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Abstract 
 

In this study, I examine the relative accuracy of financial analysts’ and adaptive time-
series earnings forecasts made at the beginning of a fiscal year. I consider IBES 
consensus forecasts and employ a novel forecasting approach: artificial neural networks. 
The central question is whether financial analysts efficiently utilize available information 
and produce forecasts that are more accurate than predictions of statistical models. In 
contrast to the existing literature, which analyzes non-adaptive forecasting techniques, I 
present evidence of the superiority of adaptive time-series models forecasts over financial 
analysts’ forecasts made at the beginning of a fiscal year for a specific subset of firms. 
The study shows a way of differentiating companies according to statistical 
characteristics of their earnings, and as a result, to the relative accuracy of analysts’ 
forecasts. I find that the relative accuracy of financial analysts’ forecasts decreases with 
the variation of change in earnings and the forecast horizon. The evidence presented 
contributes to the understanding of the formation and value of analysts’ predictions. 
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I. Introduction 
 
While earnings are the basic accounting-based measure of a firm’s performance, 

earnings expectations are one of the strongest signals about its future prospects. Over the 
years, two methods of earnings predictions have been exploited: the use of financial 
analysts and non-adaptive time-series models. The latter are often simple statistical 
techniques, whereas financial analysts are viewed as a more reliable source of forecasts 
for all companies and at all forecast horizons. It is frequently linked to an informational 
advantage over time-series models that only exploit histories of earnings. On the other 
hand, financial analysts may not always issue objective forecasts for a number of reasons. 
Their forecasts may be influenced by personal career concerns or by incentive problems1. 
However, there have been few attempts to find alternative methods of forecasting in the 
literature since the 1980s, when the view of analysts’ superiority prevailed. Therefore, it 
seems natural to come back to the issue of forecasting accuracy from the current 
perspective and to compare the relative accuracy of financial analysts’ forecasts to 
adaptive time-series models predictions. 

In this study, I consider IBES consensus earnings forecasts for the 1993-2002 
period and employ adaptive forecasting techniques, in particular, a novel approach: 
artificial neural networks. Neural networks can detect systematic patterns, learn and adapt 
to underlying relationships. They are data driven and therefore useful where one does not 
have particular beliefs about functional forms. I provide tests of the relative accuracy of 
financial analysts’ earnings forecasts by considering rank orders and the direction of 
change measure. It allows me to identify models that obtain a better forecast accuracy for 
the greater number of companies and to answer the question of which models have a 
better ability to recognize the sign of future changes in earnings.  

I demonstrate the importance of statistical characteristics of a firm’s earnings for 
assessing the relative accuracy of alternative forecasting methods. I find evidence of the 
superiority of adaptive time-series models forecasts over financial analysts’ forecasts 
made at the beginning of a fiscal year for companies with highly volatile earnings. This 
suggests that financial analysts mainly predict the overall market behavior and have a 
lack of ability to predict firm specific fluctuations. On the other hand, the relative 
accuracy of adaptive time-series models forecasts increases with the variation of change 
in earnings and the forecast horizon. It is apparently caused by superior abilities of 
artificial neural networks to determine nonlinear systematic patterns in volatile earnings 

                                                 
1  Research on systematic errors in analysts’ earnings forecasts has produced a diverse set of incentive-
based explanations intended to account for them. Francis and Philbrick (1993) find that analysts incorporate 
optimism into their forecasts to repair management relationships, following sell recommendations. Lin and 
McNichols (1998) find that co-underwriter analysts’ earnings forecasts are more favorable than those made 
by unaffiliated analysts. Dugar and Nathan (1995) find that analysts exhibit greater optimism for firms that 
are investment-banking clients. McNichols and O’Brien (1997) suggest that the observed bias is a result of 
the selection process when analysts with relatively unfavorable information decide to exit the pool of 
forecasters. H. Hong et al. (2000) provide evidence that the analysts’ behavior is consistent with career-
concern-motivated herding theories. 
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and to recognize downward moves in the environment of generally rising earnings. In 
addition, I find that financial analysts produce less accurate two-year-ahead forecasts 
made at the beginning of a fiscal year than any other adaptive time-series model. It leaves 
in question the existence of analysts’ forecasts as a reliable measure of a firm’s expected 
performance at the beginning of a fiscal year. 

Next, I examine whether additional information processed by analysts is 
constructive or if it is a noise, which hinders the discovery of systematic patterns. I 
consider the relative informational content of forecasts and show that time-series models 
have strength of their own. They often contain information missing in analysts’ 
predictions. Furthermore, for a specific subset of firms, a forecast horizon and a time-
series model, I demonstrate that all information contained in analysts’ predictions is 
already included in a time-series model forecasts indicating that having more information 
is not necessarily useful. This result suggests that financial analysts either underestimate 
the importance of information contained in histories of earnings or cannot properly filter 
the extensive set of all available information. Finally, I study the relationship between the 
number of analysts issuing forecasts for a specific company, the standard deviation of 
individual forecasts and the relative accuracy of financial analysts’ consensus forecasts. I 
show that not the size, but the type of the company is a main determinant of the financial 
analysts’ relative forecast accuracy. It supports the finding that more information is not 
necessarily beneficial for the accuracy of predictions. 

Underlying this research is abundant theoretical and empirical literature on the 
subject of time-series of earnings that has received wide attention since 1973, when the 
Security and Exchange Commission announced its intention to require management 
forecasts to be made public. Earlier studies, such as Ball and Watts (1972), Albrecht et al. 
(1977), Watts and Leftwich (1977), argue that histories of past annual earnings per share 
contain almost no information about future earnings, and conclude that earnings are best 
described as random processes. On the other hand, works by Brown and Roseff (1979), 
Collins and Hopwood (1980), Hopwood et al. (1982) consider quarterly earnings as 
inputs to forecasting models and state that quarterly EPS have appeared to yield the 
predictions of future annual earnings that often compete in accuracy with the random 
walk model.  

Empirical tests comparing the accuracy of financial analysts’ earnings forecasts to 
the accuracy of non-adaptive time-series models predictions claim analysts’ superiority. 
Brown and Roseff (1978) analyze fifty firms followed by a single analyst, Value Line 
Investment Survey, and provide evidence of Value Line’s superiority over the Box and 
Jenkins and naive models. Fried and Givoly (1982) note that the broadness of the 
information set employed by analysts and their reliance on information released after the 
end of a fiscal year appear to be important contributing factors to the analysts’ superior 
performance. Similarly, Brown et al. (1987) attribute the analysts’ superiority to a timing 
advantage and an information advantage2. They also show a positive association between 

                                                 
2 Timing advantage - more information is available after the earnings announcement; information 
advantage - more information is used by analysts than historical earnings. 
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the firm size and the advantage of financial analysts’ forecasts over time-series based 
forecasts.  

However, note that most empirical works have studied the accuracy of non-
adaptive statistical models, specifications of which are fixed through time. This approach 
neglects the changing nature of data generating processes and may not provide the most 
accurate forecasts. My approach is to consider the use of adaptive time-series models as a 
tool for forecasting earnings. In contrast to non-adaptive statistical models, the main 
feature of this method is the assumption that the underlying relationship between past and 
future earnings may be evolving over time. As approximate means by which I hope to 
capture this phenomenon, I not only re-estimate parameters of statistical models, but also 
choose a new specification each time new data become available.  

The organization of this paper is as follows. Section II describes data used and a 
sample selection process. It also illustrates differences between the suggested adaptive 
statistical approach and the non-adaptive one that has been continuously exploited in the 
past. Section III discusses estimation methodology. The empirical findings are presented 
in Section IV, while the final Section V states conclusions drawn from this work. 

 
II. Experimental Design 

 
A. Data and Sample Selection 
 
 I use consensus forecast data from the Institutional Brokers Estimate System 
Summary file. In the IBES database, consensus forecasts of firms’ earnings are the means 
of all analysts’ estimates outstanding as of the Thursday before the third Friday of each 
month. The choice of consensus forecasts in favor of individual analysts’ forecasts is not 
arbitrary. Investors often rely on consensus forecasts of earnings as measures of a firm’s 
future performance. In firm valuation models, the intrinsic value of a company also 
depends on consensus expectations of future earnings. In testing such models, consensus 
forecasts are the appropriate proxies to be used, and an ex-post accuracy is not a key 
motive for using consensus measures. In contrast to my approach, most of the existing 
studies that compare the accuracy of time-series models and analysts’ earnings 
predictions consider single analyst’s forecasts. Therefore, the analysis of consensus 
forecasts rather than that of individual analysts’ forecasts constitutes the first distinction 
of the current research. 

The IBES earnings forecasts database covers approximately 14,500 companies for 
different periods starting in 1977. I restrict attention to the December year-end firms. In 
addition, for a firm to be included in the sample, there should exist one-year-ahead, two-
year-ahead and one-, two-, … , seven-, eight-quarters-ahead forecasts by at least one 
analyst in March of each year starting in 1993. Because most calendar-year-end firms 
announce their annual earnings between January and March, I use analysts’ forecasts 
from the month of March. It ensures that analysts’ as well as statistical models forecasts 
are conditioned on the same knowledge of previous years earnings. Thus, I control for the 
timing advantage, while the information advantage becomes the subject for the test. 
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The selection procedure results in a sample of firms with ten-year histories of 
annual and quarterly forecasts. I choose the ten-year forecast comparison window 
because of the following consideration: time-series models in this study require histories 
of actual earnings to estimate parameters of the models and to generate forecasts. 
Therefore, there is a tradeoff between the number of years used to compare forecast 
errors and a selection bias, which increases with extending histories of actual earnings 
farther in the past. Note that the common criticism of most published studies is that, by 
dealing with only a few forecast comparison dates, they report results that may be 
specific to relatively short time intervals. For example, Brown and Roseff (1978) 
compare forecasts for only four years. The relatively longer forecast comparison period is 
the second distinction of this paper. 

To finalize the selection procedure, I randomly choose forty-eight firms from the 
set of companies that satisfy all requirements discussed above. I admit that it is possible 
that there exist some sample bias due to the limited coverage of firms by financial 
analysts. This bias is towards a greater coverage of large and somewhat older firms that 
have forecast data reported by the IBES in March for ten consecutive years. For this 
reason, extrapolations to larger populations should be made with care. 

I take actual earnings (1973-2002) from the Compustat database. Note that both 
analysts’ forecasts and actual earnings series are Earnings per Share before Extraordinary 
Items and Earnings from Operations as soon as the latter became available around 1986. I 
adjust all data for stock splits and stock dividends. 

 
B. Time-Series Models. 
  
 In this section, I discuss the adaptive time-series models that are used to forecast 
future earnings. By an adaptive model I mean that a new specification is chosen before 
each new rolling forecast is constructed. The notion of adaptability or real-time 
forecasting constitutes a key difference between the current research and the existing 
literature, which conditions the analysis on a fixed, non-adaptive forecasting model 
assumed to be in effect throughout an entire sample period. The latter approach misses 
the important detail that a time-series model, which reasonably describes an earnings-
generating process in one period, may be inappropriate in another. It can be caused by 
changes in the macroeconomic situation, changes in factors affecting the industry or the 
firm. For example, changes in a firm’s earnings may be attributed to general economic 
factors such as cyclical changes, which are represented by economy-wide ups and downs 
caused by a business cycle, or to structural changes like changes in the demographic 
structure or technologies. Shifts in the industry’s position as well as transformations in 
the political situation may change a company’s fortune over time. To illustrate the idea, I 
present earnings per share of two companies in Figure 1. In the first graph, earnings are 
highly cyclical, indicating that the company’s performance is very sensitive to the overall 
market condition. Whereas in the second graph, earnings follow the market quite closely, 
suggesting that we are dealing with a typical market firm. In addition, note that there is a 
drastic change in the market earnings pattern around 1992. 
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Figure 1. EPS before Extraordinary Items (1973-1985) / EPS from Operations (1986-2002) of Alcoa Inc. 
and Avery Dennison (presented by the solid line, left scale), and S&P500 (presented by the dotted line, 
right scale). 
 

By estimating adaptive linear and non-linear models, I address the following 
question: “Is there evidence that adaptive models are valuable in forecasting earnings?” If 
so, we have a clear alternative to often expensive financial analysts’ earnings forecasts. 
Swanson and White (1995, 1997) find that such models are useful when the variable of 
interest is the spot-forward rate differential: they show that adaptive linear vector 
autoregression models often outperform professionally available survey predictions, as 
well as no-change and non-adaptive linear models of key macroeconomic variables.  
 The class of non-linear time-series models is presented by artificial neural 
networks that are known to be universal function approximators and are capable of 
exploiting non-linear relationships between variables3. Neural Networks are applied 
across a wide range of disciplines: medicine, engineering, geology, and physics. In 
contrast, for many years, linear modeling has been a commonly used technique in 
economics and finance since linear models have well-known optimization strategies. 
Where the linear approximation was not valid, the models suffered accordingly. Only 
recently, artificial neural networks became the focus of attention as a possible vehicle for 
forecasting economic and financial variables. Kuan et al. (1995) consider exchange rate 
forecasting and conclude that neural networks have significant market timing ability and 
significantly lower out-of-sample mean square prediction error relative to the random 
walk model. Tkacz (2001) finds that neural networks yield statistically lower forecasts 
errors for the growth rate of real Canadian GDP relative to linear models.  

An artificial neural network is a sophisticated information processing technique 
that is inspired by the way the human brain processes information. The major element of 
this mechanism is a novel structure of the information processing system that is 
composed of highly interconnected processing elements. These elements, or units, are 
organized in layers. It is customary to distinguish the input layer, which supplies input 
data, hidden layers, and the output layer. The greater the number of hidden layers, the 

                                                 
3 For further discussions see, for example, Bishop (1995), Fausett (1994), Hornik et al. (1989). 
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greater the complexity of the system, and as a result, more cases are required to estimate 
the model. Due to the small number of cases available in this study, the networks I 
consider contain only one hidden layer and, therefore, can be represented by a simple 
functional form: 











+
















+= ∑ ∑

=

h

j
out

n

i
jijijoutjjijh a

1
),,,( ξξωψωψξξωωϕ ,                     (1) 

where ωji denotes the weight for the connection between input i (total n inputs) and the 
processing unit j in the hidden layer (total h units in the hidden layer), ωj denotes the 
weight between unit j in the hidden layer and the output unit, ξj and ξout are the threshold 
values and ψ is a given non-linear activation function; in this case, it is the logistic 
cumulative distribution function ))exp(1/(1)( zz −+=ψ .  

The network interpretation of Equation (1) is as follows. The input units send 
signals (a1,…, an), which represent historical earnings in this study, over the connections 
to the units in the hidden layer. Each connection can amplify or reduce the signal by 
weight, ωji , which controls the strength and the polarity of the relationship. The modified 
signals that arrive at the intermediate hidden units are first summed and after the addition 
of a threshold, ξj, converted to a hidden unit activation, ψ( ). The operation of the next 
level is similar when hidden unit activations are sent through the connections to the 
output unit. The output unit performs a biased weighted sum of its inputs and passes the 
activation level through the transfer function to produce the output. Thus, the network has 
a simple interpretation as a form of input-output model with weights and thresholds as 
free parameters of this model. Barron (1991) demonstrates that a feedforward neural 
network can achieve an approximation rate O(1/h) by using a number of parameters 
O(hn) that grows linearly in h, whereas traditional polynomial and trigonometric 
expansions require exponentially O(hn) terms to achieve the same approximation rate. 
Consequently, neural networks are relatively more parsimonious than the series 
expansions in approximating unknown functions. This property makes neural networks 
an attractive econometric tool in nonparametric applications. 

The neural network is data driven in that it learns only from the data presented to 
it and has no underlying parametric model. The greater the number of units in the hidden 
layers, the more the network is able to cope with non-linear relationships, but the danger 
of overfitting increases. The network is only trained on a training set and it is not the 
same as minimizing error on the error surface of the underlying and unknown model. 
Thus, a major flaw in the approach outlined above is that it does not minimize the error 
we are interested in: the error that the network will make when it encounters new and 
unseen cases. For this reason, some fraction of the data set must be reserved for cross-
verification. The verification data are taken out from the training data and not, in fact, 
used for training in the back propagation. Instead, they are kept for use in an independent 
check on the progress of the algorithm. As the training progresses, the training error 
essentially drops and verification error drops as well. However, if the verification error 
starts to rise, it indicates that the network starts to overfit and training should cease. A 
larger verification set is likely to be more representative. However, it does take the data 
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away from the training set. It is, therefore, necessary to strike a balance between the 
training and verification data sets. Experimentally, I find that the optimal size of the 
verification set is about 25-30% of the total number of available data points and that 
verification cases should be shifted more to the end of the data sample.  

The linear models considered in this paper are represented by the ARIMA(p,d,q) 
specification: 

( )( ) t
q

qt
dp

p LLLcaLLLL εθθθφφφ )...1(1...1 2
21

2
21 +++++=−−−−− ,         (2) 

where at denotes annual earnings per share and d is equal to  zero if the earnings 
generating process is stationary and equal to one or two if there is evidence of 
nonstationarity. To find a suitable model specification and to estimate the parameters I 
adopt the Box and Jenkins (1970) modeling technique. First, I consider patterns of 
autocorrelation and partial autocorrelation functions to identify the specification of the 
model. Then, I estimate parameters by OLS with the Schwarz information criterion as a 
guide to model selection and perform diagnostic checks on residuals. I repeat the 
procedure every time a new data point becomes available. This technique certainly 
captures the spirit of real-time forecasting and, therefore, enables me to select the most 
appropriate linear time-series specification that is consistent with each firm’s earnings 
generating process at a specific point in time. Consequently, forecasts obtained by this 
method should be superior to forecasts of ad hoc time-series models applied to all firms’ 
time-series data. 
 Another linear time-series model, which plays the role of a benchmark in this 
study, is a random walk with drift: 

ttt af εδ ++= −1 ,                                                    (3) 

where the drift parameter, δ, is specific for each firm and period of time. I estimated it as 
the average earnings change from one year to the next using two to fifteen years of 
annual earnings data preceding the year for which a forecast is desired: 

1
1

−
−

= −−

n
aa nttδ ,                                                      (4) 

where n is a firm and time specific lag parameter. This is a main attribute of the proposed 
random walk process. It transforms the model into the framework of adaptability. To 
evaluate lags, I implement the following procedure. First, starting in 1987, for each 
company using (3) and (4) with n ranging from two to fifteen, I generate a sequence of 
one-year-ahead ex post forecasts for 1988-1992. Next, I choose the value of n that results 
in the smallest MSE over this period. Finally, I use (3) and (4) with the found value of n 
to predict earnings for 1993-1997. I repeat the procedure in 1997 to find new firm 
specific values of n that are used to predict 1997-2002 earnings. I find that values of n 
decrease with the decline in earnings volatility. If a company’s earnings are steady, only 
recent earnings are important for forecasting, and n is small. On the contrary, if earnings 
are volatile, the value of n is relatively large. It tends to incorporate a relatively long-term 
trend in forecasting. 
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III. Estimation and Model Selection 
 
A. Estimation 
 

In this section, I discuss the estimation of two classes of models described above. 
I estimate the parameters of all non-linear and linear models using only a finite window 
of past data rather than all of the previously available data. By pursuing this strategy, I 
assume that the underlying earnings generating process may be evolving through time. I 
use annual and quarterly earnings data as inputs to neural networks and annual data as 
inputs to linear models. Accordingly, throughout the paper, by an annual/quarterly neural 
networks model, I mean that the model exploits and predicts annual/quarterly data. I 
estimate annual models using twenty years and quarterly models using eighty quarters of 
earnings data immediately preceding the year for which a forecast is desired, and obtain 
one-, two-year-ahead and one-, two-, … , seven-, eight-quarter-ahead forecasts for each 
firm, year and model. Then, I add quarterly forecasts and obtain a forecast of annual 
earnings for a given firm by a given model. I re-estimate the configuration of neural 
networks, the specification of the ARIMA model, and the parameters of these models 
each year during the period of 1993-2002.  

The type of linear econometric models used and their underlying assumptions are 
standard. Therefore, I now turn to the discussion of non-linear neural networks 
estimation. In practice, there are mainly two tasks in building neural networks: a suitable 
network structure (the number of hidden units) must be determined, and unknown 
network parameters must be estimated. The main feature of neural networks is that they 
learn the input/output relationship through training. The training data contain examples of 
inputs together with the corresponding outputs, and the network learns to infer the 
relationship between the two. The training proceeds by back propagation developed by 
Rumelhert et al. (1986), which uses data to adjust the network weights, ω, and 
thresholds, ξ, so as to minimize the error in its predictions:   

( ) 2* ,,minarg ξωϕθ ayE hh −= .                                          (5) 

The estimation is performed through iterations. Each iteration of the training 
process proceeds as follows: first, the network is presented with a set of training 
examples from which weight and threshold adjustments are made. As a result, the 
training algorithm incrementally seeks for the global minimum by calculating a gradient 
vector of the multidimensional error surface and making a downhill move. Then, the 
network is tested using independent verification data to find the ability of the network to 
generalize on the unseen data. Training stops at the iteration where the MSE for the 
verification set starts to rise indicating overfitting. 

The second task in practice is to establish a suitable network structure. As the 
activation function, ψ, can be chosen quite arbitrarily, this task reduces to determining the 
network complexity, i.e. the number of lagged variables, the number of hidden layers and 
the number of units in these layers. Although back propagation can be applied to 
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networks with any number of layers, Cybenko (1989) shows that only one layer of hidden 
units suffices to approximate a large class of functions to arbitrary precision, provided 
that the number of hidden units, h, is adequately large and the activation functions, ψ, are 
non-linear. On the other hand, while a simple network (few hidden units) may not be able 
to approximate well, an excessively complex network (many hidden units) may overfit 
the data. For this reason, one should find a balance between the network complexity and 
the ability to predict unseen data.  

For each firm and year, I estimate networks with different number of lags: three 
and five for the annual data and four, eight, and twelve for the quarterly data. It means 
that if, for example, the lag is equal to four in the case of quarterly forecasts, then the 
inputs to neural networks consist of quartets (xt-1, xt-2, xt-3, xt-4) and the output is a single 
earnings number xt. Accordingly, the first annual rolling sample consists of seventy-six 
inputs (x1, x2, x3, x4), (x2, x3, x4, x5),…, (x76, x77, x78, x79) and their corresponding outputs 
x5, x6,…, x80. Thus, I produce forecasts that one could make with the model as time 
progresses. I also test different numbers of units in the hidden layer for each lag value4. I 
find that the neural networks perform the best with the next number of units: two units 
(h=2) for lags equal to three and four, three units (h=3) for lags equal to five, and four 
units (h=4) for eight and twelve.  
 
B. Measurements of forecast accuracy. 
  

To assess the out-of-sample predictive abilities of alternative forecasting models, 
I compute the following statistics for each company and forecast horizon. The first is the 
mean-squared error, since it is the most frequently quoted measure in the forecasting 
literature: 

( ) ,1 2∑ −=
t

kikki fa
T

MSE                                                (6) 

where ak denotes actual earnings of firm k, and fki denotes the predicted earnings of firm k 
by model i. However, if forecast errors are measured in terms of levels of earnings, as the 
level of earnings increases in absolute magnitude, so will the absolute magnitude of the 
forecast errors. In addition, Dacco and Satchell (1999) argue that MSE measure may be 
not quite appropriate for the non-linear models since this measure may imply that a non-
linear model is less accurate than a linear one when it is not actually true. Accordingly, I 
calculate a second scale invariant measure of accuracy – MSPE: 
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In order to compare the MSE and MSPE error measures from different models, I 
use the asymptotic loss differential test proposed by Diebold and Mariano (1995). The 
test considers a sample path { }T

ttd 1=  of a loss-differential series and tests the null 

                                                 
4 I use two companies to find the most appropriate specifications of neural networks for this study. These 
companies are not from the sample of forty-eight companies considered in the results. 
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hypothesis of equal forecast accuracy between two alternative models by exercising the 
next statistic: 

( )1,0~
)0(ˆ2

N
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dS
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= ,                                             (8) 

where d is the sample mean loss differential: 
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and )0(ˆ
df is a consistent estimator of the spectral density at frequency 0. It is computed 

as a weighted sum of the available sample autocovariences: 
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where the uniform lag window I( ) is given by: 
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                                                                = 0   otherwise. 

The truncation lag, S(T), is equal to zero for one-year-ahead forecasts and equal to one 
for two-year-ahead-forecasts. It follows from the familiar fact that k-step-ahead forecast 
errors are at most (k-1) dependent. I define the loss differential series to be 

( ) ( )jttittt fafad −−−=  for the MSE test and ( ) ( )tjttitt afafd −−−= 11  for the MSPE test, 
where at denotes actual earnings at time t, while fit and fjt are predicted earnings by 
models i and j, respectively. The formula indicates that due to the cumulation of 
autocovarience terms, the correction for serial correlation may be substantial even if the 
loss differential is only weakly correlated. 
 

IV. Empirical Results 
  
A. Comparison of forecast accuracy. 
 

Looking at earnings patterns of different companies between 1973 and 1992, it 
seems natural to divide them into two subgroups, according to their earnings volatility. 
To describe the earnings volatility quantitatively, I employ the coefficient of variation of 
the first difference of earnings: 

 
( ) ( )

( ))(
)()(

2

13

adQ
adQadQ

CV
k

kk
k

−
= ,                                        (12) 

where ( ))(2 adQ k  denotes the median change in earnings of firm k, and Q3( ) - Q1( ) is the 
interquartile range of these changes. The greater the coefficient, the more volatile 
changes in earnings, and therefore, the harder the task of forecasting. I compute the 
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coefficient of variation for each firm and divide companies into two groups consisting of 
firms with values of the coefficient above and below its median value. I call these groups 
the “cycle” and the “growth” groups, respectively. Each group contains twenty-four 
companies. For purposes of illustration, I present earnings of the representative cycle and 
growth group firms in Figure 1. While earnings are highly cyclical and volatile in the first 
graph, earnings, in the second graph, grow remarkably in line with S&P500 earnings. 
Thus, the growth group consists of firms whose earnings move together with the market, 
whereas earnings of the cycle group firms are more susceptible to economic fluctuations.  

First, using forecasting models described above, I generate one- and two-year-
ahead forecasts of earnings per share for the 1993-2002 period. Next, I calculate MSE 
and MSPE for each company, forecast horizon and forecasting method. Then, I carry out 
the Diebold and Mariano test of equal forecasting accuracy and assign ranks from one to 
five to each of the five models in consideration5. Finally, I sum the ranks of each 
forecasting method i across N firms: 

∑
=

=
N

k
kii rankNrank

1
1 .                                              (13) 

I present the results in Table 1 and Table 2. The smaller the rank of a model, the better 
predictive accuracy the model obtains. Note that “average across models” ranks are not 
equal to three, since it is often the case that by performing the Diebold and Mariano test, I 
cannot reject the hypothesis of equal forecasting accuracy.  

The main result in Table 1 is that artificial neural networks that make use of 
quarterly data (QNN) outperform the other time-series methods in consideration and 
produce the comparable performance to financial analysts. Average ranks of QNN based 
on the MSE and MSPE error measures are 1.40 and 1.47, while financial analysts’ ranks 
are 1.69 and 1.91, respectively. Financial analysts generate the better accuracy than the 
random walk with drift model (RW) based on the MSE measure, 1.69 versus 2.23, and 
comparable accuracy based on the MSPE measure, 1.91 versus 2.03. On the other hand, 
artificial neural networks that exploit annual data (ANN) and their linear analog, the Box 
and Jenkins procedure (BJ), fail to produce a better accuracy than the random walk. I link 
the poor performance of ANN relative to the QNN model to the insufficient number of 
data points used for its training. In contrast, I explain the success of QNN by two factors: 
the desegregation effect that results from higher data frequency and the ability to avoid 
significant outlier quarters in training without radically reducing the training set. The 
linear BJ procedure produces the worst accuracy results. 

Table 2 presents the results for the two-year-ahead forecast horizon. The QNN 
modeling technique continues to be a leader in forecasting accuracy based on both error 
measures. Its ranks are the smallest and equal to 1.73 and 1.77 for the MSE and MSPE 
error measures. Taking into account that in order to produce a two-year-ahead forecast, 
we need to obtain one- to eight-quarters-ahead forecasts and the fact that the forecast 
accuracy decreases with the forecast horizon, the QNN superior accuracy is a prominent 
                                                 
5 Note that if I cannot reject the hypothesis of equal forecasting accuracy between models i and j at the 5% 
significance level, both models get the same rank. 
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result. On the contrary, financial analysts produce worse accuracy two-year-ahead 
forecasts made at the beginning of a fiscal year than any other model in consideration; 
even the linear BJ procedure and the adaptive random walk supply more accurate 
forecasts. This fact sheds significant doubt on the credibility of financial analysts as 
providers of accurate long-term earnings forecasts. 

By looking at subgroups, we can draw the following conclusions. For the one-
year-ahead forecast horizon, analysts’ forecasts have the accuracy comparable to the 
random walk forecast accuracy for the cycle group companies and have better accuracy 
for the growth group companies. For the two-year-ahead forecast horizon, the analysts’ 
forecast accuracy is inferior to all models for the cycle group companies and only 
comparable to the BJ model accuracy for the growth group companies. Next, for both 
forecast horizons, the advantage of quarterly neural networks is greater for the cycle 
group companies. According to both error measures, a gap between the QNN and the 
analysts’ accuracy widens as we move from the growth to the cycle companies group. 
The average rank of the QNN model for the cycle group is about 36% (49%) smaller for 
the one- (two)-year-ahead forecast horizon than that of financial analysts. This is a focal 
result. It shows that neural networks are the most valuable in forecasting earnings of the 
high change in earnings volatility companies. It is apparently caused by their superior 
ability to extract nonlinear systematic patterns from series of past earnings. On the other 
hand, financial analysts consider larger sets of information that often consist of 
contradictory signals about companies’ future prospects. As a result, they attach reduced 
weights to the information in histories of earnings and underestimate its importance. With 
respect to the growth group companies, the performance of neural networks is 
significantly undermined by sharp changes in earnings generating processes in the 
beginning of the 1990s, when relatively flat earnings plateaus were replaced by steady 
growth.  

Finally, note that I perform an ex ante division of companies between the cycle 
and the growth groups. The coefficient of variation (12) is evaluated only using the 1973-
1992 earning data. To verify the results using an ex post measure of variation, I reclassify 
companies between groups according to the coefficient of variation that is estimated 
using the 1983-2002 earnings data. In this case, the quarterly neural networks accuracy 
advantage is even more prominent for the cycle group firms as compared to the growth 
group companies. 

To summarize, according to the rank orders forecast comparison procedure, 
neural networks utilizing quarterly data appear to be the method with the best accuracy of 
one- and two-year-ahead EPS forecasts made at the beginning of a fiscal year. Their 
advantage is the most evident for the high change in earnings volatility companies whose 
earnings regularly deviate from the market. On the contrary, financial analysts predict 
relatively well earnings of companies whose earnings move in line with market earnings. 
This result suggests that financial analysts generally predict the overall market 
component, but have a lack of ability to foresee specific fluctuations. Do they fail to 
predict the upward or downward deviations, or both? The next section provides an insight 
into this interesting question. 
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Average Rank based on MSE   Average Rank based on MSPE  

Model “Cycle” 
firms 

“Growth” 
firms 

Total   “Cycle” 
firms 

“Growth” 
firms 

Total 

 
Financial Analysts 

RW with drift  

QNN (Quarterly EPS) 

ANN (Annual EPS) 

BJ 

 
2.08 

2.08 

1.29 

2.33 

2.29 

 
1.29 

2.38 

1.50 

2.08 

2.92 

 
1.69 

2.23 

1.40 

2.20 

2.60 

 

 

 

 

 

 
 
 
 
 

 
2.12 

1.93 

1.38 

2.04 

1.98 

 
1.70 

2.13 

1.55 

2.60 

2.66 

 
1.91 

2.03 

1.47 

2.32 

2.32 

Average across models 2.01 2.03 2.02   1.89 2.13 2.01 

Table 1. Rank orders of financial analysts and time-series models forecasting one-year-ahead EPS at the 
beginning of a fiscal year. Forecast accuracy is measured by MSE and MSPE. The Diebold-Mariano 
predictive accuracy test is applied to MSE and MSPE loss differentials. The ranks are assigned according to 
the 5% significance level. 
 
 

Average Rank based on MSE   Average Rank based on MSPE  

Model “Cycle” 
firms 

“Growth” 
firms 

Total   “Cycle” 
firms 

“Growth” 
firms 

Total 

 
Financial Analysts 

RW with drift  

QNN (Quarterly EPS) 

ANN (Annual EPS) 

BJ 

 
3.33 

2.21 

1.63  

2.17 

1.96 

 
2.63 

2.58 

1.83 

2.25 

3.04 

 
2.98 

2.40 

1.73 

2.21 

2.50 

 

 

 

 

 

 
 
 
 
 

 
3.29 

2.21 

1.75 

1.92 

1.88  

 
2.75 

2.33 

1.79 

2.34 

2.54 

 
3.02 

2.27 

1.77 

2.13 

2.21 

Average across models 2.26 2.47 2.37   2.21 2.35 2.28 

Table 2. Rank orders of financial analysts and time-series models forecasting two-year-ahead EPS at the 
beginning of a fiscal year. Forecast accuracy is measured by MSE and MSPE. The Diebold-Mariano 
predictive accuracy test is applied to MSE and MSPE loss differentials. The ranks are assigned according to 
the 5% significance level. 
 
 

One-year-ahead    Two-year-ahead 

Prediction matrixes Prediction matrixes 

 

Model 

Up down 

 
HM 

p-value 

  

up Down 

 
HM 

p-value 
 
Financial Analysts 

RW with drift  

QNN (Quarterly EPS) 

ANN (Annual EPS) 

BJ 

 
318,   12 

267,   63 

228, 102 

238,   92 

228, 102 

 
110,   40 

117,   33 

  54,   96 

  69,   81 

107,   43 

 
0.00 

0.20 

0.00 

0.00 

0.82 

 
 
 
 
 
 

 
 

 

 

 

 

 
295,     5 

244,   56 

224,   76 

223,   77 

238,   62 

 
116,   16 

110,   22 

  52,   80 

  61,   71 

  95,   37 

 
0.00 

0.06 

0.00 

0.00 

0.06 

Total 330 150    300 132  

Table 3. Prediction matrixes of financial analysts and time-series models forecasting one- and two-year-
ahead EPS at the beginning of a fiscal year. The first entry corresponds to correctly predicted up moves, 
second to actual up/predicted down, third to actual down/predicted up and fourth to correctly predicted 
down moves. HM p-values for the rejection of the hypothesis of no forecasting skills. 
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B. The direction of change measure. 
 

A slightly different approach to assess the forecast accuracy and to get an insight 
into sources driving statistical models and financial analysts’ forecasting abilities is to 
utilize the direction of change measure. This measure is related to forecasts interpreted 
only in terms of whether a firm’s earnings will increase or decrease. I demonstrate the 
performances of models in terms of prediction matrixes in Table 3. They portray 
forecasts as the numbers of correct and incorrect predictions of the direction of change6.  

As it is evident from the results, financial analysts produce fewer mistakes in 
predicting upward movements (actual up/predicted down is equal to twelve and five for 
the one- and two-year-ahead forecast horizon), but more mistakes in predicting 
downward movements (actual down/predicted up is equal to 110 and 116 for the one- and 
two-year-ahead forecast horizon) as compared to neural networks. In fact, analysts 
correctly predict 96% (98%) of one- (two)-year-ahead up moves and only 27% (12%) of 
one- (two)-year-ahead down moves, whereas similar statistics for quarterly neural 
networks are 69% (75%) and 64% (61%). Quarterly neural networks possess the best 
skills for predicting down moves (96 out of 150 and 80 out of 132 for the one- and two-
year-ahead forecast horizon, respectively). It apparently leads to their superior 
performance observed in terms of the rank orders. On the contrary, financial analysts 
often miss the correct prediction of downward movements, which are the most important 
deviations to predict in the environment of rising earnings. Financial analysts have a 
tendency to produce upward predictions and, thus, to some extent, ignore histories of 
earnings. In the case of the cycle group firms, these histories may contain a number of 
long lasting downturns pointing at a great potential for downward deviations from the 
overall market in the future.  

Next, note that there are some similarities between financial analysts and the 
linear BJ and random walk models. Namely, in the case of one-year ahead forecast 
horizon, the number of correctly predicted down moves by analysts is only slightly higher 
than that by the random walk, 40 versus 33 out of 150, and similar to the BJ model 
predictions, 40 and 43, respectively. For the two-year-ahead forecast horizon, analysts 
correctly predict 16 out of 132 down moves, while the random walk model correctly 
predicts 22. This suggests that financial analysts incorporate trends into their forecasts 
that shadow drift components of the random walk model. This behavior is similar to the 
behavior of the naive investor, who extrapolates the past performance into the future7.  

Finally, there is the question of whether the least confusing models are the models 
that we would choose based on the MSE and MSPE forecast measures in the setting of 
real-time forecasting. To provide an answer, I perform the nonparametric test given by 

                                                 
6 The first entry corresponds to correctly predicted up moves, second to actual up/predicted down, third to 
actual down/predicted up and fourth to correctly predicted down moves. 
7 See, for example, Lakonishok, Shleifer and Vishny (1994). They argue that value strategies yield higher 
returns because these strategies exploit the suboptimal behavior of the typical investor, who extrapolates 
past earnings growth too far into the future. 
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Hendrickson and Merton (1981) and compute HM p-values for the rejection of 
hypothesis of no forecasting skills. According to the results, I reject the hypothesis of no 
forecasting skills for financial analysts and neural networks models for both forecast 
horizons at the 1% significance level. These models are found to be useful as predictors 
of the sign of change in earnings. On the contrary, the random walk model, which 
demonstrates a solid performance based on the MSE and MSPE measures, has no 
forecasting skills for the direction of change.  
 
C. Relative informational content of forecasts. 
 

The adaptive statistical models used to forecast earnings exploit only series of 
past earnings, whereas financial analysts make use of a considerably broader information 
set. It constitutes the information advantage. Then, how should we interpret the 
differences in forecasts? Does each model have strength of its own, or do financial 
analysts’ forecasts dominate in the sense of incorporating all information in the other 
model plus sum? I examine this question by considering the regression of actual changes 
in earnings on changes forecasted by financial analysts and statistical models. This 
procedure may comprise advantages over the direct comparison of MSE or MSPE error 
measures. For example, if the MSE are close for two forecasts, and performing the 
Diebold and Mariano test, we cannot reject the hypothesis of equal forecasting accuracy; 
little can be concluded about the relative merits of the two. Furthermore, even if the MSE 
of one model is bigger than the other, it may still be the case that its forecasts contain 
additional information. There is no way to test for this using the MSE framework. 
Therefore, I consider the following regression equation: 

ktstkktstkktstkkt afafaa εββα +−+−+=− −−− )()( )(
2

2)(
1

1)(                     (14) 

where ak denotes actual earnings of firm k, fk
1 and fk

2 are predicted earnings by models 
one and two, while s = 1, 2 is the forecast horizon. If neither model contains useful 
information for s-period-ahead forecasts, then estimates of β1 and β2 should both be zero, 
and α would be the average s-period-ahead change in earnings. If forecasts are not 
perfectly correlated, and both models contain independent information, then β1 and β2 
should both be nonzero. Finally, if the model two is completely contained in the model 
one, and the model one contains further relevant information as well, then β2 but not β1 
should be nonzero.  

I focus on the performance of financial analysts (model 1) versus the quarterly 
neural networks (model 2), which were shown to have superior predictive abilities in 
terms of rank orders, and the random walk model, which represents a sufficiently simple 
forecasting technique. The procedure consists of estimating Equation (14) first, and then, 
testing the hypotheses: H0: β1 = 0 that analysts’ forecasts contain no information, which 
is not incorporated in a constant term and in statistical models forecasts, and H0: β2 = 0 
that the statistical models contain no information, which is not included in a constant 
term and in analysts’ forecasts. Note that it does not seem reasonable to estimate 
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Equation (14) for each company or each year separately8. Therefore, I consider the 
pooled data set that produces 480 (432) data points in the case of one- (two)-year-ahead 
forecast horizon. The OLS estimator is not the best linear unbiased estimator in this case. 
Therefore, I consider the feasible generalized least square estimator, which is the 
weighted average of between- and within-group estimators given in Maddala (1971): 

wkbGLS I βββ ˆ)(ˆˆ ∆−+∆= ,                                            (15) 

where consistent estimators of unknown 2
θσ  and 2

νσ  are used to determine the weight ∆. 
This is called the random effect model, where εit = θi + νit, and νit are treated as random 
variables. 
 Table 4 presents the estimated coefficients of Equation (14) for the one- and two-
year-ahead forecast horizon. With respect to the one-year-ahead forecast horizon, the 
coefficient estimates for financial analysts’ and RW/QNN forecasts are both nonzero and 
statistically significant for the cycle group companies. It indicates that there is some 
information in RW/QNN forecasts that is not in analysts’ forecasts. This result suggests 
that financial analysts process the information in histories of earnings differently than the 
time-series models or that they neglect this information at all. It contradicts the common 
view that analysts make use of all available information in constructing their forecasts.  
 Now, consider two-year-ahead forecasts. For the cycle group firms, random walk 
model has independent information; its coefficient estimate is nonzero and statistically 
significant. Moreover, while the coefficient estimate for quarterly neural networks 
forecasts is nonzero and statistically significant, the coefficient estimate for financial 
analysts’ forecasts is not significantly different from zero at the 5% level. It reveals that 
analysts’ forecasts contain no information, which is not incorporated in a constant term 
and in QNN forecasts, for companies with volatile earnings. This result demonstrates that 
quarterly neural networks forecasts are not collinear with financial analysts’ forecasts and 
that the difference between the QNN and financial analysts’ accuracy is meaningful. 

To summarize, quarterly neural networks as well as the adaptive random walk 
with drift model contain information not in a constant term and in analysts’ forecasts for 
the high change in earnings volatility companies. In contrast, neither coefficient estimate 
for the Time-Series variable in Table 4 is significant for the low change in earnings 
volatility companies indicating that all information is already included in financial 
analysts’ forecasts. Overall, without considering conventional measures of accuracy, 
results support the hypothesis that financial analysts have relatively good predictive 
abilities for companies with steady earnings that follow the market, whereas quarterly 
neural networks carry useful information that is not in financial analysts’ forecasts for 
companies with volatile earnings. It poses a challenge to the previously acclaimed notion 
of financial analysts’ informational superiority. 
 Next, to get an insight into the properties of financial analysts’ forecasts, I 
compute the forecast bias for financial analysts and RW/QNN forecasting methods. I 
employ a modification of Equation (14) and regress the predicted minus the actual 

                                                 
8 The sample consists of ten forecast dates and twenty-four companies in each group. 
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change in earnings on a constant. Table 5 presents the results. With respect to the growth 
group companies, financial analysts produce the positive but not statistically significant 
bias for the one-year-ahead forecast horizon and the positive and significant bias for the 
two-year-ahead forecast horizon. The random walk and quarterly neural networks models 
have negative and in two instances statistically significant biases, which are apparently 
caused by the relatively flat earnings plateau in the beginning of the 1990s and the 
consecutive shift to the drastic growth as demonstrated in Figure 1. For the cycle group 
firms, financial analysts generate large optimistic biases: 27 cents for the one-year-ahead 
and 53 cents for the two-year-ahead forecast horizon. These estimates are significantly 
different from zero and more than three times larger than those for the growth group 
firms are. It implies that financial analysts tend to predict the upward growth for all types 
of companies, which results in the large optimistic bias for the cycle group firms. On the 
contrary, quarterly neural networks and the random walk model are not biased. The 
estimates of the forecast bias are not statistically significant for both forecast horizons. 
These facts help to explain the observed neural networks accuracy advantage for the 
volatile change in earnings firms. Overall, the results suggest that the analysts’ forecast 
bias increases with the volatility of earnings. To my knowledge, this observation is a new 
result in the literature examining the analysts’ forecast rationality. It deserves further 
attention in a separate study.  
 
D. Number of analysts and the standard deviation of individual forecasts.  

 
While some companies may be followed by over than thirty financial analysts, 

others are covered by only few. For some companies, the standard deviation of individual 
analysts’ forecasts may be small indicating that the majority of analysts agree on 
estimates, for others, it may be considerably large pointing at disagreement between 
financial analysts and uncertainty about companies’ prospects. Note that even though the 
number of analysts issuing forecasts and the standard deviation of individual forecasts for 
a specific company may change from year to year, it is very persistent.  

One would naturally expect consensus forecasts to have better accuracy relative to 
time-series models as the number of individual analysts’ forecasts used to construct 
consensus increases. This view can be explained by widening the information set with 
each additional analyst or by portfolio benefits of averaging. Similarly, the more disperse 
individual analysts’ forecasts used to construct consensus forecasts, the more likely there 
is to be substantial uncertainty about future earnings. It may be a sign that different 
analysts receive different signals about future prospects, or that they process the 
information flow differently. As a result, we can anticipate the relative accuracy of 
financial analysts’ consensus forecasts to increase as more analysts follow the company 
and as the standard deviation of individual forecasts decreases.  

To test these ideas, I calculate the mean number of forecasts and the mean 
standard deviation of forecasts for each company and forecast horizon over a ten- (nine)-
year period. The number of analysts who issue one- (two)-year-ahead forecasts in the 
sample is as many as thirty-four (twenty-one), and as few as five (two). Therefore, to
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One-year-ahead  

“Cycle” firms “Growth” firms 

 
 
 
Time-Series Model 
 Const FA Time-Series Const FA Time-Series 

 
RW with drift  
 
QNN  

 
-0.14 
(3.15) 
-0.17 
(4.25) 

 
0.78 

(10.3) 
0.69 

(9.37) 

 
-0.93 
(3.30) 
0.57 

(5.90) 

 
-0.05 
(1.35) 
-0.01 
(0.43) 

 
0.80 

(9.91) 
0.75 

(8.67) 

 
0.35 

(1.76) 
0.13 

(1.53) 
 Two-year-ahead 

 
RW with drift  
 
QNN  

 
-0.10 
(1.09) 
-0.10 
(1.13) 

 
0.43 

(4.04) 
0.23 

(1.88) 

 
-0.63 
(2.75) 
0.53 

(5.26) 

 
0.04 

(0.61) 
0.04 

 (0.58) 

 
0.46 

(4.38) 
0.47 

(3.95) 

 
0.15 

(1.41) 
0.21 

(1.87) 
Table 4. Informational content of forecasts. Financial analysts versus the adaptive time-series models: 
Estimation of Equation (14). FA is financial analysts’ predictions minus actually realized values. Time-
Series is random walk with drift/quarterly neural networks predictions minus actually realized values.
Heteroskedasticity-robust t-statistics in absolute value are in parentheses. 

 
One-year-ahead  Two-year-ahead 

“Cycle” firms  “Growth” firms  “Cycle” firms “Growth” firms 

 
 
 
Model 
 Const Const Const Const 
 
Fin. Analysts 
 
RW with drift  
 
QNN  

 
  0.27 

  (4.07) 
  0.02 

  (0.31) 
-0.05 

  (0.75) 

 
  0.05 

  (1.74) 
-0.07 

  (2.15) 
-0.06 

  (1.70) 

 
  0.53 

  (4.51) 
  0.05  

  (0.64) 
-0.03 

  (0.29) 

 
  0.15  

  (2.86) 
-0.06 

  (1.53) 
-0.12 

  (2.18) 
Table 5. Forecast bias for financial analysts, random walk with drift and quarterly neural networks one- 
and two-year-ahead EPS forecasts made at the beginning of a fiscal year. The bias is estimated by the 
regression of the predicted minus the actual change in earnings on a constant; t-statistics in absolute value 
are in parentheses. 
 

One-year-ahead  Two-year-ahead  
 
Model 
 

Const NumberFA  SDFA Const NumberFA  SDFA 

 
 
FA – RW 
 
 

 
-0.12 

  (1.00) 

0.04 
(1.01) 

 
0.01 

(0.53) 
 

 
 
 

0.70 
(5.12) 

 
0.04 

(0.35) 

-0.12 
  (1.38) 

 
0.00 

(0.55) 

 
 
 

0.85 
(1.56) 

 
 
FA – QNN 
 
 

 
-0.08 

  (1.55) 

-0.18 
  (2.40) 

 
0.01 

(0.79) 
 
 

 
 
 

1.26 
(1.86) 

 
0.01 

(0.09) 

-0.18 
  (1.89) 

 
0.01 

(0.58) 
 

 
 
 

2.04 
(3.50) 

Table 6. Relative forecast accuracy and the number of analysts issuing forecasts, standard deviation of 
individual forecasts used to construct consensus forecasts. FA-RW, FA-QNN are the differences in the 
RMSE of financial analysts and the random walk with drift/quarterly neural networks models scaled by the 
standard deviation of the change in earnings over the 1993-2002. NumberFA is the mean number of financial 
analysts issuing forecasts, SDFA is the mean standard deviation of individual forecasts over the 1993-2002. 
Heteroskedasticity-robust t-statistics in absolute value are in parentheses. 
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control for possible problems with the standard deviation as a proxy for uncertainty when 
only few analysts follow the company, I exclude two companies for which the mean 
number of analysts is less than three.  

The next question I need to address is which measure of the relative accuracy to 
employ. While subtracting the MSPE error measures of two alternative models can 
produce meaningless values, subtracting the MSE measures does not look practical as 
well9. Therefore, I suggest the following measure of relative forecast accuracy. First, I 
take differences of RMSE calculated over the 1993-2002 period and then, scale it by the 
standard deviation of the first difference in earnings over the same period, 

))(()( .. AdRMSERMSE SeriesTimeAnFin σ−− . The idea is that differences in RMSE should be 
discounted more as earnings are less predictable. The proposed measure should allow us 
to reveal the effects of the number of analysts and the standard deviation of individual 
forecasts on the relative forecast accuracy without distorting the results by the difficulty 
of the forecasting task. Finally, I exclude outlier observations and regress the constructed 
earlier measure of the relative forecast accuracy on a constant and the number of analysts 
or the standard deviation of individual forecasts. Table 6 presents the results. 

Conversely to intuition, the relative accuracy of financial analysts’ consensus 
forecasts does not depend on the number of forecasts used to construct them. Instead of 
being negative as expected, the estimates of coefficients are not significantly different 
from zero for both time-series models and both forecast horizons. We do not observe 
benefits of aggregating a large number of individual analysts’ forecasts on the relative 
performance of financial analysts. It implies that all analysts make use of identical sets of 
information in the constriction of forecasts. Furthermore, note that there is a positive 
relationship between the number of analysts issuing forecasts and the size of the 
company. The bigger the size of a company, the more information is available about the 
company, that is, the bigger the dimensionality of its information set. Therefore, the 
greater number of analysts issuing forecasts for a company may point to the situation 
when each additional analyst processes information available to other analysts plus some 
new information. In this case, the relative accuracy of analysts’ forecasts would increase 
with the number of analysts. However, the observed results contradict this view.  

With respect to the standard deviation of individual analysts’ forecasts, as 
expected, the relative accuracy of financial analysts tends to increase as the dispersion of 
individual forecasts decreases. The estimates of coefficients are always positive and 
statistically significant for the random walk model in the case of one-year-ahead forecast 
horizon and for quarterly neural networks in the case of the two-year-ahead forecast 
horizon. It indicates that the value of adaptive time-series models forecasts increases with 
the standard deviations of individual analysts’ forecasts and, as a result, with the degree 
of uncertainty about future prospects. Note that the improvement in the relative accuracy 
of adaptive time-series models can be linked not only to the analysts’ disagreement, but 

                                                 
9 In the case of the MSPE error measure: if the denominator value is close to zero, one of the MSPEs can be 
quite large. In the case of the MSE error measure: similar resulting differences in errors are not the same 
for companies with different volatilities of earnings. 
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to the volatility of earnings as well. Indeed, as the standard deviation of the change in 
earnings increases, the standard deviation of individual analysts’ forecasts grows too. The 
coefficient of correlation between the two is high and statistically significant. Thus, 
quarterly neural networks perform relatively better for companies with the high 
dispersion of individual analysts’ forecasts, that is, for companies with highly volatile 
earnings. Furthermore, the estimate of the coefficient (2.04) is greater for the two-year-
ahead forecast horizon than that (1.26) for the one-year-ahead forecast horizon indicating 
that the neural networks relative accuracy increases faster for longer forecast horizons. 
These results are absolutely in line with the prior findings. 

To conclude, I find that the relative accuracy of financial analysts is not related to 
the dimensionality of the information set as measured by the mean number of analysts 
issuing forecasts, but rather positively related to the quality of this set as measured by the 
mean standard deviation of individual analysts’ forecasts. The results suggest that not the 
size, but the type of the company is a main determinant of the financial analysts’ relative 
forecast accuracy. 

 
V. Conclusions 

 
According to the rank orders procedure that utilizes the MSE and MSPE error 

measures, neural networks exploiting quarterly data produce forecasts that are 
comparable in accuracy to analysts’ predictions in the case of one-year-ahead forecast 
horizon or even superior in the case of two-year-ahead forecast horizon. In fact, financial 
analysts produce less accurate two-year-ahead forecasts made at the beginning of a fiscal 
year than any other adaptive time-series model in consideration; even the linear random 
walk with drift model supplies more accurate forecasts. This fact sheds significant doubt 
on the credibility of financial analysts as providers of accurate long-term earnings 
forecasts at the beginning of a fiscal year.  

Furthermore, I show that the accuracy advantage of artificial neural networks is 
more pronounced for companies with volatile and, therefore, hardly predictable changes 
in earnings. In contrast, financial analysts produce forecasts of a relatively good accuracy 
for companies with steady earnings, which generally move in line with market earnings. 
It suggests that analysts primarily predict the overall market component, but often fail to 
foresee firm specific fluctuations. Overall, the results imply that financial analysts have 
either inferior abilities relative to artificial neural networks to extract nonlinear 
systematic patterns from histories of volatile earnings or a lack of incentives to extract it 
properly, or both. 

As is evident from the direction of change measure, both financial analysts and 
neural networks are found to be useful predictors of the sign of change in earnings. 
However, the structure of predictions differs. Financial analysts have the advantage in 
recognizing upward movements, whereas quarterly neural networks possess the best 
skills to recognize downward moves. The financial analysts’ tendency to produce mostly 
positive sign predictions is consistent with generally growing earnings in the 1990s, but 
hides a potential danger to ignore histories of earnings, which contain frequent downturns 
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for the cycle group companies. On the other hand, the better ability of quarterly neural 
networks to predict downward movements may lead to their superior performance 
observed in terms of rank orders.  

Next, without considering conventional measures of accuracy, I present evidence 
suggesting that adaptive statistical models that only utilize series of past earnings contain 
information not in a constant term and in analysts’ forecasts made at the beginning of a 
fiscal year for companies with volatile earnings. It indicates that analysts overlook the 
information in histories of earnings. The observed behavior may be caused by analysts 
being abundant with larger sets of noisy information. Therefore, they assign smaller 
weight to the information in series of past earnings. This result contradicts the widely 
accepted idea that financial analysts use all available information in constructing 
forecasts and poses a challenge to the previously acclaimed notion of financial analysts’ 
informational superiority.  

The last question I study is how the number of analysts issuing forecasts and the 
standard deviation of individual forecasts influence the relative accuracy of financial 
analysts’ consensus forecasts. I find that the relative accuracy of financial analysts 
depends on the type of the company, as measured by the volatility of its earnings, and not 
the size of the company. Namely, the relative accuracy of analysts’ consensus forecasts is 
negatively related to the standard deviation of individual forecasts and independent of the 
number of forecasts used to construct consensus. It reveals that the amount of available 
information is not a main determinant of the relative forecast accuracy. 

Finally, I want to conclude with a warning about the interpretation of the results. 
The fact that one forecasting technique does well or poorly for one sample period does 
not necessarily mean that it will do well or poorly in the future periods. The results could 
change if the structure of the economy is changing, which is of course true of any 
econometric result. 
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