Learning the Dynamics of U.S. Treasury Yields With an Aribitrage-free Term Structure Model

Marco Giacoletti, Kristoffer T. Laursen and Kenneth J. Singleton

Stanford University

June, 2014

Motivating Learning

• Investors in Treasury bonds have experienced:

- several major financial crises;
- unforeseen changes in policies and transparency of the FRB;
- lack of clarity on the future pathes of fiscal policies.

Motivating Learning

• Investors in Treasury bonds have experienced:

- several major financial crises;
- unforeseen changes in policies and transparency of the FRB;
- lack of clarity on the future pathes of fiscal policies.
- We explore how learning about the risk profile of Treasury bonds affects:
 - the prices of bonds,
 - required compensations for bearing relevant factor risks,
 - (forecasts of) the future shapes of the term structure of yields.

Modeling Learning

- Endow agents with an yield-based DTSM that they use for updating their beliefs every month by ML.
- Based on this learning rule they price bond and forecast future yields (and compute market risk premiums).
- As naive as this rule is, it performs strikingly well against:
 - the consensus forecasts of the BCFF survey professionals.
 - 2 the simple random walk model of bond yields.
 - When macroeconomic information is incorporated, our DTSM-based learning rule outperforms other models, especially during the 2000's leading up to the current crisis.
- A computationally simple, naive and yet plausible, and remarkably effective learning rule. Why?

What Is Our Agent Learning About?

- *Our agent is not the professional forecaster.* No survey information is used in fitting our learning rules.
- Our agent updates her views about the (unknown?) risk structure of yields using an arbitrage-free *DTSM*.
- Agents are not learning about the state of the economy. Over 98% of the variation in Treasury yields is accounted for by the low-order PCs (\mathcal{P}) of yields, which are measured accurately.
- Agents are learning about how bond yields are related to \mathcal{P} and about the dynamics of \mathcal{P} over the business cycle.
- View updating the parameters of a *DTSM* as updating an approximation to the conditional distribution of bond yields.

Joslin, Priebsch, and Singleton (2013) Model of the Historical Distribution of Risk

- Macroeconomic information, over and above \mathcal{P} , is important for understanding risk compensation in bond markets.
- No macro factors in \mathcal{P} , because the resulting *DTSMs* do not accurately price bonds (Joslin, Le, and Singleton (2013)).
- Following JPS, $Z_t \equiv (\mathcal{P}_t, M_t)$ follows the Gaussian process

$$Z_t = K_0^{\mathbb{P}} + K_Z^{\mathbb{P}} Z_{t-1} + \Sigma_Z^{-1/2} \epsilon_{Zt}^{\mathbb{P}}.$$

- The market prices of risks \mathcal{P} : $\Lambda_{\mathcal{P}t} = \Lambda_0 + \Lambda_Z Z_t$.
- Agents are learning about $\Theta^{\mathbb{P}} = (K_0^{\mathbb{P}}, K_Z^{\mathbb{P}})$, along with the parameters $\Theta^{\mathbb{Q}}$ of the pricing distribution.

Sophisticated "Partially Bayesian" Learner

- Bayesian learning is a sophisticated calculation since agents are learning about a high dimensional (P,Q) parameter set.
- Consider the simpler *Partially Bayesian* (\mathcal{PB}) learner who updates on $\Theta^{\mathbb{P}}$ taking $\Theta^{\mathbb{Q}}$ as given:

$$f(Z_{1}^{t}, O_{1}^{t}) = \prod_{s=1}^{t} f(\mathcal{O}_{s} | Z_{1}^{s}, O_{1}^{s-1}; \Theta^{\mathbb{Q}}, \Sigma_{e}) \times \int f(Z_{s} | Z_{1}^{s-1}, \mathcal{O}_{1}^{s-1}, \Theta_{s-1}^{\mathbb{P}}; \Sigma_{Z}) f(\Theta_{s-1}^{\mathbb{P}} | Z_{1}^{s-1}, \mathcal{O}_{1}^{s-1}) d(\Theta_{s-1}^{\mathbb{P}}).$$

- Formaly learning about the historical distribution of Z.
- This \mathcal{PB} case is interesting because:
 - its structure can be reinterpreted as a constrained version of the fully Bayesian rule;
 - 2 the presumption that $\Theta^{\mathbb{Q}}$ is fixed and known turns out to be consistent with our empirical learning rules.

An Illustrative Learning Environment

- \mathcal{PB} agent learning about $\Theta^{\mathbb{P}}$ taking $(\Theta^{\mathbb{Q}}, \Sigma_e)$ as known.
- \bullet Suppose that $\Theta^{\mathbb{P}}_t$ can be partitioned as $(\psi^r,\psi^{\mathbb{P}}_t),$ and that

$$\psi_t^{\mathbb{P}} = \psi_{t-1}^{\mathbb{P}} + \eta_t, \qquad \eta_t \stackrel{iid}{\sim} N(0, Q_t),$$

 Q_t denotes the (possibly) time-varying covariance matrix of η_t .

• Adopting a Gaussian prior on $\psi_0^{\mathbb{P}}$, the posterior distribution for $\psi_t^{\mathbb{P}}$ is Gaussian, $\psi_t^{\mathbb{P}}|Z_1^t \sim N(\mu_t, P_t)$, with the posterior mean

$$\mu_t = \mu_{t-1} + R_t^{-1} x_{t-1}' \Sigma_Z^{-1} (y_t - x_{t-1} \mu_{t-1}),$$

where $R_t^{-1} \equiv P_t - Q_t$ and R_t satisfies the recursion

$$R_t = \left(I - P_{t-1}^{-1}Q_{t-1}\right)R_{t-1} + x'_{t-1}\Sigma_Z^{-1}x_{t-1}.$$

The \mathcal{PB} Learner as a (Near Fully) Bayesian Learner

• Two special cases of Bayesian updating on $\psi_t^{\mathbb{P}}$:

 $\mathcal{B}\downarrow \mathbf{CGLS}$: If $P_{t-1}^{-1}Q_{t-1} = (1 - \gamma) \cdot I$, μ_t is a constant gain least-squares (CG) estimator of $\psi^{\mathbb{P}}$ with gain coefficient $\gamma \in (0, 1]$.

 $\mathcal{B} \downarrow \mathbf{RLS}: \text{ If } \gamma = 1 \text{, then } \psi_t^{\mathbb{P}} = \psi_{t-1}^{\mathbb{P}} \text{ and } \mu_t \text{ is the recursive } \\ \textit{least-squares (RLS) estimator of } \psi^{\mathbb{P}}.$

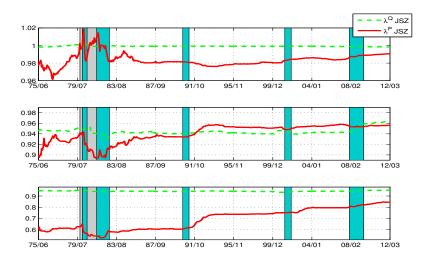
- RLS learning has a Bayesian interpretation when the agent believes that $\psi^{\mathbb{P}}$ is unknown, but is not changing over time.
- We search over γ in the CG case to minimize the RMSE of forecasts of PC1 one year ahead.

References

Model-Based Learning Rules

Rule	DTSM	Information	Restrictions	γ
$\ell(RW)$	Random Walk	Own Yield	N/A	N/A
$\ell(JSZ)$	JSZ	\mathcal{P}	No-Arbitrage $PC3$ unpriced	1
$\ell(JSZ_{CG})$	JSZ	\mathcal{P}	No-Arbitrage $+$ $PC3$ unpriced	0.99
$\ell(JPS)$	JPS	(\mathcal{P}, M)	No-Arbitrage $+$ $PC3$ unpriced	1

(No) Learning About Eigenvalues $\lambda^{\mathbb{Q}}$ of $K_{\mathcal{PP}}^{\mathbb{Q}}$



RMSE's for one-quarter ahead forecasts, January, 1985 to March, 2012

	RMSE's by Bond Maturity								
Rule	6m	1Y	2Y	3Y	5Y	7Y	10Y		
$\overline{\ell(BCFF)}$	51.4	51.6	52.4	54.3	49.5	47.9	44.8		
$\ell(JSZ_{LS})$	$\underset{\left(-4.03\right)}{39.7}$	$41.8 \\ (-3.07)$	$\underset{\left(-3.92\right)}{45.2}$	$44.6 \\ (-5.28)$	$\underset{\left(-4.39\right)}{43.0}$	$41.2 \\ (-3.92)$	$\underset{\left(-3.33\right)}{37.7}$		
$\ell(JSZ_{CG})$	$\underset{(-4.36)}{38.5}$	$41.6 \\ (-3.17)$	$45.2 \\ (-3.80)$	$\underset{(-4.45)}{45.0}$	$\underset{(-4.10)}{43.4}$	$42.1 \\ (-3.66)$	$\underset{(-2.96)}{38.8}$		
$\ell(JPS_{LS})$	$\underset{\left(-3.96\right)}{36.2}$	$41.2 \\ (-2.74)$	44.2 (-2.99)	$\underset{\left(-3.86\right)}{43.9}$	$41.4 \\ (-4.71)$	$\underset{\left(-3.94\right)}{40.7}$	$\underset{\left(-2.64\right)}{39.3}$		

RMSE's One-Year Ahead Forecasts January, 2000 – December, 2007

	RMSE's by Bond Maturity							
Rule	6m	1Y	2Y	3Y	5Y	7Y	10Y	
$\ell(RW)$	173	165	143	125	98	79	60	
$\ell(BCFF)$	178	165	156	144	116	98	79	
$\ell(JSZ)$	181	176	163	145	118	97	75	
$\ell(JSZ_{CG})$	166	159	145	128	104	86	69	
$\ell(JPS)$	141	138	125	109	86	71	64	

RMSE's One-Year Ahead Forecasts January, 2008 – March, 2012

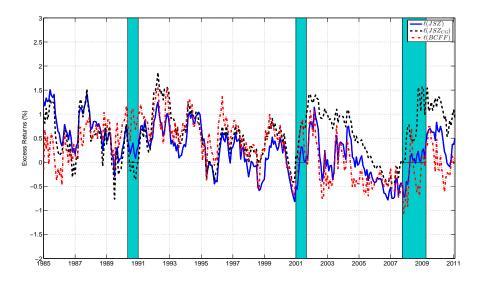
	RMSE's by Bond Maturity							
Rule	6m	1Y	2Y	3Y	5Y	7Y	10Y	
$\ell(RW)$	75	75	67	67	76	78	69	
$\ell(BCFF)$	116	118	129	148	122	119	94	
$\ell(JSZ)$	100	97	102	103	98	85	67	
$\ell(JSZ_{CG})$	78	76	76	79	82	79	71	
$\ell(JPS)$	92	87	79	75	77	76	78	

References

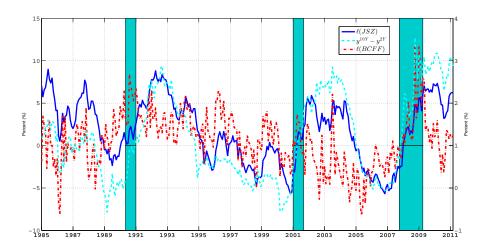
Imprecision with Learning January, 1975 – March, 2011



Expected Excess Returns on Two-Year Treasury Bonds



Expected Excess Returns on Ten-Year Treasury Bonds



Why is $\ell(JSZ)$ Different From $\ell(BCFF)$?

- Post recessions *BCFF* forecasters incorrectly predict rising 10-year yields. Partly a consequence of *BCFF* forecasters predicting that slope will be more persistent than it is.
- Notably, less than 25% of the variation of *BCFF*-implied expected excess returns are explained by variations in \mathcal{P} .
- At the same time, 25% of the variation of expected excess returns in JSZ_{CG} are orthogonal to \mathcal{P} .

Which Forecasters Were More Accurate?

- Full sample: RMSE's in forecasting the realized excess returns for bearing (2y, 10y) bond risks were:
 - (1.55%, 9.68%) for $\ell(BCFF)$ and
 - (1.50%, 8.43%) for $\ell(JSZ)$.
- For the specific episode over January, 2001 through January, 2006, the corresponding RMSE's were:
 - (1.34%, 7.62%) for $\ell(BCFF)$ and
 - (1.40%, 4.60%) for $\ell(JSZ).$

Learning About Volatility

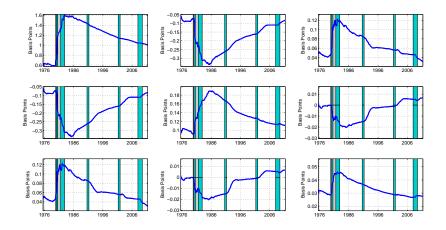
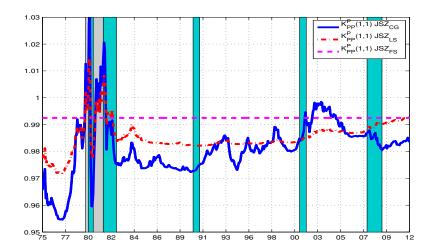


Figure: Estimates from $\ell(JPS)$ of $\Sigma_{\mathcal{P}}$, the innovation covariance matrix for \mathcal{P}_t , over the period June, 1975 to March, 2011.

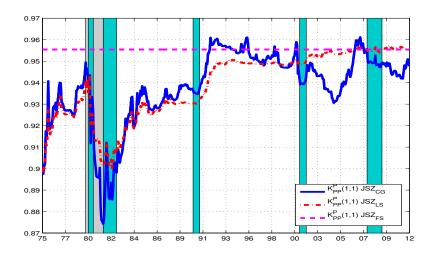
References

Learning About the Drift: $K_{\mathcal{PP}}^{\mathbb{P}}(1,1)$.

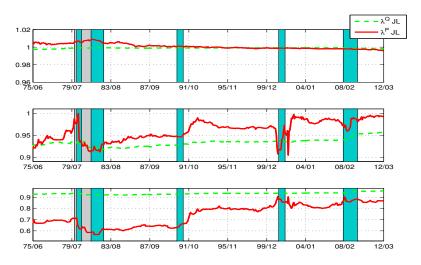


References

Learning About the Drift: $K_{\mathcal{PP}}^{\mathbb{P}}(2,2)$.

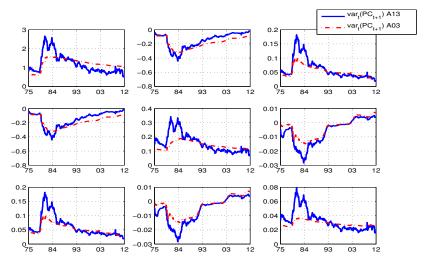


Learning In the Presence of Stochastic Volatility

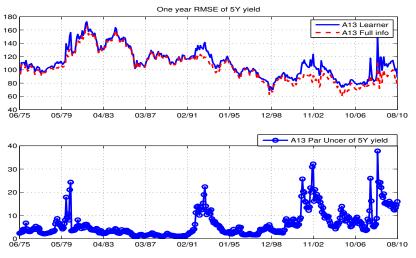


References

Learning About Volatility



Parameter Updating with Stochastic Volatility



- Joslin, S., A. Le, and K. Singleton, 2013, Gaussian Macro-Finance Term Structure Models with Lags, *Journal of Financial Econometrics* 11, 581–609.
- Joslin, S., M. Priebsch, and K. Singleton, 2013, Risk Premiums in Dynamic Term Structure Models with Unspanned Macro Risks, Working paper, forthcoming, *Journal of Finance*.

