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Abstract

In this paper we analyze how demographic change has affected profits and returns across pharmaceutical

industries over the last twenty years. Fluctuations in different age group sizes influence the estimated

demand changes for age-sensitive drugs, such as antibacterials for young people, antidepressants for middle-

aged, and antithrombotics for old people. These demand changes are predictable as soon as a specific age

group is born. We use consumption and demographic data to forecast future consumption demand growth

for drugs caused by demographic changes in the age structure. We find that forecasted demand changes

over a horizon of 5 to 10 years predict abnormal annual pharmaceutical stock returns for more than 60 firms

over the time period from 1986 to 2006. An increase by one percentage point of annualized demand growth

due to demographic changes predicts an increase in abnormal annualized stock returns in the size of 2–3

percentage points. However, forecasted demand changes over a horizon of 0–5 years do not predict abnormal

stock returns. Our results are consistent with the model by DellaVigna and Pollet (2007), where investors

are unconditionally inattentive about the distant future.

Keywords: Demographic Change, Demand Growth, Abnormal Stock Returns, Pharmaceutical Companies,

Panel Regression, Fama MacBeth

JEL Codes: C23, J10, J11

∗Manuel Ammann: Swiss Institute of Banking and Finance, University of St.Gallen, Rosenbergstrasse 52, 9000 St.Gallen,

Switzerland.
†Corresponding Author: Rachel Berchtold, Swiss Institute of Banking and Finance, University of St.Gallen,

Rosenbergstrasse 52, 9000 St.Gallen, Switzerland, rachel.berchtold@unisg.ch.
‡Ralf Seiz: Swiss Institute of Banking and Finance, University of St.Gallen, Rosenbergstrasse 52, 9000 St.Gallen, Switzerland.

1



1 Introduction

What is the impact of demographic change on stock returns and profits of pharmaceutical companies? While

there is plenty of literature about the impact of demographic fluctuations on aggregate stock returns (e.g.

Abel (2003), Ang and Maddaloni (2005), Bakshi and Chen (1994), Poterba (2001), Geanakopolos, Magill, and

Quinzii (2004), Brunetti and Torricelli (2007)), there is little evidence on the effect of demographic change

on cross-sectional returns. A paper investigating this effect is DellaVigna and Pollet (2007). Although they

do not consider pharmaceutical companies as a cross-section, they examine age-sensitive sectors such as toys,

bicycles, beer, life insurance, and nursing homes. As pharmaceutical firms are very sensitive to demographic

changes given that every drug has its specific age-pattern, pharmaceutical companies are ideal to investigate

the influence of demographic changes on stock returns and profits.

This paper analyzes the possible relationship between demographic shifts in age group (cohort) sizes (children

(0–19), young people (aged 20–29), younger middle-aged people (aged 30–49), older middle-aged people (aged

50–59), old people (aged 60+)) and the demand of different pharmaceutical drugs as well as its influence on

abnormal stock returns. Since different goods have different age profiles of consumption, forecastable changes

in the age distribution lead to forecastable shifts in demand for different goods. For example, anorexiants and

CNS stimulants are mainly used by young people whereas antidepressants and antifungals are mainly used by

middle-aged people and adrenal corticosteroids and blood glucose by old people.

Shifts in demand have an influence on profitability and returns of pharmaceutical industries. Consequently,

the timing of the stock market reaction to these demand changes is important regarding the investor’s response

to predictable changes in future profitability. For example, assuming that a large cohort is born in 1955,

this large cohort will increase the demand for CNS stimulants as of 1966. If the CNS stimulants industry is

not perfectly competitive, the pharmaceutical companies that have their core businesses in the CNS stimulants

industry will experience an increase in abnormal profits in 1966. The timing of abnormally high returns depends

on the foresight horizon of the investor. There are three scenarios for different reactions of the investors and the

consequences for abnormal stock returns (Bergantino (1998)). The first scenario, the standard analysis, states

that the marginal investor foresees the positive demand shift induced by demographic changes and purchases

CNS stimulants in 1955. Therefore, when the price of CNS stimulants increases in 1965, the opportunity to

receive abnormal returns no longer exists. Alternatively, investors could be inattentive to information about

future changes in the demand shift that is further away than five years (their reasonable foresight horizon). In

this case, stock returns of firms selling CNS stimulants will not respond in 1955, but will be abnormally high

in 1965 when investors start paying attention to the future shift. A third scenario is that investors overreact to

demographic information and shifts in demand of different drugs. In this case, abnormal stock returns would

be high in 1955, and low in the following years, as realized profits fail to meet inflated expectations. In the

last two scenarios, but not in the standard model, demographic information available in 1955 predicts industry

abnormal returns between 1955 and 1965. Inattention leads to positive abnormal returns, while overreaction
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leads to negative abnormal returns given that forecastable demand increases due to demographic changes. In

the standard model, forecastable fluctuations in cohort size do not generate predictability because stock prices

react immediately to demographic information.

This example motivates a test of cross-sectional return predictability among pharmaceutical companies that

has – to the knowledge of the authors – not been investigated in the literature before. In this paper we test

whether demographic information predicts abnormal stock returns across 61 pharmaceutical firms over the

period from 1986 to 2006. We find evidence that population age structure does affect stock market prices and

real returns of different pharmaceutical companies over the last twenty years. We divide firms in an effort to

separate drugs with different age profiles in consumption. Several drugs have an obvious association with a

demographic age group. For example, in the life cycle of consumption, CNS stimulants and anorexiants are

followed by antidepressants and antifungals. Later in life, individuals consume more androgens and anabolic

steroids. The life cycle ends with the consumption of corticosteroids and blood glucose by old people.

The analyzes in this study are based on data from the U.S. Census Bureau (demographic data and forecasts

from 1900 to 2040), Medical Expenditure Panel Survey (drug age patterns), Evaluatepharma Database (sales

of 20 main drugs of each of the 61 pharmaceutical companies from 1986–2006), and Datastream (profits and

returns of every company from 1986–2006).

The outline of the article is as follows. In Section 2, we give an overview of literature discussing the effect

of demographics on corporate decisions and stock returns. Section 3 describes the methodology used in the

paper. Section 4 discusses the basic two-stage model used in DellaVigna and Pollet (2007), and derives the

three hypotheses from the model. Section 5 includes the construction of demographic-based forecasts of demand

growth by drug of different pharmaceutical companies. Section 6 analyzes whether forecasted demand growth

due to demographic changes predicts return on equities and abnormal stock returns. The conclusion follows in

Section 7.

2 Literature Review

2.1 Demographic Changes and Its Impact on Stock Market Returns

The paper is related to the literature on demographic changes and its impacts on aggregate stock market

returns due to demand shifts of financial assets.1 In this paper, the focus is on the cross-sectional predictability

of pharmaceutical companies’ returns induced by changes in consumer demand.

Mankiw and Weil (1989) find that contemporaneous cohort size partially explains the time-series behavior of

housing prices. DellaVigna and Pollet (2007) generalize their approach by analyzing 48 industries and examining

stock market returns. They assume that, unlike for housing prices, arbitrage should reduce predictability. They
1Bakshi and Chen (1994), Yoo (1994), Poterba (2001), Brooks (2002), Abel (2003), Davis and Li (2003), Ang and Maddaloni

(2005), Geanakoplos, Magill, and Quinzii (2004), Brunetti and Torricelli (2007).
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find evidence that stock market returns are predicted by forecasted demand growth in distant future, rather than

by contemporaneous demand growth. They present a trading strategy exploiting demographic information that

earns an annualized risk-adjusted return of 5 to 7 percent. They present a model of inattention to information

about the distant future that is consistent with these findings. We will use the model of DellaVigna and Pollet

(2007) and show that our results are consistent with the model in which investors are unconditionally inattentive

about the distant future.

Acemoglu and Linn (2004) investigate the introduction of new drugs in pharmaceutical companies in response

to predictable demand increases due to demographics. Their main data source for drug use is the Medical

Expenditure Panel Survey (MEPS), which is a sample of U.S. households over the years 1996–1998. They

find economically significant and relatively robust effects of market size on entry of new drugs. Their results

indicate that a one percent increase in potential market size for a drug category leads approximately to a 4

percent growth in the entry of new nongeneric drugs and new molecular entities. This provides evidence that

R&D and technological change are directed toward more profitable areas. However, Acemoglu and Linn (2004)

do not examine the effects on the stock market returns of these firms.

Our paper complements this literature since we focus on the pharmaceutical industry and the predictability

of returns induced by changes in consumer demand of different drugs. There are no other papers known to

the authors that examine the relationship between changes in forecasted consumer demand for drugs due to

demographic change and pharmaceutical companies’ returns.

There are a number of other studies related to Acemoglu and Linn’ s (2004) work. First, Schmookler (1966)

documents a statistical association between investment and sales, on the one hand, and patents and innovation,

on the other, and argues that the causality ran largely from the former to the latter. The classical study by

Griliches (1957) on the spread of hybrid seed corn in the U.S. agriculture also provides evidence consistent with

the view that technological change and technology adoption are closely linked to profitability and market size.

In more recent research, Morton (1999) and Reiffen and Ward (2002) study the decision of firms to introduce

a new generic drug and find a positive relationship between entry into a new market and expected revenues in

the target market. However, none of these studies exploit a potentially exogenous source of variation in market

size. Second, some recent research has investigated the response of innovation to changes in energy prices. Most

notably, Newell, Jaffee and Stavins (1999) show that between 1960 and 1980, the typical air-conditioner sold

at Sears became significantly cheaper, but not much more energy-efficient. On the other hand, between 1980

and 1990, there was little change in costs, but air-conditioners became much more energy-efficient, which was a

response to higher energy prices. These findings are consistent with the hypothesis that the type of innovation

responds to profit incentives, though they do not establish causality.
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2.2 Perception Allocation in Economics and Finance

This article also contributes to the literature of perception allocation in economics and finance. We distinguish

between investors who are rational and have an infinite horizon, investors who are unconditionally inattentive,

and investors who are inattentive with extrapolation.

Barber and Odean (2002) propose an alternative model of decision-making in which agents are confronted

with many alternatives, leading to attracting attention to qualities. Preferences matter only after attention has

limited the choice set. They state that when there are many alternatives and search costs are high, attention

may affect choice more profoundly than preferences. Barber and Odean’s theoretical model predicts that when

investors are most influenced by attention, the stocks they buy will subsequently underperform those they sell.

The authors find strong empirical support for this prediction. It seems that attention-based buying influences

subsequent stock returns. Gabaix, Laibson, Moloche, and Weinberg (2004) study the information acquisition

process. They experimentally analyze a cognition model based on partially myopic cost-benefit calculations: the

DC (Directed Cognition) model. They find that the DC model successfully explains the patterns of information

acquisition. When the DC model and the fully rational model make different predictions, the DC model does

a better job of matching the laboratory evidence. Hirshleifer, Lim, and Teoh (2004) model limited attention

as an incomplete use of publicly available information. Informed players decide whether or not to disclose

information to an audience who sometimes neglects either disclosed signals or the implications of nondisclosure.

They find that, in equilibrium, observers are unrealistically optimistic and that disclosure is incomplete, that a

negligence of disclosed signals increases disclosure, and that a disregard of a failure to disclose reduces disclosure.

They also find that these insights extend to a setting in which observers choose ex ante how to allocate their

limited attention. In a setting with multiple arenas of disclosure, they find that disclosure in one arena affects

perceptions in fundamentally unrelated arenas and that disclosure in one arena can displace a disclosure in

another. Huberman and Regev (2001) show that enthusiastic public attention induces a permanent rise in share

prices of biotechnology stocks, even though no real new information had been presented. Peng and Xiong (2006)

show that limited attention leads to categorical behavior. For example, investors tend to process more sector-

level information than firm-specific information. This endogenous structure of information, when combined

with investor overconfidence, generates important features observed in return comovement that are otherwise

difficult to explain with standard rational expectations models. In addition, their model demonstrates new

implications for the cross-sectional patterns of return predictability. First, firms with higher firm-specific return

variation tend to have higher bias-driven return predictability. Second, a piece of ignored public information

will have less predictive power for those firms with higher firm-specific return variation.

Our findings suggest that investors may simplify complex decisions by neglecting long-term information.

This evidence is different from predictability tests based on performance information measured by previous

returns (DeBondt and Thaler (1985), Jegadeesh and Titman (1993)), accounting ratios (Fama and French

(1992)), or earning announcements (Bernard and Thomas (1989)). These variables include information about
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future predictability that is not easily factorable into short- and long-term components.

3 Methodology

The methodology used in this article is as follows. In Section 4, we discuss the basic two-stage model by Mankiw

and Whinston (1986), used also in DellaVigna and Pollet (2007). We derive three hypotheses from the model

and test them using U.S. data on pharmaceutical companies’ returns. The first hypothesis states that if investors

are rational (i.e. that their foresight horizon goes to infinity), the expected abnormal return is independent of

expected future demand growth. The second hypothesis states that if investors are inattentive (i.e. foresight

horizon is finite), the expected abnormal return is positively related to expected future demand growth one

period after the horizon. The third hypothesis declares that if investors are inattentive with extrapolation using

short-term expectations, the expected abnormal return is negatively related to expected future demand growth

less than one period ahead.

In Section 5, we include the construction of demographic-based forecasts of demand growth by drug of

different pharmaceutical firms in four steps:

(1) In the first step, we collect cohort sizes from the U.S. Census Bureau for the years 1900–2006. The main

source of variation in age-specific cohort sizes is the size of birth cohorts. As can be seen in Figure 1, after a

large cohort in the early 20th century, a small cohort in the 1930s was followed by the large Baby Boom cohorts

in the late 1950s. The small Baby Bust cohorts of the 1960s and early 1970s led to larger birth cohorts in

the 1980s. There is a continuous increase in livebirths in the 1990s and 2000. From 2007 to 2040, we see the

projections of the U.S. Census Bureau in the future.

(2) In the second step, we estimate age-consumption profiles for the 34 drugs in the sample. We construct

five age groups, 0–19, 20–29, 30–49, 50–59, and 60+. These divisions are motivated by drug age patterns of

these age groups. Our main data source for drug use by age group is the Medical Expenditure Panel Survey

(MEPS), which is a sample of U.S. households over the years 1996-1998. The survey includes age and income

data for each household member and covers about 25’000 individuals in each year. In all, there are about

500’000 medications prescribed. Following Acemoglu and Linn (2004), we construct drug use per person and

expenditure share for each category and each of our five age groups. We observe that across goods, the age

profile of consumption varies substantially. We assume that for a given good, the age profile is quite stable

across time. These findings support the use of cohort size as a causal variable for demand.

(3) In the third step, we combine the age profiles of consumption from the MEPS data with demographic

forecasts data provided by the U.S. Census Bureau. The output is the drug-by-drug forecasted demand growth

caused by demographic changes.

(4) In the fourth step, we consider 61 international pharmaceutical firms which mainly provide the U.S.

market with drugs. Within these firms, we elicit the expenditures of the top twenty drugs from 1986-2006
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Figure 1: Livebirths in the U.S. from 1900-2040. Projections for years 2007 to 2040 are derived from the U.S.

Census Bureau.

with the aid of the Evaluatepharma database. The Evaluatepharma database includes detailed data of 95%

of the pharmaceutical companies of the world. Data are taken from annual company reports and are updated

every month. For every pharmaceutical company, we obtain the corresponding yearly expenditures from 1986-

2006 and the EphMRA (European Pharmaceutical Market Research Association) ATC Codes (The Anatomical

Therapeutic Chemical Classification System) of each of the top twenty drugs out of the database. We weight

the core businesses of each company according to the expenditures and ATC Codes of the top twenty drugs

to our five age cohorts (0-19, 20-29, 30-49, 50-59, 60+) for the time period from 1986 to 2006. Summarizing,

we get monthly drug demand growth rates for each age cohort over the last twenty years for each of the 61

pharmaceutical firms.

In Section 6, we analyze whether forecasted demand growth due to demographic changes predicts return

on equities (ROE) and abnormal stock returns. We define short-term demand as the forecasted annualized

growth rate of consumption due to demographics over the next 5 years and we define long-term demand as the

forecasted annualized growth rate of consumption during 5 to 10 years. In the panel regressions, we find that

long-term demand growth forecasts annual stock returns. An increase by one percentage point in the annualized

long-term demand growth rate due to demographics predicts a significant 2 to 3 percentage point increase in

abnormal returns of the pharmaceutical companies. The effect of short-term demand growth on returns is not

statistically significant.

Finally, we also implement Fama-MacBeth regressions as an alternative approach to control for year effects.
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Using this methodology and choosing short-term demand growth and long-term demand growth as the inde-

pendent variables, we find that forecasted long-term growth between year t + 5 and t + 10 has an economical

effect on abnormal yearly returns. The coefficient of short-term growth between t and t + 5 is negative and has

no effect on abnormal yearly returns. If we only choose long-term demand growth due demographic changes as

the independent variable, we observe a statistically and economically significant effect.

4 The Model

4.1 Stock Returns

In this part we show how returns of firms in an industry should respond to demographic changes given that

demand shifts affect profitability. Following DellaVigna and Pollet (2007), we consider a model where investors

can be fully attentive (very long foresight horizon) or inattentive (short-sighted horizon). DellaVigna and Pollet

(2007) use a similar methodology as Campell and Shiller (1988), and Campell (1991), and Vuolteenaho (2002).

Consider a generic, not necessarily rational, expectation operator Êt[·], with the properties Êt[cat+j +bt+k] =

cÊtat+j + Êtbt+k and at = Êtat. As shown in DellaVigna and Pollet (2007), the unexpected return can be

expressed as a change in expectations about profitability (measured by the accounting return on equity, ROE)

and stock returns:

rt+1 − Êtrt+1 = ∆Êt+1

∞∑
j=0

ρjroet+1+j −∆Êt+1

∞∑
j=1

ρjrt+1+j (1)

In this expression, rt+1 = log(1+Rt+1) is the log return between t and t+1, roet+1 = log(1+ROEt+1) is the

log of the accounting return on equity between t and t+1, ρ < 1 is a constant (interpreted as a discount factor)

associated with the log-linear approximation, and ∆Êt[·] = Êt+1[·]− Êt[·] is the change in expectations between

periods. The transversality condition for the derivation of equation (1) is limj→∞ρj(rt+1+j − roet+1+j) = 0.

roe and r cannot diverge too much in the distant future even if the transversality condition is not satisfied, as

long as changes in expectations about the bubble are unrelated to demographic shifts, the predictions of the

theory remain unchanged.

Short-sighted investors have correct short-term expectations but incorrect long-term expectations about

profitability. Let E?
t [·] be the expectation operator for short-sighted investors at time t. Similarly, let Et[·] be

the fully rational (very long-sighted) expectation operator for period t. Short-sighted investors have rational

expectations regarding dividend growth for the first h (h is the foresight horizon of the investor) periods after t,

E?
t roet+1+j = Etroet+1+j ∀j < h. For periods beyond t + h, they form incorrect expectations of profitability

based on a constant term, roe, and an extrapolation from the expected (rational) average log return on equity

for periods t + 1 + h− n to t + h:
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E?
t roet+1+j = w ∗ roe + (1− w)

n∑
i=1

Etroet+1+h−i

n
∀j ≥ h, (2)

where ω is a weighting factor between zero and one, and n are the periods of extrapolation. Finally, we assume

that short-sighted investors believe that expected log returns are characterized by a log version of the conditional

CAPM:

E?
t rt+1+j = Etrf,t+1+j + Etβt+j(rm,t+1+j − rf,t+1+j) ∀j ≥ 0 (3)

where rf,t+1+j is the log riskless interest rate and rm,t+1+j − rf,t+1+j is the excess log market return.

We consider three leading cases of the model:

i) In the limiting case when h →∞, investors possess rational expectations about future profitability.

ii) If h is finite and w = 1, then investors exhibit unconditional inattention. Investors expect that the return

on equity after period t + h will equal a constant, roe.

iii) If h is finite and w < 1, then investors exhibit inattention with extrapolation (n periods of extrapolation).

Investors form expectations for the return on equity after period t + h with a combination of a fixed

forecast, roe, and an extrapolation based on the average expected return on equity for the n periods

before t + 1 + h.

This model of inattention assumes that investors carefully form expectations about profitability in the

immediate future, but adopt rules of thumb to evaluate profitability in the more distant future. In a world with

costly information processing, these rules of thumb could be approximately optimal. The short-term forecasts

embed most of the available information about profitability in the distant future. However, investors disregard

useful information by neclecting long-term demographic variables. They do not realize that these demographic

variables provide relatively precise forecasts of profitability even at long horizons.

Let E?
t [·] characterize the short-sighted expectations of a representative agent. According to DellaVigna and

Pollet (2007), we can substitute the short-sighted expectations, E?
t [·], for the generic operator Êt[·] in (1) and

use (3) to get an expression for the unexpected return for short-sighted investors:
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rt+1 − E?
t rt+1 = ∆E?

t+1

∞∑
j=0

ρjroet+1+j −∆E?
t+1

∞∑
j=1

ρjrt+1+j (4)

= ∆Et+1

h−1∑
j=0

ρjroet+1+j + ρh

[
Et+1roet+1+h − wroe− (1− w)

n∑
i=1

Etroet+1+h−i

n

]

+ (1− w)
∞∑

j=h+1

ρj

[
n∑

i=1

Et+1roet+2+h−i

n
−

n∑
i=1

Etroet+1+h−i

n

]

− ∆Et+1

∞∑
j=1

ρj(rf,t+1+j + βt+j(rm,t+1+j − rf,t+1+j)).

The unexpected return, rt+1 − E?
t+1rt+1, depends on the value of the return on equity only up to period

t + 1 + h. Later periods are not incorporated, since investors are short-sighted.

We define abnormal or risk-adjusted return art+1 to be consistent with the log version of the conditional

CAPM:

art+1 = rt+1 − rf,t+1 − βt(rm,t+1 − rf,t+1).

Taking conditional rational expectations at time t (using Et[·]) and applying the law of iterated expectations,

we derive the expected abnormal return Etart+1 from the perspective of the fully rational investor:

Etart+1 = ρhw(Etroet+1+h − roe) + ρh(1− w)
n∑

i=1

Et[roet+1+h − roet+1+h−i]/n

+
ρh+1

1− ρ

(1− w)
n

Et[roet+1+h − roet+1+h−n]. (5)

The expected return between time t and time t + 1 depends on the sum of three terms. For rational

investors (h →∞), all terms converge to zero (given ρ < 1) and we obtain the standard result of unforecastable

returns. For investors with unconditional inattention (h finite and w = 1), only the first term is relevant:

Etart+1 = ρh(Etroet+1+h − roe). Returns between year t and year t + 1 are predictable using the difference

between the expected return on equity h + 1 years ahead and the constant roe. For inattentive investors

with extrapolation (h finite, w = 0, and n periods of extrapolation), only the last two terms are relevant.

Abnormal returns depend positively on the expected return on equity h + 1 years ahead and negatively on the

expected return on equity during the previous n years (because these agents rely too heavily on the short-term

expectations about roe). In general, for inattentive investors (h finite), stock returns between time t and t + 1

are forecasted positively by the expected return on equity h + 1 years ahead, and negatively by the expected

return on equity for the n years prior to t + 1 + h.
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4.2 Derivation of the Three Hypotheses

DellaVigna and Pollet (2007) give the intuition of the above. Between year t and t + 1, investors update their

expectations by incorporating the expected profitability in period t + 1 + h, which was previously ignored.

This information replaces the earlier forecast that was created using roe and the expected return on equity

between years t + 1 + h− n and t + h. Expected returns are an increasing function of the update about future

profitability. This update depends positively on expected profitability in period t + 1 + h and negatively on roe

and on expected profitability between t + 1 + h− n and t + 1 + h.

DellaVigna and Pollet (2007) show that the accounting return on equity responds to contemporaneous

demand changes if the changes are not known before the decision about the entry. Under additional conditions,

they show that the relationship between the log return on equity and the log of the demand shift α is linear:

roet+1+j = φ + θ∆ct+1+j + vt+1+j , (6)

where vt+1+j = θωt+1+j +zt+1+j . For simplicity, we assume that Et+jvt+1+j = 0 for any j ≥ 0. Substituting

expression (6) into equation (5), we obtain

Etart+1 = A + ρhwθEt∆ct+1+h + ρh(1− w)θ
n∑

i=1

Et[∆ct+1+h −∆ct+1+h−i]/n

+
ρh+1

1− ρ

(1− w)
n

θEt[∆ct+1+h −∆ct+1+h−n], (7)

where A is a constant equal to ρhω(φ− roe). Using equation (7), we derive Hypotheses 1-3:

Hypothesis 1: If investors are rational (h → ∞), the expected abnormal return, Etart+1, is independent

of expected future demand growth, Et∆ct+1+j for any j ≥ 0.

Hypothesis 2: If investors are inattentive (h finite, ω = 1), the expected abnormal return Etart+1, is positively

related to expected future demand growth h + 1 periods ahead, Et∆ct+1+h. Moreover, ∂Etart+1/∂Et∆ct+1+h =

ρhθ[1 + (1− ω)ρ/((1− ρ)n)].

Hypothesis 3: If investors are inattentive with extrapolation (h finite and ω < 1), the expected abnormal return

Etart+1 is negatively related to expected future demand growth less than h + 1 periods ahead, Et∆ct+1+h−i for

all 1 ≤ i ≤ n.

Hypothesis 1 states that under the null hypothesis of rational investors, forecastable demographic changes

do not affect abnormal stock returns. Under the alternative hypothesis (Hypothesis 2), forecastable demand

growth h+1 periods ahead predicts abnormal stock returns for inattentive investors (they have a infinite horizon

h). Hypothesis 2 shows the connection between degree of forecastability to the sensitivity of accounting return
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on equity to demand growth θ. The value of ∂Etart+1/∂Et∆ct+1+h can be between ρhθ (for ω = 1) and

θ[1 + ρ/(1 − ρ)] (for ω = 0 and n = 1). Finally, if investors are inattentive with extrapolation (ω < 1), then

demand growth less than h + 1 periods ahead forecasts abnormal returns negatively (Hypothesis 3).

In this analysis we form two demand growth forecasts, one for short-term growth between t and t + 5, and

one for long-term growth between t + 5 and t + 10. In section 6, we show that our results are consistent with

Hypothesis 2 where investors are unconditionally inattentive about the distant future (ω = 1 because ρhθ > θ).

5 Demographic Data and Forecasted Demand Growth

In this section, we present the data used in the paper. Table 1 provides an overview of the data used. De-

mographic data is shown in column 1, data of the age patterns of the different drugs in column 2, sales and

expenditure data in column 3, and the fourth and last column shows profit and return data.

Table 1: This table provides an overview of the data used in the paper. The demographic data

is shown in column 1, the data of the age patterns of the different drugs in column 2, sales and

expenditure data in column 3, and the fourth and last column shows profit and return data.

5.1 Demographic Data

In a first step, we derive U.S. demographic variables from 1900–2040, as for example, U.S. population and

projected population for the future from data of the U.S. Census Bureau as well as the World Factbook. We

split the entire population into five cohorts, the cohort aged 0–19, 20–29, 30–49, 50–59, and 60+. Figure 2

shows the age profile of the different cohorts between 1900 and 2023, whereas the age profiles between 2007 and

2023 are estimated by the U.S. Census Bureau.

The time-series behavior of the cohort size aged 0-20 can be divided into four periods: (i) the cohort size

decreases between 1935 and 1945, reflecting the low fertility of the 1930s, (ii) the cohort size decreases between

1945 and 1975, reflecting the Baby Boom of the 1940s and particularly during the years 1947 − 1960, (iii) the

cohort decreases between 1970 and 1985, due to lower fertility rates during the following years (the Baby Bust),
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Figure 2: Age profile of the five cohorts in the U.S. from 1900-2022 whereas data from 2007-2022 are estimated

by the U.S. Census Bureau.

and (iv) the cohort increases again after 1985, in response to the parental age of the Baby Boom cohort. The

cohort size aged 30–49 follows a similar time-series pattern as the cohort 0–20, shifted forward by approximately

20 years. The cohort sizes of the older cohorts vary less. In particular, the cohort aged 60+ grows steadily over

time. Demographic shifts induce the most variation in demand for goods consumed by the young cohorts.

5.2 Age Patterns in Consumption of Drugs

In the second step, we estimate age-consumption profiles for the 34 drugs in the sample. We construct five age

groups, 0-19, 20-29, 30-49, 50-59, and 60+. These divisions are motivated by drug age patterns of these age

groups. Our main data source for drug use by age group is the Medical Expenditure Panel Survey (MEPS),

which is a sample of U.S. households over the years 1996-1998. The survey has age and income data for

each household member, and covers about 25’000 individuals in each year. In total, there are about 500’000

medications prescribed. Following Acemoglu and Linn (2004), we construct drug use per person and expenditure

share for each category and for each of our five age groups. Table 6 in Appendix A.1 shows the summary of

the disease classification and drug use by age group from 1996-1998 by Acemoglu and Linn (2004). The first

number indicates the use per person, that is, the mean number of drugs in the class used per person of the

age group. The second number indicates the share of use (expenditure share), that is, the fraction of drugs

used in the category by the age group. We can assign every drug category to one of our five cohorts. Based

on this, we can make two assumptions. First, across pharmaceuticals, the age profile of consumption varies

substantially. Some drugs are mainly consumed by younger people (e.g. Penicillins), others by elderly people
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(e.g. Cardiovascular). Second, for a given drug, the age profile is quite stable across time. These assumptions

support the use of cohort size as a causal variable of demand. Figure 3 shows the age profile of normalized

consumption for Cardiovascular and Penicillins for three different time points: 1950, 1970, and 1990. We can

see that Cardiovascular is mainly needed by older persons (peak at 65-year olds) whereas Penicillins is mainly

needed by young persons aged between 0 and 10 years. We can also see that the normalized consumption has

shifted in parallel from 1950 to 1990 for Cardiovascular.

Figure 3: The figure shows the age profile of consumption for Cardiovascular (typical drug for old persons) and

Penicillins (typical drug for young people) for the years 1950, 1970, and 1990. Expenditures are normalized so

that the average consumption for all ages is equal to 1.

5.3 Demand Forecasts

In the third step, we combine the age profile of consumption from the subsection before with the demographic

situation derived by the U.S Census Bureau in order to forecast demand changes for different drugs for the

time period between 1900 and 2020. Let ck,t be the forecasted annual consumption of drug k for individuals at

different ages for time t.

For example, we consider a demand forecast of a typical drug for old people (60+), e.g. Hyperlipidemia, a

demand forecast of a typical drug for young people aged between 0-19, e.g. Penicillins, and a demand forecast

of a typical drug for middle-aged people between 30 and 49 years old, e.g. Antipsychotics. Figure 4 in Appendix

A.2 shows the forcasted absolute demand of these three types of drugs. We compute demand growth rates from
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time t to time t + 1 by

lnck,t+1 − lnck,t (8)

for typical drugs of each age cohort.

5.4 Pharmaceutical Companies and their Core Businesses

In the fourth step, we first consider 61 international pharmaceutical companies that mainly provide the U.S.

market with drugs. Within these companies, we collect the sales/expenditures of the top twenty drugs from

1986 to 2006 with the aid of the annual sales data of the Evaluatepharma database. For every pharmaceutical

company, we get the corresponding yearly expenditures from 1986 to 2006 and the EphMRA (European Phar-

maceutical Market Research Association) ATC Codes of each of the top twenty drugs out of the database. Each

ATC Code can be assigned to one of the 34 drug categories of the Medical Expenditure Panel Survey (MEPS)

used in Acemoglu and Linn (2004). The EphMRA ATC Codes and its assignment to the 34 drug categories of

MEPS are listed in Appendix A.3, Table 7. Secondly, we weight the core businesses of each company according

to the expenditures of the top twenty drugs to our five age cohorts for the time period 1986-2006. Finally, we

extrapolate linearly the yearly weights for getting monthly weights. Combining these monthly weights with the

demand growth rates of each age profile, we obtain monthly demand growth rates over the last twenty years for

each of the 61 pharmaceutical companies.

6 Empirical Tests of the Model Hypotheses

In this section, we first investigate whether forecasted demand changes predict pharmaceutical ROE. Finally, we

examine absolute return predictability using the panel regression approach and also a Fama-MacBeth framework.

6.1 ROE Predictability: Panel Regression

As a measure of profitability, we use a measure of accounting return on equity (ROE). For each company, we

compute the ROE at time t + 1 as the ratio of earnings from the end of fiscal year t through the end of fiscal

year t + 1 to the book value of equity at the end of fiscal year t. Annual pharmaceutical return on equity

ROEk,t+1 for firm k for t between 1986 and 2006 are taken from Datastream. We construct the log return on

equity, roek,t+1 = log(1 + ROEk,t+1). Columns 1 through 3 of Table 2 present the summary statistics for the

log annual return on equity (mean and standard deviation), and the number of years for which data is available

for each of the 61 firms in the sample.

In Table 3 we test the predictability of the one-year pharmaceutical company log return on equity using the

forecasted contemporaneous growth rate in consumption due to demographics from year t to t+2. We describe
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Table 2: Summary statistics for the log annual return on equity for each firm k. Column 1

displays the mean of roek,t+1, column 2 reports the within-industry standard deviation, and

the number of years for which data is available for each of the 61 companies in the sample

is reported in column 3. Column 4 shows annual log stock returns of each firm k, column 5

describes the standard deviation within firms, and column 6 reports the number of years for

which data is available in Datastream.
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Table 3: Panel Regression of Log Return on Equity on Forecasted Demand Changes Due to Demographic

Changes

This table shows the results of the panel regression of log return on equity on forecasted demand changes due to demographic changes.

Annual pharmaceutical return on equity ROEk,t+1 for firm k for t between 1986 and 2006 are taken from Datastream. We construct

the log return on equity, roek,t+1 = log(1 + ROEk,t+1). We test the regression roek,t+1 = const + a ∗ (lnck,t+2 − lnck,t) + εk,t.

Log Return on Equity (ROE) at t+1

const a R2 N Industry FE Year FE

(1) -0.054 (0.0495) 6.479 (4.352)* 0.02 N=781

(2) -0.065 (0.055) 7.520 (5.085)* 0.04 N=781 x

(3) -0.065 (0.058) 7.520 (5.267)* 0.04 N=781 x x

Line (1) shows the results of the panel regression without cross-sectional and year fixed effects. Line (2) shows the results with cross-

sectional fixed effects, and Line (3) with both cross-sectional and year fixed effects. The standard errors are indicated in brackets. (*)

indicates significance at the 10% level, (**) indicates significance at the 5% level, (***) indicates significance at the 1% level.

by lnck,t+2 − lnck,t the natural log of the forecasted consumption growth of firm k from year t to year t + 2.

The following regression is tested:

roek,t+1 = const + a ∗ (lnck,t+2 − lnck,t) + εk,t. (9)

The coefficient a indicates the responsiveness of the log return on equity in year t + 1 to contemporaneous

forecasted changes in demand due to demographic changes. We run the panel regression (9) both with and

without industry and year fixed effects. We allow for heteroskedasticity and correlation across industries by

calculating standard errors clustered by year.

In Table 3, Line (1), we show the specification of the sample between 1986 and 2006 without industry or

year fixed effects. The impact of demographic changes on roe is identified by variation in demand growth. The

estimated coefficient, a = 6.479, is significant on the 10% level and economically large. A one percent increase

in yearly consumption growth due to demographics increases log return on equity by a = 6.479 percentage

points. Introducing cross-sectional fixed effects, the estimate for a is significant and larger than in Line (1),

a = 7.520 (Line (2)). Introducing time fixed effects as well, the coefficient a = 7.520 stays the same and is

significant at the 10% level as in Line (2). Summarizing, forecasted demand growth due demographics has

a statistically and economically significant effect on pharmaceutical companies’ profitability. Comparing our

outcomes to the results by DellaVigna and Pollet (2007), we obtain similar results but larger and slightly less

significant coefficients. In contrast to DellaVigna and Pollet (2007), we did not drop firms with negative book

values.

17



6.2 Abnormal Return predictability: panel regression

Using the same panel framework, we investigate the relationship between forecasted demand growth and the

pharmaceutical companies’ monthly stock returns. Table 2, Column 4 to 6 show the results (mean, standard

deviation, and the number of years data is available), analogously to ROE in the section before. In the baseline

specification we regress monthly returns on the monthly forecasted growth rate of demand due to demographics

from time t to five years later time t + 5 (short-term) and t + 5 to t + 10 (long-term). We use beta-adjusted

returns to remove market-wide shocks. We choose Nasdaq1002 for the market returns because the technology

boom in 2000 also infected the pharmaceutical market and abnormal returns will be smoothed this way. We

define rk,t,t+1 as the natural log of the stock return for firm k between the end of year t and the end of year t+1.

The log of the market return and of the risk-free rate over the same horizon are rm,t,t+1 and rf,t,t+1. Further,

let βk,t be the coefficient of a regression of monthly pharmaceutical companies’ excess returns on market excess

returns over the 48 months previous to year t. We define abnormal log return by

ark,t,t+1 = (rk,t,t+1 − rf,t,t+1)− βk,t(rm,t,t+1 − rf,t,t+1). (10)

The specification of the regression is

ark,t,t+1 = const + d ∗ (lnck,t+5 − lnck,t) + e ∗ (lnck,t+10 − lnck,t+5) + εk,t. (11)

The model by DellaVigna and Pollet (2007) in Section 4 suggests that, if the forecast horizon h is shorter

than 5 years, the coefficient d should be positive and e should be zero. If the forecast horizon is between 5 and 10

years, the coefficient d should be zero or negative and the coefficient e should be positive. Finally, if the investors

have a horizon greater than 10 years (including rational investors with h → ∞), both coefficients should be

zero. A significantly positive coefficient indicates that stock prices adjust as the demographic information enters

the forecast horizon. Table 4 present the estimates (11) of the monthly abnormal returns for the sample of the

61 pharmaceutical firms during the years 1986-2006. In the specification without year and cross-sectional fixed

effects (Line (1)), the coefficient on short-term demographics, d = −0.678 is not significantly different from zero

whereas the coefficient on long-term demographics, e = 1.601 is significantly larger than zero. An annualized

one percentage point increase in demand growth from year 5 to year 10 increases the average abnormal yearly

stock return by 1.60 percentage points. If we introduce fixed industry effects, the coefficient is even higher,

e = 3.050 (Line (2) in Table 4) and significantly different from zero at the 1 % significance level. If we introduce

both, year and industry fixed effects, the coefficient is e = 2.956 and also significantly different from zero (Line

(4)). The coefficient of the short-time demographic changes, d, stays negative and insignificant for all Lines (1)

to (4).

2Results are robust with respect to the index used (S&P 500, Nasdaq100, or Nasdaq Biotechnology).
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Table 4: Panel Regression of Pharmaceutical Abnormal Stock Returns on Forecasted Demand Changes Due

to Demographic Changes

This table shows the results of the panel regression of pharmaceutical abnormal stock returns on forecasted demand changes due to

demographic changes. We define abnormal log return by ark,t,t+1 = (rk,t,t+1 − rf,t,t+1) − βk,t(rm,t,t+1 − rf,t,t+1). We test the

regression ark,t,t+1 = const + d ∗ (lnck,t+5 − lnck,t) + e ∗ (lnck,t+10 − lnck,t+5) + εk,t.

Annual Beta-Adjusted Log Pharmaceutical Abnormal Stock Return t+1

const d e R2 N Industry FE Year FE

(1) -0.299 (0.012)*** -0.678 (0.283) 1.601 (0.259)** 0.01 N=9366

(2) -0.390 (0.019)*** -1.127 (0.247) 3.050 (0.249)*** 0.01 N=9426 x

(3) -0.229(0.009)*** -1.132 (0.278) 0.951 (0.289)* 0.24 N=9426 x

(4) -0.382 (0.014)*** -1.079 (0.304) 2.956 (0.014)** 0.01 N=9366 x x

Line (1) shows the results of the panel regression without cross-sectional and year fixed effects. Line (2) shows the results with cross-

sectional fixed effects, Line (3) with year fixed effects and Line (4) with both, cross-sectional and year fixed effects. The standard

errors are indicated in brackets. (*) indicates significance at the 10% level, (**) indicates significance at the 5% level, (***) indicates

significance at the 1% level.

6.3 Abnormal Return predictability: Fama-MacBeth Regression

To control for time-series patterns, we implement a Fama-MacBeth regression as an alternative estimation

approach according to DellaVigna and Pollet (2007). We estimate separate cross-sectional regressions of equation

(11) for each year t from 1986–2006. We choose January 1 as the reference date of every year’s abnormal return.3

We then compute the time-series average of the estimated coefficients. Year effects that may be correlated with

absolute returns and with demographics do not contribute to the identification of the coefficient d and e, because

the regression is estimated separately for each year. The standard errors are based on time-series variation of

the OLS coefficients using a Newey-West estimator with three lags. Table 5 presents the results of the Fama-

MacBeth regressions.

We first estimate the regression for yearly beta-adjusted returns as the dependent variable and short- and

long-term demand growth due demographic changes as the independent variables. The short-term forecasted

demand growth coefficient d = −0.108 is negative and insignificant. The long-term forecasted demand growth

coefficient e = 2.180 is positive but not statistically significant. The p-value of e is around 0.17. Subsequently,

we estimate the regression for the independent variable of long-term demand growth only. As a result, the

coefficient e = 1.914 is positive and significantly different from zero.

The panel regression above exhibits to two main findings. First, forecastable demand growth due to demo-
3The results are robust to different reference dates.
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Table 5: Fama MacBeth Regression of Pharmaceutical Abnormal Stock Returns on Forecasted Demand

Changes Due to Demographic Changes

This table shows the results of the Fama MacBeth regression of pharmaceutical abnormal stock returns on forecasted demand changes

due to demographic changes. We estimate separate cross-sectional regressions of ark,t,t+1 = const + d ∗ (lnck,t+5 − lnck,t) + e ∗

(lnck,t+10 − lnck,t+5) + εk,t for each year t from 1986-2006. We choose January first for the key date of every year’s abnormal return.

Then we compute the time-series average of the estimated coefficients.

Beta Adjusted Log Pharmaceutical Abnormal Stock Returns

const d p-value of d e p-value of e Number of years

(1) -2.491 (1.766) -0.108 (1.720) 0.95 2.180 (1.549) 0.17 N=22

(2) -2.904 (1.934) 1.914 (1.314)* 0.10 N=22

The standard errors are indicated in brackets. (*) indicates significance at the 10% level, (**) indicates significance at the 5% level,

(***) indicates significance at the 1% level.

graphic changes predicts abnormal stock returns. Second, forecastable demand changes in the longer run (t + 5

to t + 10) forecast abnormal returns whereas forecastable demand changes in the short run (t to t + 5) do not

have significant forecasting power of abnormal returns. These findings are in contrast to the model of fully

rational investors. Hypothesis 1 in Section 4 states that if investors are fully rational, abnormal stock returns

would not be forecastable using expected demand changes. Alternatively, Hypothesis 2 in Section 4 offers an

explanation for our results based on inattention. If investors omit information under a particular time horizon

h, the returns at t+1 should be predictable using long-term demographic information that will happen between

t + h and t + 1 + h. The results in Table 4 and 5 show that the horizon h could be between 5 and 10 years.

The model in Section 4 also makes a prediction regarding the coefficient on long-term forecasted demand

growth in the abnormal return panel regressions from Table 4. The estimates for the coefficients of the regressions

with cross-sectional fixed effects are δ̂1 := e = 3.05 (Table 4), respectively θ̂ := a = 7.52 (Table 3). This is

consistent with the model of unconditional inattention (ω = 1) which predicts that δ1 should be smaller than

θ because of δ1 = ρhθ < θ. The results of DellaVigna and Pollet (2007) are not consistent with a model of

unconditional inattention, but with a model of inattention with partial extrapolation (ω < 1). In our case (model

of unconditional inattention), if θ̂ = 7.52, ω = 1, h = 7.5, and ρ = 0.96, we would expect a δ1 = ρhθ = 5.5

which is larger than our estimated 3.05. Therefore, according to the model, even larger abnormal returns of

pharmaceutical companies according to demographic changes are possible.
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7 Conclusion

We analyze how demographic change has affected profits and returns across 61 pharmaceutical companies over

the last twenty years. Different drugs have different age patterns of consumption. Forecastable shifts in cohort

size by age allows us to predict forecasts of demand growth due to demographic changes. Monthly expenditures

for every pharmaceutical firm from 1986 to 2006 are extracted from the annual sales figures as reported in the

pharmaceutical sales database (Evaluatepharma). We weight the core businesses of each company according to

the expenditures of the top twenty drugs to our five age groups (0–19, 20–29, 30–49, 50–59, 60+). Summarizing,

we obtain monthly drug demand growth rates for each age group over the last twenty years for each of the 61

pharmaceutical firms. The forecasted monthly demand growths by company predict the return on equity of each

of the 61 pharmaceutical firms. We further present evidence from panel regressions that long-term forecastable

demand growth (horizon of 5-10 years) predicts annual abnormal stock returns in the size of 2 to 3 percentage

points, whereas short-term forecastable demand growth does not have a significant influence on abnormal stock

returns. We also control for year effects using Fama MacBeth regressions. Although coefficients are large in size,

we did not find statistically significant evidence for the influence of demographic growth on annual abnormal

stock returns. According to the model of DellaVigna and Pollet (2007), the explanation can be found in the

short-sighted and omitted information by the investors beyond a 5 to 10-year horizon. Our results are consistent

with the model in which investors are unconditionally inattentive about the distant future.
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A Appendix

A.1 Disease Classification and Drug Use by Age Group

Table 6: Summary of Disease Classification and Drug Use by age group, 1996-1998. The first

number indicates the use per person, that is the mean number of drugs in the class used per

person in the age group. The second number indicates the share of use (expenditure share),

that is the fraction of drugs used in the category by the age group. Age group with largest

expenditure is the broad age group with the greatest expenditure on the corresponding category.
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A.2 Forecasted Absolute Demand of a typical Drug for Young, Middle-aged, and

Old People

Figure 4: Forecasted Absolute Demand of a typical drug for old people (e.g. Hyperlipidemia), a typical drug

for middle-aged people (e.g. Antipsychotics), and a typical drug for young people (e.g. Penicillins).
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A.3 ATC Codes

Table 7: The EphMRA ATC Codes and their assignments to the 34 drug categories of MEPS.
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