 0.39 0.39 0.61

0.26 3.70 0.27 0.28 0.14 0.12

0.47 4.63 0.32 0.32 0.48 0.28

1.27 4.15 0.39 0.38 0.36 0.60

0.45 3.50 0.28 0.29 0.15 0.13

0.82 4.28 0.33 0.33 0.48 0.28

1.82 3.60 0.37 0.37 0.34 0.58

0.65 3.31 0.30 0.30 0.17 0.14

1.17 3.93 0.33 0.33 0.49 0.28

2.73 2.69 0.34 0.34 0.30 0.54

0.97 2.98 0.32 0.32 0.22 0.17

1.76 3.34 0.34 0.34 0.49 0.29

3.64 1.78 0.28 0.29 0.25 0.46

1.30 2.66 0.36 0.36 0.28 0.23

2.35 2.76 0.35 0.35 0.48 0.31

Table 10: Model predicted jump exposure for different combinations of the variance premium and the jump

premium. The models under consideration are pure diffusion (“Diffusion only”), Poisson jump diffusion (“PJD”),

self exciting jump diffusion (“SEJD”) and mutually exciting jump diffusion (“MEJD”). Within each scenario,

every column is in the order of “US, Japan, Europe”. The “Variance premium” and “Jump premium” are

reported in percentage per annum. The sum of the variance premium and the jump premium is equal to the

equity premium, and is held fixed at historical levels. Variance premium is calibrated such that the model predicted

Brownian exposure coincides with that of the market portfolio. Parameter values are contained in Table 4 with

γ = 5, T = 10. The figures are normalized so that the exposure to the three regions adds up to 1.

Table 11 reports both the model predicted Brownian and jump exposure without imposing the re-

striction that the Brownian exposure θW∗ is equal to the Brownian risk exposure of the market portfolio.

Observe that given the variance premium, all four models predict the same optimal Brownian risk ex-

posure θW∗. We report the optimal risk exposure under equal jump risk premiums across all regions

(the first scenario), under equal variance premium across all regions (the second scenario), and when the

total equity premium in each region is divided equally into the variance premium and jump premium

(the third scenario).
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Optimal portfolio exposure to risk factors

Variance premium Jump premium θW∗ Diffusion only PJD SEJD MEJD

2.43 3.00 0.46 0.37 0.37 0.36 0.55

0.96 3.00 0.08 0.32 0.32 0.23 0.17

2.10 3.00 0.46 0.30 0.31 0.41 0.28

3.00 2.43 0.31 0.49 0.48 0.48 0.57

3.00 0.96 0.33 0.17 0.18 0.13 0.12

3.00 2.10 0.37 0.34 0.35 0.39 0.31

2.71 2.71 0.36 0.42 0.41 0.41 0.55

1.98 1.98 0.23 0.26 0.27 0.20 0.16

2.55 2.55 0.40 0.32 0.32 0.39 0.29

Table 11: Model predicted portfolio exposure to Brownian and jump risk factors for different combinations of the

variance premium and the jump premium. The models under consideration are pure diffusion (“Diffusion only”),

Poisson jump diffusion (“PJD”), self exciting jump diffusion (“SEJD”) and mutually exciting jump diffusion

(“MEJD”). Within each scenario, every column is in the order of “US, Japan, Europe”. The “Variance premium”

and “Jump premium” are reported in percentage per annum. The sum of the variance premium and the jump

premium is equal to the equity premium, and is held fixed at historical levels. The first block reports the optimal

risk exposure under equal jump risk premiums across all regions; the second block reports the optimal risk exposure

under equal variance premium across all regions; the last block reports the optimal risk exposure when the total

equity premium in each region is divided equally into the variance premium and jump premium. Parameter values

are contained in Table 4 with γ = 5, T = 10. The figures are normalized so that the exposure to the three regions

adds up to 1.

F.2 Time zone differences

The econometric estimation is conducted using daily data on international equity returns. To account

for differences in market opening times, we re-estimate the excitation parameter estimates by lagging the

US returns by one day. Table 12 reports the resulting excitation parameters of the SEJD and MEJD

models. Observe that the SEJD parameters are not affected, because the SEJD model does not take into

account the interdependence structure among jumps. With respect to the parameter estimates of the

MEJD model, compared to Table 4, the self excitor of the US is smaller and not significant at the 95%

level. Nevertheless, the cross section excitors from the US to Japan and EU are statistically significant

and large in magnitude compared to the reverse directions.
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Excitation parameter estimates: Lagging US returns by one day

SEJD MEJD

α 14.39∗∗∗ 31.17∗∗∗

β


11.80∗∗∗ 0 0

0 8.55∗∗∗ 0

0 0 13.66∗∗∗




4.31 0.00 13.80∗∗∗

9.14∗∗∗ 7.35∗∗∗ 2.90

15.35∗∗∗ 3.18 13.30∗∗∗


Table 12: Excitation parameter estimates when the US returns are lagged by one day. “SEJD” represents the

self exciting jump diffusion model and “MEJD” represents the mutually exciting jump diffusion model. ∗, ∗∗, ∗∗∗

indicate significance at 95%, 97.5%, and 99.5% confidence levels, respectively.

F.3 Sub-sample estimation

As a third robustness check, we estimate the excitation parameters over a subsample of the full sample,

excluding data from the first one-third of the sample. Table 13 reports the subsample parameter estimates.

The excitation structure is not qualitatively different from the full-sample estimation results.

Excitation parameter estimates: Excluding the starting one-third of the sample

SEJD MEJD

α 18.01∗∗∗ 36.75∗∗∗

β


11.86∗∗∗ 0 0

0 8.96∗∗∗ 0

0 0 13.03∗∗∗




14.65∗∗∗ 0.00 8.88∗∗

9.92∗∗ 6.71∗∗ 4.34

28.04∗∗∗ 5.36 5.27∗


Table 13: Excitation parameter estimates over a subsample of the full sample, excluding the starting one third

of the sample. “SEJD” represents the self exciting jump diffusion model and “MEJD” represents the mutually

exciting jump diffusion model. ∗, ∗∗, ∗∗∗ indicate significance at 95%, 97.5%, and 99.5% confidence levels,

respectively.
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