Learning the Dynamics of U.S. Treasury Yields With an Aribitrage-free Term Structure Model

Marco Giacoletti, Kristoffer T. Laursen and Kenneth J. Singleton

Stanford University

$$
\text { June, } 2014
$$

Motivating Learning

(1) Investors in Treasury bonds have experienced:

- several major financial crises;
- unforeseen changes in policies and transparency of the FRB;
- lack of clarity on the future pathes of fiscal policies.

Motivating Learning

(1) Investors in Treasury bonds have experienced:

- several major financial crises;
- unforeseen changes in policies and transparency of the FRB;
- lack of clarity on the future pathes of fiscal policies.
(3) We explore how learning about the risk profile of Treasury bonds affects:
- the prices of bonds,
- required compensations for bearing relevant factor risks,
- (forecasts of) the future shapes of the term structure of yields.

Modeling Learning

- Endow agents with an yield-based DTSM that they use for updating their beliefs every month by $M L$.
- Based on this learning rule they price bond and forecast future yields (and compute market risk premiums).
- As naive as this rule is, it performs strikingly well against:
(1) the consensus forecasts of the BCFF survey professionals.
(2) the simple random walk model of bond yields.
(3) When macroeconomic information is incorporated, our DTSM-based learning rule outperforms other models, especially during the 2000's leading up to the current crisis.
- A computationally simple, naive and yet plausible, and remarkably effective learning rule. Why?

What Is Our Agent Learning About?

- Our agent is not the professional forecaster. No survey information is used in fitting our learning rules.
- Our agent updates her views about the (unknown?) risk structure of yields using an arbitrage-free DTSM.
- Agents are not learning about the state of the economy. Over 98% of the variation in Treasury yields is accounted for by the low-order PCs (\mathcal{P}) of yields, which are measured accurately.
- Agents are learning about how bond yields are related to \mathcal{P} and about the dynamics of \mathcal{P} over the business cycle.
- View updating the parameters of a DTSM as updating an approximation to the conditional distribution of bond yields.

Joslin, Priebsch, and Singleton (2013) Model of the Historical Distribution of Risk

- Macroeconomic information, over and above \mathcal{P}, is important for understanding risk compensation in bond markets.
- No macro factors in \mathcal{P}, because the resulting DTSMs do not accurately price bonds (Joslin, Le, and Singleton (2013)).
- Following JPS, $Z_{t} \equiv\left(\mathcal{P}_{t}, M_{t}\right)$ follows the Gaussian process

$$
Z_{t}=K_{0}^{\mathbb{P}}+K_{Z}^{\mathbb{P}} Z_{t-1}+\Sigma_{Z}^{-1 / 2} \epsilon_{Z t}^{\mathbb{P}}
$$

- The market prices of risks $\mathcal{P}: \Lambda_{\mathcal{P} t}=\Lambda_{0}+\Lambda_{Z} Z_{t}$.
- Agents are learning about $\Theta^{\mathbb{P}}=\left(K_{0}^{\mathbb{P}}, K_{Z}^{\mathbb{P}}\right)$, along with the parameters $\Theta^{\mathbb{Q}}$ of the pricing distribution.

Sophisticated "Partially Bayesian" Learner

- Bayesian learning is a sophisticated calculation since agents are learning about a high dimensional (\mathbb{P}, \mathbb{Q}) parameter set.
- Consider the simpler Partially Bayesian ($\mathcal{P B}$) learner who updates on $\Theta^{\mathbb{P}}$ taking $\Theta^{\mathbb{Q}}$ as given:

$$
\begin{aligned}
f\left(Z_{1}^{t}, O_{1}^{t}\right) & =\prod_{s=1}^{t} f\left(\mathcal{O}_{s} \mid Z_{1}^{s}, O_{1}^{s-1} ; \Theta^{\mathbb{Q}}, \Sigma_{e}\right) \times \\
& \int f\left(Z_{s} \mid Z_{1}^{s-1}, \mathcal{O}_{1}^{s-1}, \Theta_{s-1}^{\mathbb{P}} ; \Sigma_{Z}\right) f\left(\Theta_{s-1}^{\mathbb{P}} \mid Z_{1}^{s-1}, \mathcal{O}_{1}^{s-1}\right) d\left(\Theta_{s-1}^{\mathbb{P}}\right)
\end{aligned}
$$

- Formaly learning about the historical distribution of Z.
- This $\mathcal{P B}$ case is interesting because:
(1) its structure can be reinterpreted as a constrained version of the fully Bayesian rule;
(2) the presumption that $\Theta^{\mathbb{Q}}$ is fixed and known turns out to be consistent with our empirical learning rules.

An Illustrative Learning Environment

- $\mathcal{P B}$ agent learning about $\Theta^{\mathbb{P}}$ taking $\left(\Theta^{\mathbb{Q}}, \Sigma_{e}\right)$ as known.
- Suppose that $\Theta_{t}^{\mathbb{P}}$ can be partitioned as $\left(\psi^{r}, \psi_{t}^{\mathbb{P}}\right)$, and that

$$
\psi_{t}^{\mathbb{P}}=\psi_{t-1}^{\mathbb{P}}+\eta_{t}, \quad \eta_{t} \stackrel{i i d}{\sim} N\left(0, Q_{t}\right),
$$

Q_{t} denotes the (possibly) time-varying covariance matrix of η_{t}.

- Adopting a Gaussian prior on $\psi_{0}^{\mathbb{P}}$, the posterior distribution for $\psi_{t}^{\mathbb{P}}$ is Gaussian, $\psi_{t}^{\mathbb{P}} \mid Z_{1}^{t} \sim N\left(\mu_{t}, P_{t}\right)$, with the posterior mean

$$
\mu_{t}=\mu_{t-1}+R_{t}^{-1} x_{t-1}^{\prime} \Sigma_{Z}^{-1}\left(y_{t}-x_{t-1} \mu_{t-1}\right)
$$

where $R_{t}^{-1} \equiv P_{t}-Q_{t}$ and R_{t} satisfies the recursion

$$
R_{t}=\left(I-P_{t-1}^{-1} Q_{t-1}\right) R_{t-1}+x_{t-1}^{\prime} \Sigma_{Z}^{-1} x_{t-1}
$$

The $\mathcal{P B}$ Learner as a (Near Fully) Bayesian Learner

- Two special cases of Bayesian updating on $\psi_{t}^{\mathbb{P}}$:
$\mathcal{B} \downarrow$ CGLS: If $P_{t-1}^{-1} Q_{t-1}=(1-\gamma) \cdot I, \mu_{t}$ is a constant gain least-squares (CG) estimator of $\psi^{\mathbb{P}}$ with gain coefficient $\gamma \in(0,1]$.
$\mathcal{B} \downarrow \mathbf{R L S}:$ If $\gamma=1$, then $\psi_{t}^{\mathbb{P}}=\psi_{t-1}^{\mathbb{P}}$ and μ_{t} is the recursive least-squares (RLS) estimator of $\psi^{\mathbb{P}}$.
- RLS learning has a Bayesian interpretation when the agent believes that $\psi^{\mathbb{P}}$ is unknown, but is not changing over time.
- We search over γ in the $C G$ case to minimize the RMSE of forecasts of $P C 1$ one year ahead.

Model-Based Learning Rules

Rule	DTSM	Information	Restrictions	γ
$\ell(R W)$	Random Walk	Own Yield	N/A	N/A
$\ell(J S Z)$	JSZ	\mathcal{P}	No-Arbitrage	1
			$P C 3$ unpriced	
$\ell\left(J S Z_{C G}\right)$	JSZ	\mathcal{P}	No-Arbitrage +	0.99
$\ell(J P S)$			$P C 3$ unpriced	
	JPS	(\mathcal{P}, M)	No-Arbitrage + 	
		$P C 3$ unpriced		

(No) Learning About Eigenvalues $\lambda^{\mathbb{Q}}$ of $K_{\mathcal{P} \mathcal{P}}^{\mathbb{Q}}$

RMSE's for one-quarter ahead forecasts, January, 1985 to March, 2012

Rule	RMSE's by Bond Maturity						
	6 m	1Y	2 Y	3 Y	5 Y	7Y	10Y
$\ell(B C F F)$	51.4	51.6	52.4	54.3	49.5	47.9	44.8
$\ell\left(J S Z_{L S}\right)$	$\underset{(-4.03)}{39.7}$	$\underset{(-3.07)}{41.8}$	$\begin{gathered} 45.2 \\ (-3.92) \end{gathered}$	$\begin{gathered} 44.6 \\ (-5.28) \end{gathered}$	$\begin{gathered} 43.0 \\ (-4.39) \end{gathered}$	$\begin{gathered} 41.2 \\ (-3.92) \end{gathered}$	$\underset{(-3.33)}{37.7}$
$\ell\left(J S Z_{C G}\right)$	$\begin{gathered} 38.5 \\ (-4.36) \end{gathered}$	$\underset{(-1.17)}{41.6}$	$\begin{gathered} 45.2 \\ (-3.80) \end{gathered}$	$\stackrel{45.0}{(-4.45)}$	$\begin{gathered} 43.4 \\ (-4.10) \end{gathered}$	$\underset{(-3.66)}{42.1}$	$\underset{(-2.96)}{38.8}$
$\ell\left(J P S_{L S}\right)$	$\begin{gathered} 36.2 \\ (-3.96) \end{gathered}$	$\frac{41.2}{(-2.74)}$	$\begin{gathered} 44.2 \\ (-2.99) \end{gathered}$	$\begin{gathered} 43.9 \\ (-3.86) \end{gathered}$	$\left(\begin{array}{c} 41.4 \\ (-41) \end{array}\right.$	$\begin{gathered} 40.7 \\ (-3.94) \end{gathered}$	$\begin{gathered} 39.3 \\ (-2.64) \end{gathered}$

RMSE's One-Year Ahead Forecasts January, 2000 - December, 2007

	RMSE's by Bond Maturity						
Rule	6 m	1 Y	2 Y	3 Y	5 Y	7 Y	10 Y
$\ell(R W)$	173	165	143	125	98	79	60
$\ell(B C F F)$	178	165	156	144	116	98	79
$\ell(J S Z)$	181	176	163	145	118	97	75
$\ell\left(J S Z_{C G}\right)$	166	159	145	128	104	86	69
$\ell(J P S)$	141	138	125	109	86	71	64

RMSE's One-Year Ahead Forecasts January, 2008 - March, 2012

	RMSE's by Bond Maturity							
Rule	6 m	1 Y	2 Y	3 Y	5 Y	7 Y	10 Y	
$\ell(R W)$	75	75	67	67	76	78	69	
$\ell(B C F F)$	116	118	129	148	122	119	94	
$\ell(J S Z)$	100	97	102	103	98	85	67	
$\ell\left(J S Z_{C G}\right)$	78	76	76	79	82	79	71	
$\ell(J P S)$	92	87	79	75	77	76	78	

Imprecision with Learning January, 1975 - March, 2011

Expected Excess Returns on Two-Year Treasury Bonds

Expected Excess Returns on Ten-Year Treasury Bonds

Why is $\ell(J S Z)$ Different From $\ell(B C F F)$?

- Post recessions BCFF forecasters incorrectly predict rising 10 -year yields. Partly a consequence of BCFF forecasters predicting that slope will be more persistent than it is.
- Notably, less than 25% of the variation of BCFF-implied expected excess returns are explained by variations in \mathcal{P}.
- At the same time, 25% of the variation of expected excess returns in $J S Z_{C G}$ are orthogonal to \mathcal{P}.

Which Forecasters Were More Accurate?

- Full sample: RMSE's in forecasting the realized excess returns for bearing $(2 y, 10 y)$ bond risks were:
- $(1.55 \%, 9.68 \%)$ for $\ell(B C F F)$ and
- $(1.50 \%, 8.43 \%)$ for $\ell(J S Z)$.
- For the specific episode over January, 2001 through January, 2006, the corresponding RMSE's were:
- $(1.34 \%, 7.62 \%)$ for $\ell(B C F F)$ and
- $(1.40 \%, 4.60 \%)$ for $\ell(J S Z)$.

Learning About Volatility

Figure: Estimates from $\ell(J P S)$ of $\Sigma_{\mathcal{P}}$, the innovation covariance matrix for \mathcal{P}_{t}, over the period June, 1975 to March, 2011.

Learning About the Drift: $K_{\mathcal{P} \mathcal{P}}^{\mathbb{P}}(1,1)$.

Learning About the Drift: $K_{\mathcal{P} \mathcal{P}}^{\mathbb{P}}(2,2)$.

Learning In the Presence of Stochastic Volatility

Learning About Volatility

Parameter Updating with Stochastic Volatility

Joslin, S., A. Le, and K. Singleton, 2013, Gaussian Macro-Finance Term Structure Models with Lags, Journal of Financial Econometrics 11, 581-609.
Joslin, S., M. Priebsch, and K. Singleton, 2013, Risk Premiums in Dynamic Term Structure Models with Unspanned Macro Risks, Working paper, forthcoming, Journal of Finance.

